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FORWARDING INDICES OF CARTESIAN PRODUCT GRAPHS

Jun-Ming Xu, Min Xu and Xinmin Hou

Abstract. For a given connected graph G of order n, a routing R is a set
of n(n − 1) elementary paths specified for every ordered pair of vertices in
G. The vertex-forwarding index ξ(G) (the edge-forwarding index π(G)) of
G is the maximum number of paths of R passing through any vertex (resp.
edge) in G. In this paper we consider the vertex- and the edge- forwarding
indices of the cartesian product of k (≥ 2) graphs. As applications of our
results, we determine the vertex- and the edge- forwarding indices of some
well-known graphs, such as the n-dimensional generalized hypercube, the
undirected toroidal graph, the directed toroidal graph and the cartesian product
of the Petersen graphs.

1. INTRODUCTION

In general, we use a graph to model an interconnection network which consists
of hardware and/or software entities that are interconnected to facilitate efficient
computation and communications (see [9]).

A routing R of a connected graph G of order n is a set of n(n− 1) elementary
paths R(u, v) specified for all (ordered) pairs u, v of vertices of G. A routing R
is said to be minimal if all the paths R(u, v) of R are shortest paths from u to v,
denoted by Rm. To measure the efficiency of a routing deterministically, Chung,
Coffman, Reiman and Simon [5] introduced the concept of forwarding index of a
routing.

The load of a vertex v (resp. an edge e) in a given routing R of G = (V, E),
denoted by ξ(G, R, v) (resp. π(G, R, e)), is the number of paths of R going through
v (resp. e), where v is not an end vertex. The parameters

ξ(G, R) = max
v∈V (G)

ξ(G, R, v) and π(G, R) = max
e∈E(G)

π(G, R, e)
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are defined as the vertex forwarding index and the edge forwarding index of G with
respect to R, respectively; and the parameters

ξ(G) = min
R

ξ(G, R) and π(G) = min
R

π(G, R)

are defined as the vertex forwarding index and the edge forwarding index of G,
respectively. Similarly, we can define the parameters

ξm(G) = min
Rm

ξ(G, Rm) and πm(G) = min
Rm

π(G, Rm).

Clearly, ξ(G) ≤ ξm(G) and π(G) ≤ πm(G). The equality however does
not always hold. The original research of the forwarding indices is motivated
by the problem of maximizing network capacity. Maximizing network capacity
clearly reduces to minimizing vertex-forwarding index or edge-forwarding index of
a routing. Thus, the forwarding index problem has been studied widely by many
researchers (see, for example, [3-16]).

Although, determining the forwarding index problem has been shown to be NP-
complete by Saad [14], the exact values of the forwarding index of many important
classes of graphs have been determined (see, for example, [4, 8, 10, 15]).

Let Gi = (Vi, Ei) be a connected graph with |Vi| = ni and |Ei| = εi for i =
1, 2, · · · , k. The cartesian product of G1, G2, · · · , Gk, denoted by G1 ×G2 ×· · ·×
Gk, is the graph with the vertex-set V1×V2×· · ·×Vk. Two vertices (u1, u2, · · · , uk)
and (v1, v2, · · · , vk) are linked by an edge if and only if (u1, u2, · · · , uk) and
(v1, v2, · · · , vk) differ exactly in one coordinate, say the ith, and there is an edge
uivi ∈ E(Gi). Set

A(Gi)=
1
ni

∑
ui∈Vi


 ∑

vi∈Vi\{ui}
(dGi(ui, vi)− 1)


, B(Gi) =

1
εi

∑
(ui, vi)∈Vi×Vi

dGi(ui, vi).

For short, we will write ξi, πi, Ai and Bi for ξ(Gi), π(Gi), A(Gi) and B(Gi),
respectively, for i = 1, 2, · · · , k. In this paper, we will give the following results.

(1) ξ(G1×G2×· · ·×Gk) =
k∑

i=1
n1n2 · · ·ni−1(ξi−1)ni+1 · · ·nk+(k−1)n1n2 · · ·

nk + 1 if ξi = Ai for every i = 1, 2, · · · , k.
(2) π(G1 × G2 × · · · ×Gk) = max

1≤i≤k
{n1n2 · · ·ni−1πini+1 · · ·nk} if πi = Bi for

every i = 1, 2, · · · , k.

The proofs of the results are in Section 3. In Section 2, we will recall some
known results to be used in our proofs. In Section 4, as applications of these results,
we will determine the vertex-forwarding index and the edge-forwarding index of
some well-known graphs.
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2. SOME LEMMAS

Lemma 1. (Chung et al. [5]) Let G be a simple connected graph of order n.
Then

(1) A(G) ≤ ξ(G) ≤ ξm(G) ≤ (n − 1)(n− 2), and
(2) The equalities ξG = ξm(G) = A(G) are true if and only if there exists a

minimal routing in G which induces the same load on every vertex.

Lemma 2. (Heydemann et al. [10]) Let G = (V, E) be a simple connected
graph of order n. Then

(1) B(G) ≤ π(G) ≤ πm(G) ≤ �1
2 n2�, and

(2) The equalities π(G) = πm(G) = B(G) are true if and only if there exists a
minimal routing in G which induces the same load on every edge.

Lemma 3. (Heydemann et al. [10]) If G1 and G2 are two connected graphs of
order n1 and n2, we have

(1) ξ(G1 × G2) ≤ n1 ξ2 + n2ξ1 + (n1 − 1)(n2 − 1), and
(2) π(G1 × G2) ≤ max{n1π2, n2π1}.

These inequalities are also valid for minimal routings. Moreover, the equality in (1)
holds if both G1 and G2 are Cayley graphs.

3. MAIN RESULTS

In this section, our aim is to give our main results on the vertex-forwarding
index and the edge-forwarding index of the cartesian product G1 × G2 × · · · × Gk

for k ≥ 2. In order to make our idea used in the proofs clear, we first consider a
simple case of k = 2.

Lemma 4. For each i = 1, 2, if Gi is a connected graph with order n i, then
(1) ξ(G1 × G2) ≥ n2A1 + n1A2 + (n1 − 1)(n2 − 1),
(2) π(G1 × G2) ≥ max{n2B1, n1B2}.

Proof. Let U = V1 × V2 and let (u1, u2), (v1, v2) ∈ U , where u1, v1 ∈ V1

and u2, v2 ∈ V2. Then, the distance dG1×G2((u1, u2), (v1, v2)) = dG1(u1, v1) +
dG2(u2, v2). By Lemma 1, we have that

ξ(G1×G2) ≥ 1
n1n2

∑
(u1, u2)∈U

∑
(v1, v2)∈U\{(u1, u2)}

(dG1×G2((u1, u2), (v1, v2))−1)
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=
1

n1n2

∑
(u1, u2)∈U

∑
(v1, v2)∈U\{(u1, u2)}

(dG1(u1, v1) + dG2(u2, v2)−1)

=
1

n1n2
n 2

2

∑
u1∈V1


 ∑

v1∈V1\{u1}
(dG1(u1, v1)−1)




+
1

n1n2
n2

1

∑
u2∈V2


 ∑

v2∈V2\{u2}
(dG2(u2, v2) − 1)


+(n1−1)(n2−1)

= n2A1 + n1A2 + (n1 − 1)(n2 − 1)

as desired, and the assertion (1) follows.

We now deduce the lower bound on π(G1 × G2) stated in (2). Suppose that R

is a routing in G1 × G2 such that π(G1 × G2) = π(G1 × G2, R). Noting that for
any (u1, u2), (v1, v2) ∈ V1 × V2, the path R((u1, u2), (v1, v2)) defined by R has at
least dG1(u1, v1) + dG2(u2, v2) edges, we consider two cases.

We first consider that all loads induced by R on edges of the subgraph ∪y∈V2G1×
{y}. For every y ∈ V2, use ly((u1, u2), (v1, v2)) to denote the number of the edges in
R((u1, u2), (v1, v2)) located in G1×{y}. Then the sum

∑
y∈V2

ly((u1, u2), (v1, v2))
of the loads induced by the path R((u1, u2), (v1, v2)) on edges of the subgraph
∪y∈V2G1 × {y} is at least dG1(u1, v1) for any (u2, v2) ∈ V2 × V2, that is,

∑
(u1,u2),(v1,v2)∈U

∑
y∈V2

ly((u1, u2), (v1, v2))≥
∑

(u2, v2)∈V2×V2


 ∑

(u1, v1)∈V1×V1

dG1(u1, v1)




=n2
2

∑
(u1,v1)∈V1×V1

dG1(u1, v1).

Thus, the sum of the loads induced by R on edges of the subgraph ∪y∈V2G1 ×{y}
satisfies the following inequality∑

y∈V2

∑
e∈G1×{y}

π(G1 × G2, R, e) =
∑

(u1,u2),(v1,v2)∈U

∑
y∈V2

ly((u1, u2), (v1, v2))

≥ n2
2

∑
(u1,v1)∈V1×V1

dG1(u1, v1).

Note that the maximum number of paths passing through one edge can not be less
than the average number, we have that

π(G1 × G2) = π(G1 × G2, R) ≥ 1
n2ε1

n2
2


 ∑

(u1,v1)∈V1×V1

dG1(u1, v1)


 = n2B1.
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By considering the sum of the loads induced by R on edges of the subgraph
∪x∈V1{x} × G2, similarly, we can show that π(G1 × G2) ≥ n1B2. Thus, we have
that π(G1 × G2) ≥ max{n2B1, n1B2}, and the assertion (2) follows.

The proof is completed.

Combining Lemma 4 with Lemma 3, we obtain the following results immedi-
ately.

Theorem 1. Let G1 and G2 be two connected graphs of order n1 and n2.

(1) ξ(G1×G2) = n1ξ2 +n2ξ1 +(n1 −1)(n2 −1) if ξ(Gi)=A(Gi) for i=1, 2.
(2) π(G1 × G2) = max{n1π2, n2π1} if π(Gi) = B(Gi) for i = 1, 2.

Theorem 2. Let G1, G2, · · · , Gk be k connected graphs of order n1, n2, · · · , nk,
respectively. Then

(1) ξ(G1×G2×· · ·×Gk) =
k∑

i=1
n1n2 · · ·ni−1(ξi−1)ni+1 · · ·nk+(k−1)n1n2 · · ·nk+

1 if ξi = Ai for every i = 1, 2, · · · , k.
(2) π(G1 × G2 × · · · × Gk) = max

1≤i≤k
{n1n2 · · ·ni−1πini+1 · · ·nk} if πi = Bi for

every i = 1, 2, · · · , k.

Proof. Let G = G1×G2×· · ·×Gk and V = V (G). Then for any two vertices
x = (u1, u2, · · · , uk) and y = (v1, v2, · · · , vk) in G, where ui, vi ∈ Vi for each i =
1, 2, · · · , k, the distance dG(x, y) = dG1(u1, v1)+dG2(u2, v2)+ · · ·+dGk

(uk, vk).
By Lemma 1, we have that

ξ(G) ≥ A(G) =
1

n1n2 · · ·nk

∑
x∈V

∑
y∈V \{x}

(dG(x, y)− 1)

=
1

n1n2 · · ·nk

∑
x∈V

∑
y∈V \{x}

(
k∑

i=1

dGi(ui, vi) − 1

)

=
k∑

i=1

n2
1n

2
2 · · ·n2

i−1n
2
i+1 · · ·n2

k

n1n2 · · ·nk

∑
ui∈Vi


 ∑

vi∈Vi\{ui}
(dGi(ui, vi) − 1)




+(k − 1)n1n2 · · ·nk −
k∑

i=1

n1n2 · · ·ni−1ni+1 · · ·nk + 1

=
k∑

i=1

n1n2 · · ·ni−1ni+1 · · ·nk

ni
(niAi)
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+(k − 1)n1n2 · · ·nk −
k∑

i=1

n1n2 · · ·ni−1ni+1 · · ·nk + 1

=
k∑

i=1

n1n2 · · ·ni−1ni+1 · · ·nk (Ai − 1) + (k − 1)n1n2 · · ·nk + 1

=
k∑

i=1

n1n2 · · ·ni−1(ξi − 1)ni+1 · · ·nk + (k − 1)n1n2 · · ·nk + 1

On the other hand, we need to show that

ξ(G) ≤
k∑

i=1

n1n2 · · ·ni−1(ξi − 1)ni+1 · · ·nk + (k − 1)n1n2 · · ·nk + 1.

We proceed by induction on k. By Lemma 3, the inequality holds for k = 2. Assume
that the result is true for k − 1 with k > 2. Let H = G1 × G2 × · · · × Gk−1. By
the induction hypothesis, we have that

ξ(H) ≤
k−1∑
i=1

n1n2 · · ·ni−1(ξi − 1)ni+1 · · ·nk−1 + (k − 2)n1n2 · · ·nk−1 + 1.

It follows from Lemma 3 that

ξ(G) = ξ(H × Gk)
≤ nkξ(H) + n1n2 · · ·nk−1ξk + (n1n2 · · ·nk−1 − 1)(nk − 1)

≤
k∑

i=1

n1n2 · · ·ni−1(ξi − 1)ni+1 · · ·nk + (k − 1)n1n2 · · ·nk + 1

as desired, and so the assertion (1) follows.
We now show the assertion (2). On the one hand, in the same idea as one used

in the proof of Lemma 4, we can obtain that for each i = 1, 2, · · · , k,

π(G) ≥ 1
n1 · · ·ni−1εini+1 · · ·nk

∑
(u1, u2,··· ,uk), (v1, v2,··· ,vk)∈V

dGi(ui, vi)

≥ n2
1 · · ·n2

i−1n
2
i+1 · · ·n2

k

n1 · · ·ni−1εini+1 · · ·nk


 ∑

(ui,vi)∈(Vi×Vi)

d(ui, vi)




= n1 · · ·ni−1Bini+1 · · ·nk

= n1 · · ·ni−1πini+1 · · ·nk.

On the other hand, we need to show that

π(G) ≤ max
1≤i≤k

{n1n2 · · ·ni−1πini+1 · · ·nk}.
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We proceed by induction on k ≥ 2. By Lemma 3, the inequality holds for k = 2. As-
sume that the result is true for k−1 with k > 2. Let H = G1×G2×· · ·×Gk−1, the
induction hypothesis implies that π(H) ≤ max

1≤i≤k−1
{n1n2 · · ·ni−1πini+1 · · ·nk−1}.

It follows from Lemma 3 that

π(G) = π(H × Gk) ≤ max{(n1n2 · · ·nk−1) πk, nkπ(H)}
≤ max{n1n2 · · ·nk−1πk, max

1≤i≤k−1
{n1n2 · · ·ni−1πini+1 · · ·nk−1nk}}

= max
1≤i≤k

{n1n2 · · ·ni−1πini+1 · · ·nk}

as desired, and so the assertion (2) follows.

4. APPLICATIONS

We first note that Gauyacq [7] introduces a class of vertex-transitive graphs
which contains Cayley graphs, called quasi-Cayley graphs, and proves ξ(G) = A(G)
for any quasi-Cayley graph G. Thus, the conclusion (1) in Theorem 2 is valid for
quasi-Cayley graphs. However, we have not yet known whether π(G) = B(G)
for any quasi-Cayley graph G. We also note that Soĺe [16] constructed a class
of graphs, called orbital regular graphs, which satisfy π(G) = B(G). Thus, the
conclusion (2) in Theorem 2 is valid for orbital regular graphs. However, we have
not yet known whether ξ(G) = A(G) for any orbital regular graph G. In this
section, we determine the vertex-forwarding index and the edge-forwarding index
of some well-known graphs as applications of Theorem 2.

Example 1. The n-dimensional generalized hypercube, proposed by Bhuyan
and Agrawal [1] and denoted by Q(d1, d2, · · · , dn), where di ≥ 2 is an integer for
each i = 1, 2, · · · , n, is defined as the cartesian products Kd1 ×Kd2 ×· · ·×Kdn . If
d1 = d2 = · · · = dn = d ≥ 2, then Q(d, d, · · · , d) is called the d-ary n-dimensional
cube, denoted by Qn(d). It is clear that Qn(2) is Qn.

It is clear that ξ(Kd) = 0 = A(Kd) and π(Kd) = 2 = B(Kd). By Theorem 2,
we have that

ξ(Q(d1, d2, · · · , dn)) = −
n∑

i=1

d1d2 · · ·di−1di+1 · · ·dn + (n − 1)d1d2 · · ·dn + 1,

π(Q(d1, d2, · · · , dn)) = max
1≤i≤n

{d1d2 · · ·di−12di+1 · · ·dn}.

In particular,

ξ(Qn(d)) = ((d− 1)n − d)dn−1 + 1, and π(Qn(d)) = 2dn−1.
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For the n-dimensional hypercube Qn,

ξ(Qn) = (n − 2)2n−1 + 1 and π(Qn) = 2n.

The last result has also been obtained by Heydemann et al. [10].

Example 2. The cartesian product Cd1 × Cd2 × · · · × Cdn of n undirected
cycles Cd1 , Cd2, · · · , Cdn of order d1, d2, · · · , dn, di ≥ 3, i = 1, 2, · · · , n, is the
undirected toroidal graph, denoted by C(d1, d2, · · · , dn). A special case of d1 =
d2 = · · · = dn = d, the C(d, d, · · · , d), denoted by Cn(d), is also called a d-ary
n-cube in the literature (see, for example, Bose et al. [2]) or generalized n-cube
(see, for example, Heydemann et al. [10]).

It is easy to be verify (see, for example, Heydemann et al. [10]) that

ξ(Cd) =
⌊

(d− 2)2

4

⌋
=

1
d

∑
u∈V

∑
v �=u

(dCd
(u, v)− 1) = A(Cd),

and
π(Cd) =

⌊
d2

4

⌋
=

1
d

∑
(u,v)∈V ×V

dCd
(u, v) = B(Cd).

Therefore, by Theorem 2, we have that

ξ(C(d1, d2, · · · , dn)) =
n∑

i=1

d1d2 · · ·di−1(ξi − 1)di+1 · · ·dn+(n−1)d1d2 · · ·dn+1

=
n∑

i=1

d1d2 · · ·di−1

(⌊
(di − 2)2

4

⌋
− 1
)

di+1 · · ·dn

+(n − 1)d1d2 · · ·dn + 1

=
n∑

i=1

d1d2 · · ·di−1

⌊
d2

i

4

⌋
di+1 · · ·dn − d1d2 · · ·dn + 1,

and

π(C(d1, d2, · · · , dn)) = max
1≤i≤k

{d1d2 · · ·di−1πidi+1 · · ·dn}

= max
1≤i≤k

{
d1d2 · · ·di−1

⌊
d2

i

4

⌋
di+1 · · ·dn

}
.

It follows that for the undirected toroidal mesh C(d1, d2, · · · , dn),

ξ(C(d1, d2, · · · , dn)) =
n∑

i=1

d1d2 · · ·di−1

⌊
d2

i

4

⌋
di+1 · · ·dn − d1d2 · · ·dn + 1;

π(C(d1, d2, · · · , dn)) = max
1≤i≤n

{
d1d2 · · ·di−1

⌊
d2

i

4

⌋
di+1 · · ·dn

}
.
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In particular,

ξ(Cn(d)) = ndn−1

⌊
1
4
d2

⌋
− (dn − 1), and π(Cn(d)) = dn−1

⌊
1
4
d2

⌋
.

The last result has also been obtained by Heydemann et al. [10].

Example 3. Note that Theorem 2 is also valid for the cartesian product of
strongly connected digraphs. Use

−→
C (d1, d2, · · · , dn) to denoted the cartesian prod-

uct
−→
C d1 × −→

C d2 × · · · × −→
C dn of n directed cycles

−→
C d1,

−→
C d2 , · · · ,

−→
C dn of order

d1, d2, · · · , dn, di ≥ 3 for each i = 1, 2, · · · , n, which is called the directed toroidal
graph. Set

−→
C n(d) =

−→
C (d, d, · · · , d). It is easy to be verified that

ξ(
−→
C d) =

(d− 2)(d− 1)
2

= A(
−→
C d), and π(

−→
C d) =

d(d− 1)
2

= B(
−→
C d).

By Theorem 2, we have that

ξ(
−→
C (d1, d2, · · · , dn)) =

1
2

(
n∑

i=1

(di − 3)

)
d1d2 · · ·dn + (n − 1)d1d2 · · ·dn + 1;

π(
−→
C (d1, d2, · · · , dn)) =

1
2

max
1≤i≤n

{d1 · · ·di−1di(di − 1)di+1 · · ·dn}.

In particular,

ξ(
−→
C n(d)) =

n

2
dn(d − 1) − dn + 1, and π(

−→
C n(d)) =

1
2

dn(d− 1).

Example 4 Let P = (V, E) be the Petersen graph. Note that P is vertex-
transitive, |V | = 10, |E| = 15 and the shortest path between two distinct vertices
is unique. It is easy to be determined that ξm(P ) = 6 and πm(P ) = 10. We now
compute A(P ) and B(P ). Since the diameter of P is two and from any given
vertex three vertices can be reached in a distance of one and six vertices can be
reached in a distance of two, thus,

A(P ) =
1
|V |

∑
u∈V


 ∑

v∈V \{u}
(dP (u, v)− 1)


 =

1
10

· 10 · 6 = 6,

B(P ) =
1
|E|

∑
(u, v)∈V ×V

dP (u, v) =
1
15

· 10 · (3 + 6 · 2) = 10.

Thus, we have that 6 = A(P ) ≤ ξ(P ) ≤ ξm(P ) = 6 by Lemma 1, and 10 =
B(P ) ≤ π(P ) ≤ πm(P ) = 10 by Lemma 2.
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Let G be the cartesian product of n Petersen graphs. Then, by Theorem 2, we
obtain that

ξ(G) = 10n−1(15n − 10) + 1, and π(G) = 10n.

REFERENCES

1. L. N. Bhuyan and D. P. Agrawal, Generalized hypercube and hyperbus structures for
a computer network. IEEE Transactions on computers, 33(4) (1984), 323-333.

2. B. Bose, B. Broeg, Y. Kwon and Y. Ashir, Lee distance and topological properties
of k-ary n-cubes. IEEE Transactions on Computers, 44(8) (1995), 1021-1030.

3. A. Bouabdallah and D. Sotteau, On the edge-forwarding index problem for small
graphs. Networks, 23(4) (1993), 249-255.

4. C.-P. Chang, T.-Y. Sung and L.-H. Hsu, Edge congestion and topological properties of
crossed cubes. IEEE Trans. Parallel and Distributed Systems, 11(1) (2000), 64-80.

5. F. K. Chung, E. G. Coffman, M. I. Reiman and B. Simon, The forwarding index of
communication networks, IEEE Transactions on Information Theory, 33(2) (1987),
224-232.

6. W. F. De la Vega and Y. Manoussakis, The forwarding index of communication
networks with given connectivity. Discrete Appl. Math., 37/38 (1992), 147-155.

7. G. Gauyacq, On quasi-Cayley graphs. Discrete Applied Mathematics, 77 (1997),
43-58.

8. G. Gauyacq, Edge-forwarding index of star graphs and other Cayley graphs, Discrete
Applied Mathematics, 80 (1997), 149-160.

9. M. C. Heydemann, Cayley graphs and inteconnection networks, Graph Symmetry:
Algebraic Methods and Applications, Kluwer Academic Publishers, 1997, pp. 167-
226.

10. M. C. Heydemann, J. C. Meyer and D. Sotteau, On forwarding indices of networks,
Discrete Applied Mathematics, 23 (1989), 103-123.

11. M. C. Heydemann, J. C. Meyer, J. Opatrny and D. Sotteau, Forwarding indices of
k-connected graphs, Discrete Applied Mathematics, 37/38 (1992), 287-296.

12. M. C. Heydemann, J. C. Meyer, D. Sotteau and J. Opatrny, Forwarding indices of
consistent routings and their complexity, Networks, 24 (1994), 75-82.

13. Y. Manoussaki and Z. Tuza, The forwarding index of directed networks, Discrete
Applied Mathematics, 68 (1996), 279-291.

14. R. Saad, Complexity of the forwarding index problem, SIAM J. Discrete Math., 6(3)
(1993), 418-427.



Forwarding Indices of Cartesian Product Graphs 1315
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