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INHOMOGENEOUS CALDERÓN REPRODUCING FORMULAE
ASSOCIATED TO PARA-ACCRETIVE FUNCTIONS

ON METRIC MEASURE SPACES

Dachun Yang

Abstract. Let (X, ρ, µ)d,θ be a space of homogeneous type which includes
metric measure spaces and some fractals, namely, X is a set, ρ is a quasi-
metric on X satisfying that there exist constants C0 > 0 and θ ∈ (0, 1] such
that for all x, x′, y ∈ X,

|ρ(x, y) − ρ(x′, y)| ≤ C0ρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ,

and µ is a nonnegative Borel regular measure on X satisfying that for some
d > 0, all x ∈ X and all 0 < r < diamX,

µ({y ∈ X : ρ(x, y) < r}) ∼ rd.

In this paper, we first obtain the boundedness of Calderón-Zygmund operators
on spaces of test functions; and using this, we then establish the continuous
Calderón reproducing formulae associated with a given para-accretive function,
which is a key tool for developing the theory of Besov and Triebel-Lizorkin
spaces associated with para-accretive functions. By the Calderón reproducing
formulae, we finally obtain a Littlewood-Paley theorem on the inhomogeneous
g-function which gives a new characterization of Lebesgue spaces Lp(X)
for p ∈ (1,∞) and generalizes a corresponding result of David, Journé and
Semmes.

1. INTRODUCTION

It is well-known that the remarkable T1 theorem of David and Journé provides
a general criterion for the L2(Rn)-boundedness of generalized Calderón-Zygmund
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singular integral operators; see [3, 29]. The T1 theorem, however, cannot be directly
applied to the Cauchy integral on Lipschitz curves. To this end, Meyer in [24] (see
also [27]) observed that one needs to replace the function 1 in the T1 theorem by a
bounded complex-valued function b satisfying 0 < δ ≤ Re b(x) almost everywhere.
Replacing the function 1 by an accretive function b, McIntosh and Meyer in [24]
proved the Tb theorem. David, Journé, and Semmes in [4] further introduced
a more general class of L∞(Rn) functions b, namely, the so-called para-accretive
functions and proved the so-called Tb theorem. Moreover, they verified that the para-
accretivity is also necessary in the sense that the Tb theorem holds for a bounded
function b, then b is para-accretive. Motivated by these results and the theory of
the Hardy space H1

b (Rn) of Meyer in [27], Han in [9], Han, Lee and Lin in [12]
and Deng and the author in [5] further developed the theories of other spaces of
functions including the homogeneous Besov and Triebel-Lizorkin spaces associated
to para-accretive functions. The Tb theorems related to them were also established.
A key tool for these theories is the homogeneous Calderón reproducing formulae.

The main purpose of this paper is to establish the inhomogeneous continuous
Calderón reproducing formulae associated with a given para-accretive function b
to pave a way for developing the theory of such type inhomogeneous spaces of
functions, which will be considered in another paper; see [13-15, 17, 18]. When b ≡
1, these formulae were obtained in [11]. We remark that due to the inhomogeneity,
some new ideas and techniques different from the homogeneous case on R

n in [9,
12] are necessary. Moreover, we establish the inhomogeneous Calderón reproducing
formulae on spaces of homogeneous type in the sense of Coifman and Weiss in [1,
2], which include metric measure spaces and some fractals.

We notice that the analysis on metric spaces has recently attracted an increasing
interest; see [28, 19, 8, 21]. Especially, the theory of function spaces on metric
spaces, or more generally, the spaces of homogeneous type has been well devel-
oped; see [22, 23, 16, 10, 13-15, 17, 18, 34, 36]. We point out that the spaces
of homogeneous type considered in this paper include metric measure spaces, the
Euclidean space, the C∞-compact Riemannian manifolds, the boundaries of Lip-
schitz domains and, in particular, the Lipschitz manifolds introduced recently by
Triebel in [33] and the isotropic and anisotropic d-sets in R

n. It has been proved by
Triebel in [31, 32] that the isotropic and anisotropic d-sets in R

n include various
kinds of self-affine fractals, for example, the Cantor set, the generalized Sierpinski
carpet and so forth. We particularly point out that the spaces of homogeneous type
considered in this paper also include the post critically finite self-similar fractals
studied by Kigami in [20] and by Strichartz in [28], and the metric spaces with
heat kernel studied by Grigor’yan, Hu and Lau in [7]. More examples of spaces of
homogeneous type can be found in [1, 2, 28].

To establish the inhomogeneous Calderón reproducing formulae on spaces of ho-
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mogeneous type, we first need to establish the boundedness of Calderón-Zygmund
operators on some spaces of test functions which itself generalizes a corresponding
result of Han in [11] and is presented in Section 2. In Section 3, using our results
in Section 2, we obtain the continuous Calderón reproducing formulae, where Coif-
man’s idea (see [4]) plays a key tool. By these Calderón reproducing formulae, in
Section 4, we obtain a Littlewood-Paley theorem for the inhomogeneous g-function,
which gives a new characterization of Lebesgue spaces Lp(X) for p ∈ (1,∞)
and generalizes a corresponding result of David, Journé and Semmes in [4]. Such
Littlewood-Paley theorem has also been proved to be useful in establishing the
discrete Calderón reproducing formulae; see [15].

2. BOUNDEDNESS OF CALDERÓN-ZYGMUND OPERATORS

The main purpose of this section is to establish the boundedness of Calderón-
Zygmund operators on spaces of test functions associated with a given para-accretive
function. We first recall some necessary definitions and notation of spaces of ho-
mogeneous type.

A quasi-metric ρ on a set X is a function ρ : X × X → [0,∞) satisfying that

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X ;

(iii) There exists a constant A ∈ [1,∞) such that for all x, y and z ∈ X,

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].

Any quasi-metric defines a topology, for which the balls

B(x, r) = {y ∈ X : ρ(y, x) < r}

for all x ∈ X and all r > 0 form a basis.
In what follows, we set diamX = sup{ρ(x, y) : x, y ∈ X}. We also make

the following conventions. We denote by f ∼ g that there is a constant C > 0
independent of the main parameters such that C−1g < f < Cg. Throughout
the paper, we denote by C a positive constant which is independent of the main
parameters, but it may vary from line to line. Constants with subscripts, such as
C1, do not change in different occurrences. For any q ∈ [1,∞], we denote by q′ its
conjugate index, namely, 1/q + 1/q′ = 1. Let A be a set and we denote by χA the
characteristic function of A.

Definition 2.1. ([17]) Let d > 0 and θ ∈ (0, 1]. A space of homogeneous
type, (X, ρ, µ)d,θ, is a set X together with a quasi-metric ρ and a nonnegative
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Borel regular measure µ on X , and there exists a constant C0 > 0 such that for all
0 < r < diamX and all x, x′, y ∈ X ,

(2.1) µ(B(x, r)) ∼ rd

and

(2.2) |ρ(x, y)− ρ(x′, y)| ≤ C0ρ(x, x′)θ[ρ(x, y)+ ρ(x′, y)]1−θ.

In what follows, all the θ means the same θ as in (2.2).
The space of homogeneous type defined above is a variant of the space of homo-

geneous type introduced by Coifman and Weiss in [1]. In [22], Macias and Segovia
have proved that one can replace the quasi-metric ρ of the space of homogeneous
type in the sense of Coifman and Weiss by another quasi-metric ρ̄ which yields the
same topology on X as ρ such that (X, ρ̄, µ) is the space defined by Definition
2.1 with d = 1.

Let us now recall the definitions of the para-accretive function and the space of
test functions.

Definition 2.2. A bounded complex-valued function b on X , a space of ho-
mogeneous type, is said to be para-accretive if there exist constants C1 > 0 and
κ ∈ (0, 1] such that for all balls B ⊂ X , there is a ball B ′ ⊂ B with κµ(B) ≤ µ(B′)
satisfying

1
µ(B)

∣∣∣∣∫
B′

b(x) dµ(x)
∣∣∣∣≥ C1 > 0.

Definition 2.3. ([9]) Fix γ > 0 and θ ≥ β > 0. A function f defined on X is
said to be a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0, if f satisfies
the following conditions:

(i) |f(x)| ≤ C rγ

(r+ρ(x,x0))d+γ ;

(ii) |f(x) − f(y)| ≤ C
(

ρ(x,y)
r+ρ(x,x0)

)β rγ

(r + ρ(x, x0))d+γ
for ρ(x, y) ≤ 1

2A [r +

ρ(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the norm
of f in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)
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with an equivalent norm for all x1 ∈ X and r > 0. Furthermore, it is easy to check
that G(β, γ) is a Banach space with respect to the norm in G(β, γ). Also, let the
dual space (G(β, γ))′ be all linear functionals L from G(β, γ) to C with the property
that there exists C ≥ 0 such that for all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and f ∈ G(β, γ).
Clearly, for all h ∈ (G(β, γ))′ , 〈h, f〉 is well defined for all f ∈ G(x0, r, β, γ) with
x0 ∈ X and r > 0.

It is well-known that even when X = R
n, G(β1, γ) is not dense in G(β2, γ) if

β1 > β2, which bring us some inconvenience. To overcome this defect, in what
follows, for a given ε ∈ (0, θ], we let G̊(β, γ) be the completion of the space G(ε, ε)
in G(β, γ) when 0 < β, γ < ε.

Let b be a para-accretive function. As usual, we write

bG(β, γ) = {f : f = bg for some g ∈ G(β, γ)} .

If f ∈ bG(β, γ) and f = bg for some g ∈ G(β, γ), then the norm of f is defined by

‖f‖bG(β,γ) = ‖g‖G(β,γ).

By this definition, it is easy to see that

(2.3) f ∈
(
bG̊(β, γ)

)′
if and only if bf ∈

(
G̊(β, γ)

)′
,

where we define bf ∈
(
G̊(β, γ)

)′
by

〈bf, g〉 = 〈f, bg〉

for all g ∈ G̊(β, γ).
In what follows, we also let

Gb
0(x0, r, β, γ) =

{
f ∈ G(x0, r, β, γ) :

∫
X

f(x)b(x) dµ(x) = 0
}

;

for η ∈ (0, θ], we define Cη
0 (X) to be the set of all functions having compact

support such that

‖f‖C
η
0 (X) = sup

x �=y

|f(x) − f(y)|
ρ(x, y)η

< ∞.

Endow Cη
0 (X) with the natural topology and let (Cη

0 (X))′ be its dual space.
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Definition 2.4. Let ε ∈ (0, θ]. A continuous complex-valued function K(x, y)
on

Ω = {(x, y) ∈ X × X : x �= y}
is called a Calderón-Zygmund kernel of type ε if there exist a constant C2 > 0 such
that

(i) |K(x, y)| ≤ C2ρ(x, y)−d,

(ii) |K(x, y)− K(x′, y)| ≤ C2ρ(x, x′)ερ(x, y)−d−ε for ρ(x, x′) ≤ ρ(x,y)
2A ,

(iii) |K(x, y)− K(x, y′)| ≤ C2ρ(y, y′)ερ(x, y)−d−ε for ρ(y, y′) ≤ ρ(x,y)
2A .

A continuous linear operator T : Cη
0 (X) → (Cη

0 (X))′ for all η ∈ (0, θ] is
a Calderón-Zygmund singular integral operator of type ε if there is a Caldeŕon-
Zygmund kernel K(x, y) of the type ε as above such that

〈Tf, g〉 =
∫

X

∫
X

K(x, y)f(y)g(x) dµ(x) dµ(y)

for all f, g ∈ Cη
0 (X) with disjoint supports. In this case, we write T ∈ CZO(ε).

We also need the following notion of the strong weak boundedness property in
[16, 11].

Definition 2.5. A Calderón-Zygmund singular integral operator T of the kernel
K is said to have the strong weak boundedness property, if there exist η ∈ (0, θ]
and constant C3 > 0 such that

|〈K, f〉| ≤ C3r
d

for all r > 0 and all continuous f on X × X with supp f ⊆ B(x1, r)× B(y1, r),
where x1 and y1 ∈ X , ‖f‖L∞(X×X) ≤ 1, ‖f(·, y)‖Cη

0 (X) ≤ r−η for all y ∈ X and
‖f(x, ·)‖Cη

0(X) ≤ r−η for all x ∈ X . We denote this by T ∈ SWBP.
The following theorem is the main theorem of this section, which when b ≡ 1

was obtained by Han in [11]. In what follows, we use Mb to denote the multipli-
cation operator defined by b, namely, for suitable functions f , Mb(f) = bf .

Theorem 2.1. Let b be a para-accretive function as in Definition 2.2 and
ε ∈ (0, θ]. Let T be a continuous linear operator from C η

0 (X) to (Cη
0 (X))′ for

all η ∈ (0, θ] such that the kernels of T and b−1T ∗Mb respectively satisfy the
conditions (i) and (ii) and only the condition (ii) of Definition 2.4 with the regularity
exponent ε, T (1) = 0, and T ∈ SWBP . Furthermore, K(x, y), the kernel of T ,
satisfies the following smoothness condition that for all x, x ′, y, y′ ∈ X such that
ρ(x, x′), ρ(y, y′) ≤ ρ(x,y)

3A2 ,
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(2.4)
∣∣[K(x, y)b−1(y) − K(x′, y)b−1(y)

]
− [

K(x, y′)b−1(y′) − K(x′, y′)b−1(y′)
]∣∣

≤ C4ρ(x, x′)ερ(y, y′)ερ(x, y)−d−2ε.

Then for any x0 ∈ X , r > 0 and 0 < β, γ < ε, T maps Gb
0(x0, r, β, γ) into itself.

Moreover, if we let ‖T‖ = max{C2, C3, C4}, then there exists a constant C > 0
such that

‖Tf‖G(x0,r,β,γ) ≤ C‖T‖‖f‖G(x0,r,β,γ).

Proof. We prove Theorem 2.1 by following a procedure of the proof of Theorem
1 in [11] and we only give an outline to indicate their distinction.

Fix a function κ ∈ C1(R) with supp κ ⊂ {x ∈ R : |x| ≤ 2}, 0 ≤ κ(x) ≤ 1
on R and κ(x) = 1 on {x ∈ R : |x| ≤ 1}. Suppose that f ∈ Gb

0(x0, r, β, γ)
with 0 < β, γ < ε. We first verify that T (f)(x) satisfies the size condition (i)
of Definition 2.3. Using Lemma 2.1 in [11] (see also [25]), by the same argument
as the proof of Theorem 1 in [11], we can verify that T (f)(x) satisfies the size
condition (i) of Definition 2.3 when ρ(x, x0) ≤ 5r. We now consider the case
ρ(x, x0) = R > 5r. In this case, we set 1 = I(y) + J(y) + L(y), where I(y) =
κ
(

4Aρ(x,y)
R

)
, J(y) = κ

(
4Aρ(y,x0)

R

)
, and f1(y) = f(y)I(y), f2(y) = f(y)J(y),

and f3(y) = f(y)L(y). Then, it is easy to check the following estimates:

(2.5) |f1(y)| ≤ C‖f‖G(x0,r,β,γ)
rγ

Rd+γ
;

(2.6) |f1(y)− f1(y′)| ≤ C‖f‖G(x0,r,β,γ)
ρ(y, y′)β

Rβ

rγ

Rd+γ
for all y, y′ ∈ X ;

(2.7) |f3(y)| ≤ C‖f‖G(x0,r,β,γ)
rγ

ρ(y, x0)d+γ
χ{ρ(y,x0)>

R
4A

}(y);

(2.8)
∫

X
|f3(y)| dµ(y) ≤ C‖f‖G(x0,r,β,γ)

rγ

Rγ
;

(2.9) |f2(y)| ≤ C‖f‖G(x0,r,β,γ)
rγ

ρ(y, x0)d+γ
χ{ρ(y,x0)≤ R

2A
}(y);

and

(2.10)
∣∣∣∣∫

X
f2(y)b(y) dµ(y)

∣∣∣∣≤ C‖f‖G(x0,r,β,γ)
rγ

Rγ
,
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since
∫
X f(y)b(y) dµ(y) = 0 and b is bounded; see [11] for the details. From (2.6)

and (2.5), and an argument similar to that in [11], it is easy to deduce that

|Tf1(x)| ≤ C‖f‖G(x0,r,β,γ)
rγ

Rd+γ
,

which is a desired estimate. For f2, noting that x /∈ supp f2, we write

T (f2)(x) =
∫

X

[
b−1(y)K(x, y)− b−1(x0)K(x, x0)

]
b(y)f2(y) dµ(y)

+b−1(x0)K(x, x0)
∫

X
f2(y)b(y) dµ(y)

= δ1(x) + δ2(x).

By the assumption that the kernel of b−1T ∗Mb satisfies the condition (ii) of Defi-
nition 2.4, (2.9) and (2.10), we obtain

|δ1(x)| ≤ C‖f‖G(x0,r,β,γ)

∫
ρ(x0,y)≤ R

2A

ρ(x0, y)ε

Rd+ε

rγ

ρ(y, x0)d+γ
dµ(y)

≤ C‖f‖G(x0,r,β,γ)
rγ

Rd+γ

by γ < ε, and

|δ2(x)| ≤ C

Rd

∣∣∣∣∫
X

f2(y)b(y) dµ(y)
∣∣∣∣≤ C‖f‖G(x0,r,β,γ)

rγ

Rd+γ
,

since b−1 ∈ L∞(X). Thus, we also obtain a desired estimate for T (f2)(x).
Similarly, since x /∈ supp f3, the estimate (2.6) and the size condition of K(x, y)

then give us a desired estimate for T (f3)(x); see [11] for the details.
Thus, Tf(x) also satisfies the size condition (i) of Definition 2.3 when ρ(x, x0) >

5r.
Next, we verify that T (f)(x) satisfies the smoothness condition (ii) of Definition

2.3. To this end, set ρ(x, x0) = R and ρ(x, x′) = δ. We only consider the case
R ≥ 10r and δ ≤ 1

20A2 (r + R). The other cases can be proved by a similar but
easier argument. As in the above, set 1 = I(y)+J(y)+L(y), however, here I(y) =
κ
(

8Aρ(x,y)
R

)
and J(y) = κ

(
8Aρ(x0,y)

R

)
. Moreover, we also set f1(y) = f(y)I(y),

f2(y) = f(y)J(y) and f3(y) = f(y)L(y).
By Lemma 2.1 in [11], T (1) = 0, (2.6), the assumption on the kernel of T , we

can obtain a desired estimate for T (f1)(x) and T (f3)(x) by the same argument as
in [11].
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Noting that for ρ(x, x′) = δ ≤ 1
20A2 (r + R) and R ≥ 10r, x, x′ /∈ supp (f2),

by the assumption (2.4) and the estimates (2.9) and (2.10) for f2, we obtain

|T (f2)(x)− T (f2)(x′)|

=
∣∣∣∣∫

X

[
K(x, y)− K(x′, y)

]
b−1(y)f2(y)b(y) dµ(y)

∣∣∣∣
≤

∫
X

∣∣[K(x, y)− K(x′, y)
]
b−1(y)

− [K(x, x0)− K(x′, x0)] b−1(x0)
∣∣ |f2(y)b(y)| dµ(y)

+
∣∣[K(x, x0) − K(x′, x0)] b−1(x0)

∣∣ ∣∣∣∣∫
X

f2(y)b(y) dµ(y)
∣∣∣∣

≤ C‖f‖G(x0,r,β,γ)

{∫
ρ(x0,y)≤ R

4A

ρ(x, x′)ερ(y, x0)ε

Rd+2ε

× rγ

(r + ρ(y, x0))d+γ
dµ(y) + C

δε

Rd+ε

rγ

Rγ

}
≤ C‖f‖G(x0,r,β,γ)

δε

Rε

rγ

Rd+γ
,

since γ < ε, and b, b−1 ∈ L∞(X), which is also a desired estimate. This finishes
the proof of Theorem 2.1.

3. CALDERÓN REPRODUCING FORMULAE

The main purpose of this section is to establish the continuous Calderón repro-
ducing formulae associated to a given para-accretive function by using the results
in Section 2. Another key tool for this is Coifman’s idea; see [4]. We first recall
the definition of approximations to the identity in [9].

Definition 3.1. Let b be a para-accretive function. A sequence {Sk}b
k∈ZZ+

of
linear operators is said to be an approximation to the identity of order ε ∈ (0, θ]
associated to b if there exists C5 > 0 such that for all k ∈ Z+ and all x, x′, y and
y′ ∈ X, Sk(x, y), the kernel of Sk is a function from X × X into C satisfying

(i) |Sk(x, y)| ≤ C5
2−kε

(2−k+ρ(x,y))d+ε ;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C5

(
ρ(x,x′)

2−k+ρ(x,y)

)ε
2−kε

(2−k+ρ(x,y))d+ε for ρ(x, x′)

≤ 1
2A(2−k + ρ(x, y));
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(iii) |Sk(x, y)− Sk(x, y′)| ≤ C5

(
ρ(y,y′)

2−k+ρ(x,y)

)ε
2−kε

(2−k+ρ(x,y))d+ε for ρ(y, y′)

≤ 1
2A

(2−k + ρ(x, y));

(iv) |[Sk(x, y)−Sk(x, y′)]−[Sk(x′, y)−Sk(x′, y′)]|≤C5

(
ρ(x,x′)

2−k+ρ(x,y)

)ε(
ρ(y,y′)

2−k+ρ(x,y)

)ε

× 2−kε

(2−k+ρ(x,y))d+ε for ρ(x, x′) ≤ 1
2A(2−k + ρ(x, y)) and ρ(y, y′) ≤ 1

2A(2−k +
ρ(x, y));

(v)
∫
X Sk(x, y)b(y) dµ(y) = 1;

(vi)
∫
X Sk(x, y)b(x) dµ(x) = 1.

Remark 3.1. By Coifman’s construction in [4], if b is a given para-accretive
function, one can construct an approximation to the identity of order θ such that
Sk(x, y) has a compact support when one variable is fixed, namely, there is a
constant C6 > 0 such that for all k ∈ Z, Sk(x, y) = 0 if ρ(x, y) ≥ C62−k.

Remark 3.2. We also remark that in the sequel, if the approximation to the
identity as in Definition 3.1 exists, then all the results still hold when b and b −1

are bounded. It seems that we do not need to assume that b is a para-accretive
function. However, in [4], it was proved that the existence of the approximation to
the identity as in Definition 3.1 is equivalent to the para-accretivity of b.

In what follows, we let a ∧ b = min(a, b) for any a, b ∈ R.

Lemma 3.1. Let b be a given para-accretive function, ε ∈ (0, θ], {Sk}k∈ZZ+

and {Ek}k∈ZZ+ be two approximations to the identity of order ε associated to b,
P0 = S0, Q0 = E0, Pk = Sk−Sk−1 and Qk = Ek−Ek−1 for k ∈ N. Then for any
ε′ ∈ (0, ε), there exist constants C > 0, δ > 0 and σ > 0 such that P lMbQk(x, y),
the kernel of PlMbQk, satisfies the following estimates:

(3.1) |PlMbQk(x, y)| ≤ C2−|k−l|ε′ 2−(k∧l)ε

(2−(k∧l) + ρ(x, y))d+ε

for all x, y ∈ X and all k, l ∈ Z+;

(3.2) |PlMbQk(x, y)− PlMbQk(x, y′)| ≤ C2−|k−l|δ
(

ρ(y, y′)
2−(l∧k) + ρ(x, y)

)ε′

× 2−(k∧l)ε

(2−(k∧l) + ρ(x, y))d+ε

for ρ(y, y′) ≤ 1
4A2 ρ(x, y) and all k, l ∈ Z+;
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(3.3)
|PlMbQk(x, y)− PlMbQk(x′, y)| ≤ C2−|k−l|δ

(
ρ(x, x′)

2−(l∧k) + ρ(x, y)

)ε′

× 2−(k∧l)ε

(2−(k∧l) + ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
4A2 ρ(x, y) and all k, l ∈ Z+; and

(3.4)

|[PlMbQk(x, y)−PlMbQk(x′, y)]−[PlMbQk(x, y′)−PlMbQk(x′, y′)]|

≤ C2−|k−l|δρ(x, x′)ε′ρ(y, y′)ε′ 2−(k∧l)σ

(2−(k∧l) + ρ(x, y))d+2ε′+σ

for ρ(x, x′) ≤ 1
8A3 ρ(x, y), ρ(y, y′) ≤ 1

8A3 ρ(x, y) and all k, l ∈ Z+.

Proof. In what follows, by the symmetry, without loss of generality, we may
assume that k ≥ l.

Let us begin with proving (3.1). If k ∈ N, by

(3.5)
∫

X
b(z)Qk(z, y) dµ(z) = 0

and b ∈ L∞(X), we write

|PlMbQk(x, y)| =
∣∣∣∣∫

X
Pl(x, z)b(z)Qk(z, y) dµ(z)

∣∣∣∣
=

∣∣∣∣∫
X

[Pl(x, z)− Pl(x, y)]b(z)Qk(z, y) dµ(z)
∣∣∣∣

≤ C

∫
X
|Pl(x, z)− Pl(x, y)| |Qk(z, y)| dµ(z).

Then the same argument as that for (3.9) in [11] leads a desired estimate.
If k = 0, then by the assumption, we have also l = 0. In this case, the size

conditions of S0(x, z) and E0(z, y) imply that

|P0MbQ0(x, y)| =
∣∣∣∣∫

X
S0(x, z)b(z)E0(z, y) dµ(z)

∣∣∣∣
≤ C

∫
{z∈X : ρ(z,y)≤ 1

2A
(1+ρ(x,y))}

|S0(x, z)E0(z, y)| dµ(z)

+C

∫
{z∈X : ρ(z,y)> 1

2A
(1+ρ(x,y))}

|S0(x, z)E0(z, y)| dµ(z)

≤ C
1

(1 + ρ(x, y))d+ε
,
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which is also a desired estimate.
We now verify (3.2). It suffices to prove

(3.6) |PlMbQk(x, y)−PlMbQk(x, y′)|≤C

(
ρ(y, y′)

2−l+ρ(x, y)

)ε 2−lε

(2−l + ρ(x, y))d+ε

for k ≥ l and ρ(y, y′) ≤ 1
4A2 ρ(x, y). To see this, noting that if k ≥ l and ρ(y, y ′) ≤

1
4A2 ρ(x, y), then (3.1) implies

|PlMbQk(x, y)− PlMbQk(x, y′)| ≤ |PlMbQk(x, y)|+ |PlMbQk(x, y′)|

≤ C2−(k−l)ε′ 2−lε

(2−l + ρ(x, y))d+ε
,

this estimate together with (3.6) yields that for any σ ∈ (0, 1),

|PlMbQk(x, y)− PlMbQk(x, y′)|
= |PlMbQk(x, y)− PlMbQk(x, y′)|1−σ|PlMbQk(x, y)− PlMbQk(x, y′)|σ

≤ C2−(k−l)ε′σ
(

ρ(y, y′)
2−l + ρ(x, y)

)(1−σ)ε 2−lε

(2−l + ρ(x, y))d+ε
,

which is (3.2). In what follows, we refer this method to the geometric mean. We
now verify (3.6). From (3.5) when k ∈ N or

(3.7)
∫

X
Q0(z, y)b(z) dµ(z) = 1 =

∫
X

Q0(z, y′)b(z) dµ(z)

when k = 0 and b ∈ L∞(X), it follows that

|PlMbQk(x, y)− PlMbQk(x, y′)|

=
∣∣∣∣∫

X
[Pl(x, z)− Pl(x, y)]b(z)[Qk(z, y)− Qk(z, y′)] dµ(z)

∣∣∣∣
≤ C

∫
X
|Pl(x, z)− Pl(x, y)| ∣∣Qk(z, y)− Qk(z, y′)

∣∣ dµ(z).

Then, repeating the proof of (3.13) in [11] leads the estimate (3.6).
The proof of (3.3) is similar to that of (3.2) and we omit the details.
We now verifies (3.4). Similar to the proof of (3.2), we only need to prove

(3.8)

|[PlMbQk(x, y)−PlMbQk(x′, y)]−[PlMbQk(x, y′)−PlMbQk(x′, y′)]|

≤ Cρ(x, x′)ε′ρ(y, y′)ε′ 2−(l∧k)σ

(2−(l∧k) + ρ(x, y))d+2ε′+σ
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for ρ(x, x′) ≤ 1
8A3 ρ(x, y) and ρ(y, y′) ≤ 1

8A3 ρ(x, y). To see this, if ρ(x, x′) ≤
1

8A3 ρ(x, y) and ρ(y, y′) ≤ 1
8A3 ρ(x, y), (3.2) and (3.3) tell us that

(3.9)

|[PlMbQk(x, y)−PlMbQk(x′, y)]−[PlMbQk(x, y′)−PlMbQk(x′, y′)]|

≤ C2−|k−l|δ
(

ρ(x, x′)
2−(l∧k) + ρ(x, y)

)ε′ 2−(l∧k)ε

(2−(l∧k) + ρ(x, y))d+ε

and

(3.10)

|[PlMbQk(x, y)−PlMbQk(x′, y)]−[PlMbQk(x, y′)−PlMbQk(x′, y′)]|

≤ C2−|k−l|δ
(

ρ(y, y′)
2−(l∧k) + ρ(x, y)

)ε′ 2−(l∧k)ε

(2−(l∧k) + ρ(x, y))d+ε
.

Then similarly to the proof of (3.2), the geometric mean of the estimates (3.8), (3.9)
and (3.10) gives (3.4).

Let us now verify (3.8). By (3.5) when k ∈ N or (3.7) when k = 0 and
b ∈ L∞(X), we can write

|[PlMbQk(x, y)−PlMbQk(x′, y)]−[PlMbQk(x, y′)−PlMbQk(x′, y′)]|

=
∣∣∣∣∫

X

{
[Pl(x, z)−Pl(x′, z)]−[Pl(x, y)−Pl(x′, y)]

}
b(z)[Qk(z, y)−Qk(z, y′)] dµ(z)

∣∣∣∣
≤C

∫
X

∣∣[Pl(x, z)−Pl(x′, z)]−[Pl(x, y)−Pl(x′, y)]
∣∣ |Qk(z, y)− Qk(z, y′)| dµ(z).

Then, repeating the proof of (3.15) in [11] yields (3.7), and we have completed the
proof of Lemma 3.1.

To establish the continuous Calderón reproducing formulae, we use the Coif-
man’s idea; see [4]. In what follows, let {Sk}k∈ZZ+ be an approximation to the
identity of order ε ∈ (0, θ] as in Definition 3.1. Set Dk = Sk − Sk−1 for k ∈ N,
D0 = S0 and Dk = 0 for k ∈ Z \ Z+. It is easy to see that

I =
∞∑

k=0

DkMb

in L2(X); see [9]. Let N ∈ N. Coifman’s idea is to rewrite the above identity into

(3.11)

I =

( ∞∑
k=0

DkMb

) ∞∑
j=0

DjMb


=

∑
|l|>N

∞∑
k=0

Dk+lMbDkMb +
∞∑

k=0

DN
k MbDkMb

= RN + TN ,
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where
DN

k =
∑
|l|≤N

Dk+l.

To verify that T−1
N exists and maps any space of test functions to itself, we first

need to estimate the kernel, RN(x, y), of the operator RN .

Lemma 3.2. Let b be a para-accretive function, ε ∈ (0, θ], RN be as in (3.11)
and RN(x, y) be its kernel. Then for any ε′ ∈ (0, ε), RN ∈ CZO(ε′) ∩ SWBP ,
RN(1) = 0 and (RN)∗(b) = 0. Moreover, RN(x, y) satisfies the following es-
timates: for any ε′ ∈ (0, ε), there exist constants C > 0 and δ > 0, which are
independent of N , such that

(3.12) |RN(x, y)| ≤ C2−Nδρ(x, y)−d,

(3.13) |RN(x, y)b−1(y) − RN(x, y′)b−1(y′)| ≤ C2−Nδρ(y, y′)ε′ρ(x, y)−(d+ε′)

for ρ(y, y′) ≤ 1
2Aρ(x, y),

(3.14) |RN(x, y)− RN(x′, y)| ≤ C2−Nδρ(x, x′)ε′ρ(x, y)−(d+ε′)

for ρ(x, x′) ≤ 1
2Aρ(x, y),

(3.15) |[RN(x, y)− RN(x′, y)]b−1(y) − [RN(x, y′) − RN(x′, y′)]b−1(y′)|
≤ C2−Nδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(d+2ε′)

for ρ(x, x′), ρ(y, y′) ≤ 1
3A2 ρ(x, y), and

(3.16) |〈RN , f〉| ≤ C2−Nδrd

for all r > 0 and all continuous functions f on X ×X with supp f ⊆ B(x 0, r)×
B(y0, r), where x0, y0 ∈ X , ‖f‖L∞(X×X) ≤ 1, ‖f(·, y)‖Cη

0(X) ≤ r−η for all
y ∈ X and ‖f(x, ·)‖Cη

0 (X) ≤ r−η for all x ∈ X .

Proof. To verify (3.12), (3.13), (3.14) and (3.15), we write

RN(x, y) =
∞∑

l=N+1

∞∑
k=0

(Dk+lMbDkMb) (x, y) +
−N−1∑
l=−∞

∞∑
k=0

(Dk+lMbDkMb) (x, y)

= R1
N(x, y) + R2

N (x, y).

We only verify R1
N (x, y) satisfying (3.12), (3.13), (3.14) and (3.15). The proof for

R2
N(x, y) is similar. In what follows, let [t] be the maximum integer no more than

t for any t ∈ R.
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If ρ(x, y) ≥ 1, by (3.1) and b ∈ L∞(X), we have

|R1
N(x, y)| ≤ C

∞∑
l=N+1

∞∑
k=0

2−lε′ 2−kε

(2−k + ρ(x, y))d+ε

≤ C

ρ(x, y)d+ε

∞∑
l=N+1

2−lε′
∞∑

k=0

2−kε

≤ C2−Nε′ρ(x, y)−d,

which is a desired estimate. If ρ(x, y) < 1, let

(3.17) k0 = [− log2 ρ(x, y)]

be the maximal integer no more than − log2 ρ(x, y). Then k0 ∈ Z+. We then have

|R1
N(x, y)| ≤ C

∞∑
l=N+1

2−lε′

 k0∑
k=0

2kd +
1

ρ(x, y))d+ε

∞∑
k=k0+1

2−kε


≤ C2−Nε′ρ(x, y)−d.

Thus, (3.12) holds.
Let us now verify (3.13) with R1

N(x, y). We only prove this when ρ(y, y′) ≤
1

4A2 ρ(x, y). The case 1
4A2 ρ(x, y) ≤ ρ(y, y′) ≤ 1

2Aρ(x, y) follows from (3.12). We
also consider two cases. If ρ(x, y) ≥ 1, then (3.2) tells us that

|R1
N(x, y)b−1(y) − R1

N(x, y′)b−1(y′)|

≤ C

∞∑
l=N+1

∞∑
k=0

2−lδ

(
ρ(y, y′)

2−k + ρ(x, y)

)ε′ 2−kε

(2−k + ρ(x, y))d+ε

≤ Cρ(y, y′)ε′ 1
ρ(x, y)d+ε+ε′

∞∑
l=N+1

2−lδ

( ∞∑
k=0

2−kε

)

≤ C2−Nδρ(y, y′)ε′ρ(x, y)−(d+ε′),

which is a desired estimate. If ρ(x, y) < 1, letting k0 be as in (3.17), we then obtain

|R1
N(x, y)b−1(y)− R1

N (x, y′)b−1(y′)|

≤ Cρ(y, y′)ε′
∞∑

l=N+1

2−lδ

 k0∑
k=0

2k(ε′+d) +
1

ρ(x, y)d+ε+ε′

∞∑
k=k0+1

2−kε


≤ C2−Nδρ(y, y′)ε′ρ(x, y)−(d+ε′),
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which verifies (3.13). The proof of (3.14) is similar to that of (3.13).
For the proof of (3.15), we only need to verify this under the assumptions

ρ(x, x′) ≤ 1
8A3 ρ(x, y) and ρ(y, y′) ≤ 1

8A3 ρ(x, y). The other cases can be easily
deduced from (3.13) and (3.14). In this case, we also consider two cases. If
ρ(x, y) ≥ 1, (3.4) yields

|[R1
N(x, y)− R1

N(x′, y)]b−1(y) − [R1
N(x, y′) − R1

N(x′, y′)]b−1(y′)|

≤ Cρ(x, x′)ε′ρ(y, y′)ε′
∞∑

l=N+1

2−lδ
∞∑

k=0

2−kσ

(2−k + ρ(x, y))d+2ε′+σ

≤ Cρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(d+2ε′+σ)2−lδ
∞∑

k=0

2−kσ

≤ C2−lδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(d+2ε′),

which is what we want. If ρ(x, y) < 1, letting k0 be as in (3.17), by (3.4), we have

|[R1
N(x, y)− R1

N(x′, y)]− [R1
N(x, y′) − R1

N(x′, y′)]|

≤ Cρ(x, x′)ε′ρ(y, y′)ε′
∞∑

l=N+1

2−lδ

 k0∑
k=0

2k(d+2ε′)+
1

ρ(x, y)d+2ε′+σ

∞∑
k=k0+1

2−kσ


≤ C2−lδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(d+2ε′),

which proves (3.15).
It remains to verify (3.16). Suppose that f ∈ Cη

0 (X × X) with

supp f ⊆ B(x0, r)× B(y0, r),

where x0 and y0 ∈ X , ‖f‖L∞(X×X) ≤ 1, ‖f(·, y)‖Cη
0 (X) ≤ r−η for all y ∈ X and

‖f(x, ·)‖Cη
0(X) ≤ r−η

for all x ∈ X . By (3.1) and b ∈ L∞(X), we have

(3.18)

|〈Dk+lMbDkMb, f〉|

=
∣∣∣∣∫

X

∫
X

(Dk+lMbDk)(x, y)b(y)f(x, y) dµ(y) dµ(x)
∣∣∣∣

≤ C2−|l|ε′‖f‖L∞(X×X)

∫
B(x0,r)

[∫
X

2−(k∧l)ε

(2−(k∧l) + ρ(x, y))d+ε
dµ(y)

]
dµ(x)

≤ C2−|l|ε′µ(B(x0, r))

≤ C2−|l|ε′rd.
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On the other hand, for k ∈ N and η < ε, (3.1), b ∈ L∞(X) and the fact that∫
X

Dk(z, y)b(y) dµ(y) = 0

tell us that

(3.19)

|〈Dk+lMbDkMb, f〉|

=
∣∣∣∣∫

X

∫
X

∫
X

Dk+l(x, z)b(z)Dk(z, y)b(y)f(x, y) dµ(z) dµ(y) dµ(x)
∣∣∣∣

=
∣∣∣∣∫

X

∫
X

∫
X

Dk+l(x, z)b(z)Dk(z, y)b(y)[f(x, y)−f(x, z)] dµ(z) dµ(y) dµ(x)
∣∣∣∣

≤ Cr−η

∫
B(x0,r)

{∫
X

|Dk+l(x, z)|

×
[∫

X

|Dk(z, y)|ρ(z, y)η dµ(y)
]

dµ(z)
}

dµ(x)

≤ C2−kηr−ηrd.

We have also, by Definition 3.1 and b ∈ L∞(X), that

(3.20)

|〈Dk+lMbDkMb, f〉|

=
∣∣∣∣∫

X

∫
X

∫
X

Dk+l(x, z)b(z)Dk(z, y)b(y)f(x, y) dµ(z) dµ(y) dµ(x)
∣∣∣∣

≤ C‖f‖L∞(X)‖Dk‖L∞(X×X)

×
∫

B(x0,r)

∫
B(y0,r)

[∫
X

|Dk+l(x, z)| dµ(z)
]

dµ(y) dµ(x)

≤ C2kdr2d.

The geometric mean of (3.18) and (3.19) yields

(3.21) |〈Dk+lMbDkMb, f〉| ≤ C2−|l|δ2−kη′
r−η′

rd

for all k ∈ N and some positive δ and η′, and the geometric mean of (3.18) and
(3.20) yields

(3.22) |〈Dk+lMbDkMb, f〉| ≤ C2−|l|δ2−kη′′
r−η′′

rd

for all k ∈ N and some positive δ and η′′. Thus, (3.18), (3.21) and (3.22) tell us
that

|〈RN , f〉| =

∣∣∣∣∣∣
〈 ∑

|l|>N

∞∑
k=0

Dk+lMbDkMb, f

〉∣∣∣∣∣∣
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≤
∣∣∣∣∣
〈∑

l>N

DlMbD0Mb, f

〉∣∣∣∣∣ +

∣∣∣∣∣∣
〈 ∑

|l|>N

∑
2−k>r

Dk+lMbDkMb, f

〉∣∣∣∣∣∣
+

∣∣∣∣∣∣
〈 ∑

|l|>N

∑
2−k≤r

Dk+lMbDkMb, f

〉∣∣∣∣∣∣
≤ C2−Nδrd,

which verifies (3.16), and, hence, Lemma 3.2.
As a consequence of Lemma 3.2 and Theorem 2.1, we obtain the following

theorem.

Theorem 3.1. Let b be a given para-accretive function. Suppose that {S k}∞k=0

is an approximation to the identity of order ε as in Definition 3.1. For N ∈ N, let
TN be as in (3.11). If N is large enough, then T −1

N exists and maps any space of
test functions to itself. More precisely, if N is sufficiently large, then there exists
a constant C > 0 such that for all f ∈ G b

0(x1, r, β, γ) with x1 ∈ X , r > 0 and
0 < β, γ < ε,

‖T−1
N (f)‖G(x1,r,β,γ) ≤ C‖f‖G(x1,r,β,γ).

Proof. By Theorem 2.1 and Lemma 3.2, there exist constants C7 > 0 and
δ > 0, which are independent of N , such that for all f ∈ G b

0(x1, r, β, γ) with
x1 ∈ X , r > 0 and 0 < β, γ < ε,

‖RN(f)‖G(x1,r,β,γ) ≤ C72−Nδ‖f‖G(x1,r,β,γ).

If we choose N ∈ N such that

(3.23) C72−Nδ < 1,

then we have that for all f ∈ Gb
0(x1, r, β, γ),∥∥T−1

N (f)
∥∥
Gb

0(x1,r,β,γ)
=

∥∥(I − RN )−1(f)
∥∥
Gb

0(x1,r,β,γ)

=

∥∥∥∥∥
∞∑
l=0

(RN)l(f)

∥∥∥∥∥
Gb

0(x1,r,β,γ)

≤
∞∑
l=0

(
C72−Nδ

)l ‖f‖G(x1,r,β,γ)

≤ C‖f‖G(x1,r,β,γ),

which completes the proof of Theorem 3.1.
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We can now prove the inhomogeneous continuous Calderón reproducing formu-
lae on spaces of homogenous type.

Theorem 3.2. Let b be a para-accretive function, ε ∈ (0, θ], {Sk}∞k=0 be an
approximation to the identity of order ε associated to b. Set D k = Sk − Sk−1 for
k ∈ N and D0 = S0. Then there exist a family of linear operators D̃k for k ∈ Z+

and a fixed large integer N ∈ N such that for all f ∈ G(β, γ) with 0 < β, γ < ε,

(3.24) f =
∞∑

k=0

D̃kMbDkMb(f),

where the series converge in the norm of G(β ′, γ ′) for 0 < β ′ < β and 0 < γ ′ < γ .
Moreover, (3.24) also converge in the norm of Lp(X) for p ∈ (1,∞), and the
kernels of the operators D̃k satisfy the conditions (i) and (ii) of Definition 3.1 with
ε replaced by ε′ for 0 < ε′ < ε, and∫

X
D̃k(x, y)b(y) dµ(y) =

∫
X

D̃k(x, y)b(y) dµ(x) =
{

1, k = 0, 1, · · · , N ;
0, k ≥ N + 1.

Proof. Fix a large integer N such that (3.23) and, therefore, Theorem 3.1 holds.
It is easy to check that Dj(·, y) ∈ Gb

0(y, 2−j, ε, ε) for all j ∈ N and DN
k (·, y) ∈

Gb
0(y, 2−j, ε, ε) for k > N . Set D̃k(x, y) = T−1

N (DN
k (·, y))(x) for k ∈ Z+, where

T−1
N is defined as Theorem 3.1. Notice that

DN
k =

∑
|j|≤N

Dk+j =
k+N∑
j=0

Dj

for k = 0, 1, · · · , N , and

DN
k =

∑
|j|≤N

Dk+j =
k+N∑

j=k−N

Dj

for k = N + 1, · · · . By Theorem 3.1, when k = N + 1, · · · , D̃k(·, y) ∈
G(y, 2−k, ε′, ε′) with ε′ ∈ (0, ε) (In fact, in this case, this is also true for ε′ = ε)
and this proves that D̃k(x, y), the kernel of D̃k, satisfies the conditions (i) and (ii)
of Definition 3.1 with ε replaced by ε′, and it is easy to see that∫

X
D̃k(x, y)b(x) dµ(x) = 0,

since (RN)∗ (b) = 0. Obviously we also have∫
X

D̃k(x, y)b(y) dµ(y) = 0
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for k = N + 1, · · · . If k = 0, 1, · · · , N , since

D̃k(x, y) = T−1
N

(
DN

k (·, y)
)
(x)

= T−1
N

k+N∑
j=0

Dj(·, y)


=

k+N∑
j=0

T−1
N (Dj(·, y)) (x)

= T−1
N (S0(·, y))(x)+

k+N∑
j=1

T−1
N (Dj(·, y)) (x),

to verify that D̃k(x, y) satisfies the conditions (i) and (ii) of Definition 3.1 with ε
replaced by ε′ and∫

X
D̃k(x, y)b(y) dµ(y) =

∫
X

D̃k(x, y)b(x) dµ(x) = 1,

it suffices to prove that T−1
N (S0(·, y))(x) satisfies the conditions (i) and (ii) of

Definition 3.1 with ε replaced by ε′ and

(3.25)
∫

X
T−1

N (S0(·, y))(x)b(y) dµ(y) =
∫

X
T−1

N (S0(·, y))(x)b(x) dµ(x) = 1,

since, by Theorem 3.1, T−1
N (Dj(·, y)) ∈ G(y, 2−j, ε′, ε′) for any ε′ ∈ (0, ε) (In

fact, in this case, this is also true for ε′ = ε) and j = 1, · · · , k + N . To esti-
mate T−1

N (S0(·, y))(x), Theorem 3.1 can not be directly applied since S0(·, y) �∈
Gb

0(y, 2−j, ε′, ε′). Let us first verify that for any ε′ ∈ (0, ε), there are constants
C > 0 and δ > 0 such that

(3.26) |(RNS0)(x, y)| ≤ C2−Nδ 1
(1 + ρ(x, y))d+ε

,

and

(3.27) |(RNS0)(x, y)−(RNS0)(x′, y)|≤C2−Nδ

(
ρ(x, x′)

1+ρ(x, y)

)ε′ 1
(1+ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y)). The estimates (3.26), (3.27) and (RN)∗(b) = 0

imply that
(RNS0)(·, y) ∈ Gb

0(y, 1, ε′, ε′).
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Then Theorem 3.1, together with the fact that

T−1
N (S0(·, y))(x) =

∞∑
l=0

(RN)lS0(x, y),

yields that if N is sufficiently large, then T−1
N (S0(·, y))(x) satisfies the conditions

(i) of Definition 3.1 and (ii) of Definition 3.1 for the case ρ(x, x′) ≤ 1
4A2 (1 +

ρ(x, y)), where ε is replaced by ε′. However, (ii) of Definition 3.1 for the case
1

4A2 (1 + ρ(x, y)) ≤ ρ(x, x′) ≤ 1
2A(1 + ρ(x, y)) follows from (i) of Definition 3.1.

The fact (3.25) then follows from the facts that∫
X

S0(x, y)b(y) dµ(y) =
∫

X
S0(x, y)b(x) dµ(x) = 1

and RN(1) = (RN)∗(b) = 0.
To verify (3.26) and (3.27), it suffices to verify that for k ∈ Z+ and k+ l ∈ Z+,

(3.28) |(Dk+lMbDkMbS0)(x, y)| ≤ C2−kε′ 1
(1 + ρ(x, y))d+ε

,

(3.29) |(Dk+lMbDkMbS0)(x, y)| ≤ C2−|l|ε′ 1
(1 + ρ(x, y))d+ε

,

and

(3.30)

|(Dk+lMbDkMbS0)(x, y)− (Dk+lMbDkMbS0)(x′, y)|

≤ C

(
ρ(x, x′)

1 + ρ(x, y)

)ε 1
(1 + ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y)).

Assuming these estimates for the moment, by (3.28), (3.29) and the geometric
mean, we obtain

(3.31) |(Dk+lMbDkMbS0)(x, y)| ≤ C2−
1
2
(|l|+k)ε′ 1

(1 + ρ(x, y))d+ε
,

and

(3.32) |(Dk+lMbDkMbS0)(x, y)− (Dk+lMbDkMbS0)(x′, y)|

≤ C2−
1
2
(|l|+k)ε′ 1

(1 + ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y)). The geometric mean of (3.30) and (3.32) yields
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(3.33)

|(Dk+lMbDkMbS0)(x, y)− (Dk+lMbDkMbS0)(x′, y)|

≤ C2−(|l|+k)δ

(
ρ(x, x′)

1 + ρ(x, y)

)ε′ 1
(1 + ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
4A2 (1+ρ(x, y)), any ε′ ∈ (0, ε) and some δ > 0. Then, the estimates

(3.31) and (3.33), together with

(RNS0)(x, y) =
∑
|l|>N

∞∑
k=0

(Dk+lMbDkMbS0)(x, y),

tell us (3.26) and (3.27). Thus, we still need to verify (3.28), (3.29) and (3.30). The
estimate (3.1) in Lemma 3.1 and the estimate (3.6) in the proof of Lemma 3.1 tell
us that (DkMbS0)(x, y), the kernel of DkMbS0, satisfies the following estimates
that for k ∈ Z+,

(3.34) |(DkMbS0)(x, y)| ≤ C2−kε′ 1
(1 + ρ(x, y))d+ε

,

and

(3.35) |(DkMbS0)(x, y)−(DkMbS0)(x′, y)|≤C

(
ρ(x, x′)

1+ρ(x, y)

)ε 1
(1+ρ(x, y))d+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y)). Then, (3.34) and (3.35), together with (3.1) and

(3.6) again, tell us (3.28) and (3.30) for k ∈ Z+ and k + l ∈ Z+. Similarly, by
first estimating the kernel of operator Dk+lMbDk and then the kernel of operator
Dk+lMbDkMbS0, we can verify (3.29).

Now it remains to prove that the series in (3.24) converges in the norm of
G(β′, γ ′) for 0 < β′ < β and 0 < γ ′ < γ . Suppose first that f ∈ G(β, γ). Then,
for M > N + 1, we write

M∑
k=0

D̃kMbDkMb(f) = T−1
N

(
M∑

k=0

DN
k MbDkMb

)
(f)

= T−1
N

(
TN −

∞∑
k=M+1

DN
k MbDkMb

)
(f)

= T−1
N TN(f) − T−1

N

( ∞∑
k=M+1

DN
k MbDkMb

)
(f)

= f − lim
j→∞

(RN)j(f) − T−1
N

( ∞∑
k=M+1

DN
k MbDkMb

)
(f).

Thus,
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(3.36)

∥∥∥∥∥
M∑

k=0

D̃kMbDkMb(f) − f

∥∥∥∥∥
G(β′,γ′)

≤ lim
j→∞

‖(RN)j(f)‖G(β′,γ′) +

∥∥∥∥∥T−1
N

( ∞∑
k=M+1

DN
k MbDkMb

)
(f)

∥∥∥∥∥
G(β′,γ′)

.

Similarly to (3.26) and (3.27), we can verify that

(3.37) |RN(f)(x)| ≤ C2−Nδ 1
(1 + ρ(x, x0))d+γ

,

and

(3.38) |RN(f)(x)− RN(f)(x′)| ≤ C2−Nδ

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0)). Moreover, (3.37) and (3.38) imply that

(3.39) |RN(f)(x)− RN(f)(x′)| ≤ C2−Nδ

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

for ρ(x, x′) ≤ 1
2A(1 + ρ(x, x0)). Thus, (3.37), (3.39) and (RN)∗(b) = 0 indicate

that RN(f) ∈ Gb
0(β

′, γ ′). Furthermore, Lemma 3.2 and Theorem 2.1 yield

‖(RN)j(f)‖G(β′,γ′) ≤ (C72−Nδ)j‖f‖G(β′,γ′),

which indicates the first term in the right-hand side of (3.36) equals to 0, if we
choose N ∈ N such that (3.23) holds.

To prove the second term in the right-hand side of (3.36) tends to 0 as M tends
to infinity, by Theorem 3.1, it suffices to establish the following estimate

(3.40)

∥∥∥∥∥
∞∑

k=M+1

DN
k MbDkMb(f)

∥∥∥∥∥
G(β′,γ′)

≤ C2−σM ‖f‖G(β,γ)

for all 0 < β′ < β, 0 < γ ′ < γ and some σ > 0, where C > 0 is a constant
independent of f and M .

In fact, we will verify that for 0 < β′ < β and some σ > 0, there exists a
constant C > 0 which is independent of f and M such that

(3.41)

∣∣∣∣∣
∞∑

k=M+1

DN
k MbDkMb(f)(x)

∣∣∣∣∣ ≤ C2−βM‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+γ
,
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and

(3.42)

∣∣∣∣∣
∞∑

k=M+1

DN
k MbDkMb(f)(x)−

∞∑
k=M+1

DN
k MbDkMb(f)(x′)

∣∣∣∣∣
≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0)). Let us first see now how (3.41) and (3.42) imply

(3.40). To see this, note that if ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0)), then, by (3.41), we

have

(3.43)

∣∣∣∣∣
∞∑

k=M+1

DN
k MbDkMb(f)(x)−

∞∑
k=M+1

DN
k MbDkMb(f)(x′)

∣∣∣∣∣
≤ C2−βM‖f‖G(β,γ)

1
(1 + ρ(x, x0))d+γ

.

The geometric mean of (3.42) and (3.43) tells us that∣∣∣∣∣
∞∑

k=M+1

DN
k MbDkMb(f)(x)−

∞∑
k=M+1

DN
k MbDkMb(f)(x′)

∣∣∣∣∣
≤ C2−σM‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0)), which together with (3.41) indicates (3.40).

We now verify (3.41). Denote DN
k MbDk by Ek. By Lemma 3.1, it is easy

to see that Ek(x, y), the kernel of Ek, satisfies the conditions (i), (ii) and (iii) of
Definition 3.1 with ε replaced by ε′ ∈ (max(β, γ), ε), and Ek(b) = 0 for k ∈ N.
Then∣∣∣∣∣

∞∑
k=M+1

DN
k MbDkMb(f)(x)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=M+1

EkMb(f)(x)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=M+1

∫
X

Ek(x, y)b(y)[f(y)− f(x)] dµ(y)

∣∣∣∣∣
≤ C

∞∑
k=M+1

∫
{y∈X :ρ(x,y)≤ 1

2A
(1+ρ(x,x0))}

|Ek(x, y)[f(y)− f(x)]| dµ(y)

+C

∞∑
k=M+1

∫
{y∈X : ρ(x,y)> 1

2A
(1+ρ(x,x0))}

|Ek(x, y)[f(y)− f(x)]| dµ(y)
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≤C‖f‖G(β,γ)

∞∑
k=M+1

{
1

(1 + ρ(x, x0))d+γ

∫
{y∈X :ρ(x,y)≤ 1

2A
(1+ρ(x,x0))}

|Ek(x, y)|

×
(

ρ(x, y)
1 + ρ(x, x0)

)β

dµ(y) +
∫
{y∈X :ρ(x,y)> 1

2A
(1+ρ(x,x0))}

|Ek(x, y)|

×
[

1
(1 + ρ(x, y))d+γ

+
1

(1 + ρ(x, x0))d+γ

]
dµ(y)

}

≤ C‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+γ

×
∞∑

k=M+1

{∫
X

2−kε′ρ(x, y)β

(2−k + ρ(x, y))d+ε′ dµ(y)+
∫

X

2−kε′

(2−k + ρ(x, y))d+ε′−β
dµ(y)

}

≤ C2−βM‖f‖G(β,γ)
1

(1 + ρ(x, x0))d+γ
,

which indicates (3.41).
To verify (3.42), we write∣∣∣∣∣

∞∑
k=M+1

DN
k MbDkMb(f)(x)−

∞∑
k=M+1

DN
k MbDkMb(f)(x′)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=M+1

∫
X

[Ek(x, y)− Ek(x′, y)]b(y)f(y) dµ(y)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=M+1

∫
X

[Ek(x, y)− Ek(x′, y)]b(y)[f(y)− f(x)] dµ(y)

∣∣∣∣∣
≤ C

∞∑
k=M+1

∫
V1

|[Ek(x, y)− Ek(x′, y)][f(y)− f(x)]| dµ(y)

+C

∞∑
k=M+1

∫
V2

· · ·+ C

∞∑
k=M+1

∫
V3

· · ·

= N1 + N2 + N3,

where

V1 =
{

y ∈ X : ρ(x, x′) ≤ 1
4A2

(1 + ρ(x, x0)) ≤ 1
2A

(2−k + ρ(x, y))
}

,

V2 =
{

y ∈ X : ρ(x, x′) ≤ 1
2A

(2−k + ρ(x, y)) ≤ 1
4A2

(1 + ρ(x, x0))
}

,
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and
V3 =

{
y ∈ X : ρ(x, x′) >

1
2A

(2−k + ρ(x, y))
}

.

From the smoothness condition of Ek and the size condition of f , it follows that

(3.44)

N1 ≤ C

∞∑
k=M+1

∫
V1

(
ρ(x, x′)

2−k + ρ(x, y)

)ε′ 2−kε′

(2−k + ρ(x, y))d+ε′

×{|f(y)|+ |f(x)|} dµ(y)

≤ C

(
ρ(x, x′)

1+ρ(x, x0)

)ε′ ∞∑
k=M+1

{
2−kε′

(1+ρ(x, x0))d+ε′

∫
V1

|f(y)| dµ(y)

+|f(x)|
∫

V1

2−kε′

(2−k + ρ(x, y))d+σ
dµ(y)

}

≤ C

(
ρ(x, x′)

1 + ρ(x, x0)

)ε′ 1
(1 + ρ(x, x0))d+γ

‖f‖G(β,γ)

×
∞∑

k=M+1

[
2−kε′ + 2−k(ε′−σ)

]
≤ C

(
ρ(x, x′)

1 + ρ(x, x0)

)ε′ 1
(1 + ρ(x, x0))d+γ

‖f‖G(β,γ),

where σ ∈ (0, ε′).
Using the smoothness conditions on Ek and f , we obtain

(3.45)

N2 ≤ C‖f‖G(β,γ)

∞∑
k=M+1

∫
V2

(
ρ(x, x′)

2−k + ρ(x, y)

)ε′ 2−kε′

(2−k + ρ(x, y))d+ε′

×
(

ρ(x, y)
1 + ρ(x, x0)

)β 1
(1 + ρ(x, x0))d+γ

dµ(y)

≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

×
∞∑

k=M+1

∫
X

2−kε′

(2−k + ρ(x, y))d+ε′ ρ(x, y)β−β′
dµ(y)

≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1+ρ(x, x0)

)β′
1

(1+ρ(x, x0))d+γ

∞∑
k=M+1

2−k(β−β′)

≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ
.
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The size condition of Ek and the smoothness condition of f tell us that

N3 ≤ C‖f‖G(β,γ)

∞∑
k=M+1

∫
V3

{|Ek(x, y)|+ |Ek(x′, y)|}
×

(
ρ(x, y)

1 + ρ(x, x0)

)β 1
(1 + ρ(x, x0))d+γ

dµ(y)

≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

×
∞∑

k=M+1

∫
X

{|Ek(x, y)|+ |Ek(x′, y)|}ρ(x, y)β−β′
dµ(y)

≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ

∞∑
k=M+1

2−k(β−β′)

≤ C‖f‖G(β,γ)

(
ρ(x, x′)

1 + ρ(x, x0)

)β′
1

(1 + ρ(x, x0))d+γ
,

which, together with (3.44) and (3.45), verifies (3.42). This proves that the series
in (3.24) converge in G(β′, γ ′) for 0 < β′ < β and 0 < γ ′ < γ .

Finally, let us verify the series in (3.24) also converge in Lp(X) for p ∈ (1,∞).
To this end, by the above proof, we only need to verify the last two terms in (3.36)
tend to 0 as M → ∞ if the norm of G(β′, γ ′) is replaced by the norm of Lp(X)
for p ∈ (1,∞). The estimates in Lemma 3.2 and the Tb theorem in [4] tell us that
RN b−1 is a Calderón-Zygmund operator with the operator norm at most C72−Nδ

and, hence, RN is bounded on Lp(X) for p ∈ (1,∞) with the operator norm at
most C72−Nδ. This yields that

(3.46)
∥∥(RN)j(f)

∥∥
Lp(X)

≤
(
C72−Nδ

)j ‖f‖Lp(X).

Thus, limj→∞
∥∥(RN)j(f)

∥∥
Lp(X)

= 0 if we choose N ∈ N such that (3.23) holds.
The estimate (3.46) also implies that T −1

N is bounded on Lp(X) for p ∈ (1,∞) if
N satisfies (3.23). Thus, it suffices to prove that

lim
M→∞

∥∥∥∥∥
∞∑

k=M+1

DN
k MbDkMb(f)

∥∥∥∥∥
Lp(X)

= 0

for p ∈ (1,∞). To see this, letting 1/p+ 1/p′ = 1, by duality and the result in [4],
we have
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∥∥∥∥∥
∞∑

k=M+1

DN
k MbDkMb(f)

∥∥∥∥∥
Lp(X)

= sup
‖g‖

Lp′ (X)
≤1

∣∣∣∣∣
〈 ∞∑

k=M+1

DN
k MbDkMb(f), g

〉∣∣∣∣∣
≤ sup

‖g‖
Lp′ (X)

≤1

∥∥∥∥∥∥
{ ∞∑

k=M+1

|DkMb(f)|2
} 1

2

∥∥∥∥∥∥
Lp(X)

∥∥∥∥∥∥
{ ∞∑

k=M+1

|Mb(DN
k )∗(g)|2

} 1
2

∥∥∥∥∥∥
Lp′

(X)

≤ C sup
‖g‖

Lp′ (X)
≤1

∥∥∥∥∥∥
{ ∞∑

k=M+1

|DkMb(f)|2
} 1

2

∥∥∥∥∥∥
Lp(X)

‖g‖Lp′
(X)

≤ C

∥∥∥∥∥∥
{ ∞∑

k=M+1

|DkMb(f)|2
} 1

2

∥∥∥∥∥∥
Lp(X)

→ 0,

as M → ∞. This finishes the proof of Theorem 3.2.
By an argument of duality, from Theorem 3.2, we can deduce the following

continuous Calderón-type reproducing formulae in
(
G̊(β, γ)

)′
with β, γ ∈ (0, ε)

and ε ∈ (0, θ]; see also [9, 11].

Theorem 3.3. Let b be a para-accretive function, ε ∈ (0, θ], {Sk}∞k=0 be an
approximation to the identity of order ε associated to b. Set D k = Sk−Sk−1 for
k ∈ N and D0 =S0. Then there exist a family of linear operators Ẽk for k ∈Z+

and a fixed large integer N ∈ N such that for all f ∈
(
G̊(β, γ)

)′
with 0 < β, γ < ε,

(3.47) f =
∞∑

k=0

MbDkMbẼk(f),

where the series converge in
(
G̊(β′, γ ′)

)′
with β < β ′ < ε and γ < γ ′ < ε.

Moreover, the kernels of the operators Ẽk satisfy the conditions (i) and (iii) of
Definition 3.1 with ε replaced by ε ′ for 0 < ε′ < ε, and∫

X
Ẽk(x, y)b(y) dµ(y) =

∫
X

Ẽk(x, y)b(x) dµ(x) =

{
1, k = 0, 1, · · · , N ;

0, k ≥ N + 1.

The following theorems can be proved by some arguments similar to those of
Theorem 3.2 and Theorem 3.3. We leave the details to the reader.

Theorem 3.4. With all the notation as in Theorem 3.3, then for all f ∈ G(β, γ),

f =
∞∑

k=0

DkMbẼkMb(f)
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holds in both the norm of G(β ′, γ ′) for 0 < β ′ < β and 0 < γ ′ < γ , and the norm
of Lp(X) with p ∈ (1,∞).

Theorem 3.5. With all the notation as in Theorem 3.2 and Theorem 3.3, then
for all f ∈ bG(β, γ),

f =
∞∑

k=0

MbD̃kMbDk(f) =
∞∑

k=0

MbDkMbẼk(f)

holds in both the norm of bG(β ′, γ ′) for 0 < β ′ < β and 0 < γ ′ < γ , and the norm
of Lp(X) with p ∈ (1,∞).

Theorem 3.6. With all the notation as in Theorem 3.2, then for all f ∈(
G̊(β, γ)

)′
with 0 < β, γ < ε,

f =
∞∑

k=0

MbD̃kMbDk(f)

holds in
(
G̊(β′, γ ′)

)′
with β < β ′ < ε and γ < γ ′ < ε.

Theorem 3.7. With all the notation as in Theorem 3.2 and Theorem 3.3, then
for all f ∈

(
bG̊(β, γ)

)′
with 0 < β, γ < ε,

f =
∞∑

k=0

D̃kMbDkMb(f) =
∞∑

k=0

DkMbẼkMb(f)

holds in
(
bG̊(β′, γ ′)

)′
with β < β ′ < ε and γ < γ ′ < ε.

Remark 3.3. By rearranging the orders of Dk, D̃k and Ẽk, we can actually
take N = 0 in Theorems 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7, which is convenient in
applications of these formulae.

4. ONE APPLICATION

In this section, we use the Calderón reproducing formulae in Section 3 to estab-
lish a Littlewood-Paley theorem for the following g-function defined by

(4.1) g(f)(x) =

[ ∞∑
k=0

|Dk(f)(x)|2
]1/2

,
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where {Dk}k∈ZZ+ is as in Theorem 3.2. This theorem generalizes a corresponding
result of David, Journé and Semmes in [4] and will be used in establishing the
discrete Calderón reproducing formulae associated to para-accretive functions which
will be discussed in another paper; see also [15]. We establish our theorem based
on the Tb Theorem in [4]. To state it, we first need to recall the definition of the
weak boundedness property.

Definition 4.1. A Calderón-Zygmund singular integral operator T of the kernel
K is said to have the weak boundedness property, if there exist η ∈ (0, θ] and
constant C8 > 0 such that

(4.2) |〈Tf, g〉| ≤ C8r
d+2η‖f‖Cη

0 (X)‖g‖Cη
0 (X)

for all r > 0 and all f, g ∈ C
η
0 (X) supporting in some ball of radius r. We denote

this by T ∈ WBP.

Remark 4.1. It was proved in [4] that if T ∈ WBP , then (4.2) is true for all
η ∈ (0, θ].

Lemma 4.1. Let b1, b2 be two para-accretive functions, ε ∈ (0, θ] and T ∈
CZO(ε), which here means that T is a continuous linear operator from b 1C

η
0 (X)

into (b1C
η
0 (X))′ for all η ∈ (0, θ] and there is a kernel K(x, y) satisfying the

conditions (i), (ii) and (iii) of Definition 2.4 such that for all f, g ∈ C η
0 (X) with

disjoint supports,

〈Tf, g〉 =
∫

X

∫
X

b2(x)K(x, y)b1(y)f(y)g(x) dµ(x) dµ(y).

Then T is bounded on L2(X) if and only if (i) Tb1 ∈ BMO(X), (ii) T∗b2 ∈
BMO(X), and (iii) Mb2TMb1 ∈ WBP .

We also need the following Fefferman-Stein vector-valued maximal function
inequality in [6].

Lemma 4.2. Let 1 < p < ∞, 1 < q ≤ ∞ and M be the Hardy-Littlewood
maximal operator on X . Let {fk}∞k=0 ⊂ Lp(X) be a sequence of measurable
functions on X . Then∥∥∥∥∥∥

{ ∞∑
k=0

|M(fk)|q
}1/q

∥∥∥∥∥∥
Lp(X)

≤ C

∥∥∥∥∥∥
{ ∞∑

k=0

|fk|q
}1/q

∥∥∥∥∥∥
Lp(X)

,

where C is independent of f ∈ Lp(X).
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We can now establish the following Littlewood-Paley theorem on spaces of
homogeneous type.

Theorem 4.1. Let {Sk}∞k=0 be an approximation to the identity of order
ε ∈ (0, θ] as in Definition 3.1. Let {Dk}k∈ZZ+ be as in Theorem 3.2 and g(f) be
defined as in (4.1). Then for any p ∈ (1,∞), there exist two constants Ap and Bp

depending on p such that

(4.3) Ap‖f‖Lp(X) ≤ ‖g(f)‖Lp(X) ≤ Bp‖f‖Lp(X)

for all f ∈ Lp(X).

Proof. To verify the inequality on the right hand side of (4.3), by the Khintchine
inequality (see [26]), we first have that for any fixed N ∈ N,

(4.4)

∥∥∥∥∥∥
{

N∑
k=0

|Dk(f)|2
}1/2

∥∥∥∥∥∥
Lp(X)

≤ Cp

∥∥∥∥∥ 1
2N

∑
σ0

∑
σ1

· · ·
∑
σN

N∑
k=0

σkDk(f)

∥∥∥∥∥
Lp(X)

≤ Cp

2N

∑
σ0

∑
σ1

· · ·
∑
σN

∥∥∥∥∥
N∑

k=0

σkDk(f)

∥∥∥∥∥
Lp(X)

,

where σk = 1 or −1 for k ∈ {0, 1, · · · , N} and Cp is independent of f and N .
For any fixed σ = {σk}N

k=0, we set T σ
Nf =

∑N
k=0 σkDk(f) and denote its kernel

by Kσ
N (x, y). We first verify that Kσ

N is a standard Calderón-Zygmund kernel with
the constant independent of N and σ. In fact, we have
(4.5)

|Kσ
N(x, y)| ≤

N∑
k=0

|Dk(x, y)| ≤ C

N∑
k=0

2−kε

(2−k + ρ(x, y))d+ε

≤ Cρ(x, y)−(d+ε)
∑

{k∈ZZ: 2−k≤ρ(x,y)}
2−kε + C

∑
{k∈ZZ: 2−k>ρ(x,y)}

2kd

≤ Cρ(x, y)−d.

For ρ(x, x′) ≤ ρ(x, y)/(2A), we have

(4.6)

|Kσ
N (x, y) − Kσ

N(x′, y)| ≤
N∑

k=0

|Sk(x, y) − Sk(x′, y)|

≤ C

∞∑
k=0

(
ρ(x, x′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))d+ε

≤ Cρ(x, x′)ερ(x, y)−(d+2ε)
∑

{k∈ZZ: 2−k≤ρ(x,y)}
2−kε

+Cρ(x, x′)ε
∑

{k∈ZZ: 2−k>ρ(x,y)}
2k(d+ε)

≤ C ρ(x, x′)ερ(x, y)−(d+ε).
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Similarly, we can prove that for ρ(y, y′) ≤ ρ(x, y)/(2A), we have

(4.7) |Kσ
N(x, y)− Kσ

N(x, y′)| ≤ Cρ(y, y′)ερ(x, y)−(d+ε).

By combining (4.5), (4.6) with (4.7), we know that Kσ
N is a standard Calderón-

Zygmund kernel with the constant independent of N and σ. Now, we claim that
T σ

N is bounded on L2(X) with the operator norm independent of N and σ. If this
is true, then T σ

N is a standard Calderón-Zygmund operator bounded on Lp(X) for
any p ∈ (1,∞); see [1]. Thus,∥∥∥∥∥

N∑
k=0

σkDk(f)

∥∥∥∥∥
Lp(X)

≤ C‖f‖Lp(X),

where C is independent of σ and N . By this and (4.4), we obtain∥∥∥∥∥∥
{

N∑
k=0

|Dk(f)|2
}1/2

∥∥∥∥∥∥
Lp(X)

≤ C‖f‖Lp(X),

where Cp is independent of N . Then by the Fatou lemma, we have

(4.8) ‖g(f)‖Lp(X) ≤ Cp‖f‖Lp(X).

This is just the right hand side inequality of (4.3).
Now, we still need to prove Tσ

N is bounded on L2(X). We do this by applying
Lemma 4.1 with b1 = b2 = b. It is easy to see that Tσ

Nb = (T σ
N)∗ b = σ0 ∈

BMO(X) with the norm 0. It suffices to check that MbT
σ
NMb ∈ WBP. To this

end, by Definition 4.1, let f, g ∈ Cη
0 (X) support in the ball B(x0, r) for some

x0 ∈ X and some r > 0. We then write

|〈MbT
σ
NMbf, g〉| =

∣∣∣∣∣
N∑

k=0

σk

∫
X

∫
X

b(x)Dk(x, y)b(y)f(y)g(x) dµ(y) dµ(x)

∣∣∣∣∣
≤

∫
X

∫
X
|b(x)D0(x, y)b(y)f(y)g(x)| dµ(y) dµ(x)

+
N∑

k=1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)f(y)g(x) dµ(y) dµ(x)
∣∣∣∣

= O1 + O2.

For O1, from the trivial estimates that

(4.9) |f(x)| ≤ Crη‖f‖Cη
0 (X) and |g(x)| ≤ Crη‖g‖Cη

0 (X)
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and the size condition of D0, it follows that

O1 ≤ Crη‖f‖Cη
0 (X)

∫
B(x0,r)

[∫
X
|D0(x, y)| dµ(y)

]
|g(x)| dµ(x)

≤ Crd+2η‖f‖Cη
0 (X)‖g‖Cη

0 (X),

which is a desired estimate.
We now estimate O2. We consider two cases. Case 1. r ≥ 1. In this case, by

(4.9) and b ∈ L∞(X), we have

(4.10)

O2 =
N∑

k=1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)f(y)g(x) dµ(y) dµ(x)
∣∣∣∣

=
N∑

k=1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)[f(y)− f(x)]g(x) dµ(y) dµ(x)
∣∣∣∣

≤ C
N∑

k=1

∫
X

∫
X

|Dk(x, y)| |f(y) − f(x)|κ [|f(y)|

+ |f(x)|]1−κ |g(x)| dµ(y) dµ(x)

≤ C

N∑
k=1

r(1−κ)η‖f‖C
η
0 (X)

∫
B(x0,r)

|g(x)|

×
[∫

X

2−kε

(2−k + ρ(x, y))d+ε
ρ(x, y)κη dµ(y)

]
dµ(x)

≤ Crd+2η‖f‖Cη
0 (X)‖g‖Cη

0 (X)

N∑
k=1

2−kηκ

≤ Crd+2η‖f‖Cη
0 (X)‖g‖Cη

0 (X),

where κ ∈ (0, 1) such that κη < ε, which is also a desired estimate. Case 2.
r ∼ 2k0 for some k0 ∈ N. In this case, we write

O2 =
N∑

k=1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)f(y)g(x) dµ(y) dµ(x)
∣∣∣∣

=
k0∑

k=1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)f(y)g(x) dµ(y) dµ(x)
∣∣∣∣+ N∑

k=k0+1

· · ·

= O1
2 + O2

2.

For O1
2, the estimate (4.9), b ∈ L∞(X) and the size condition of Dk yield that



716 Dachun Yang

O1
2 ≤ Crd+2η‖f‖Cη

0 (X)‖g‖Cη
0 (X)

k0∑
k=1

2kdrd

≤ Crd+2η‖f‖Cη
0 (X)‖g‖Cη

0 (X)

k0∑
k=1

2(k−k0)d

≤ Crd+2η‖f‖Cη
0 (X)‖g‖Cη

0 (X),

which is a desired estimate.
For O2

2, similarly to (4.10), we have

O2 =
N∑

k=k0+1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)f(y)g(x) dµ(y) dµ(x)
∣∣∣∣

=
N∑

k=k0+1

∣∣∣∣∫
X

∫
X

b(x)Dk(x, y)b(y)[f(y)− f(x)]g(x) dµ(y) dµ(x)
∣∣∣∣

≤ C

N∑
k=k0+1

∫
X

∫
X
|Dk(x, y)| |f(y)− f(x)|κ [|f(y)|

+|f(x)|]1−κ |g(x)| dµ(y) dµ(x)

≤ Cr(1−κ)η‖f‖Cη
0 (X)

N∑
k=k0+1

∫
B(x0,r)

|g(x)|

×
[∫

X

2−kε

(2−k + ρ(x, y))d+ε
ρ(x, y)κη dµ(y)

]
dµ(x)

≤ Crd+(1−κ)η+η‖f‖Cη
0 (X)‖g‖Cη

0 (X)

N∑
k=k0+1

2−kηκ

≤ Crd+2η‖f‖C
η
0 (X)‖g‖C

η
0 (X),

where κ ∈ (0, 1) such that κη < ε, which is also a desired estimate. Thus,
MbT

σ
NMb ∈ WBP , and we have proved the second inequality in (4.3).

To prove the first inequality in (4.3), we claim that if {Ek}k∈ZZ+ is a family of
linear operators and Ek(x, y), the kernel of Ek, satisfies the conditions of (i) and
(iii) of Definition 3.1, and∫

X
Ek(x, y) dµ(y) =

{
0, k ∈ N

1, k = 0,

then there exists a constant C > 0 such that

(4.11)

∥∥∥∥∥∥
{ ∞∑

k=0

|Ek(f)|2
}1/2

∥∥∥∥∥∥
Lp(X)

≤ C‖f‖Lp(X)
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for p ∈ (1,∞). We verify (4.11) by using Theorem 3.5. From Theorem 3.5, it
follows that

|Ek(f)(x)|=
∣∣∣∣∣∣Ek

 ∞∑
j=0

MbD̃jMbDj(f)

 (x)

∣∣∣∣∣∣≤
∞∑

j=0

∣∣∣(EkMbD̃jMbDj

)
(f)(x)

∣∣∣ .
By Lemma 3.1 and b ∈ L∞(X), we further obtain

∞∑
j=0

∣∣∣(EkMbD̃jMbDj

)
(f)(x)

∣∣∣ ≤ C

∞∑
j=0

2−|k−j|ε′M (Dj(f)) (x).

Thus, by Lemma 4.2, the Hölder inequality and (4.8), we have∥∥∥∥∥∥
{ ∞∑

k=0

|Ek(f)|2
}1/2

∥∥∥∥∥∥
Lp(X)

≤ C

∥∥∥∥∥∥∥


∞∑
k=0

 ∞∑
j=0

2−|k−j|ε′M (Dj(f))

2
1/2

∥∥∥∥∥∥∥
Lp(X)

≤ C

∥∥∥∥∥∥∥


∞∑
j=0

( ∞∑
k=0

2−|k−j|ε′ [M (Dj(f))]2
)

1/2
∥∥∥∥∥∥∥

Lp(X)

≤ C

∥∥∥∥∥∥∥


∞∑
j=0

[M (Dj(f))]2


1/2

∥∥∥∥∥∥∥
Lp(X)

≤ C

∥∥∥∥∥∥∥


∞∑
j=0

|Dj(f)|2


1/2
∥∥∥∥∥∥∥

Lp(X)

≤ C‖f‖Lp(X).

Thus, our claim is true.
Now, using Theorem 3.5, the Hölder inequality, b ∈ L∞(X), the claim (4.11)

with Ek = (D̃k)∗ and (4.8), we have

‖f‖Lp(X) = sup
‖h‖

Lp′ (X)
≤1

|〈f, h〉|

= sup
‖h‖

Lp′ (X)
≤1

∣∣∣∣∣
〈 ∞∑

k=0

MbD̃kMbDk(f), h

〉∣∣∣∣∣
≤ sup

‖h‖
Lp′ (X)

≤1

{ ∞∑
k=0

|〈MbDk(f), (D̃k)∗Mb(h)〉|
}

≤ C sup
‖h‖

Lp′ (X)
≤1

‖g(f)‖Lp(X)

∥∥∥∥∥∥
{ ∞∑

k=0

|(D̃k)∗(bh)|2
}1/2

∥∥∥∥∥∥
Lp′(X)
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≤ C sup
‖h‖

Lp′ (X)
≤1

‖g(f)‖Lp(X)

∥∥∥∥∥∥
{ ∞∑

k=0

|Dk(bh)|2
}1/2

∥∥∥∥∥∥
Lp′ (X)

≤ C‖g(f)‖Lp(X) sup
‖h‖

Lp′ (X)
≤1

‖h‖Lp′(X)

≤ C‖g(f)‖Lp(X).

This verifies the first inequality in (4.3) and we have finished the proof of Theorem
4.1.
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