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ON THE RECURSIVE SEQUENCE xn+1 =
α + βxn−k

f(xn, ..., xn−k+1)

Stevo Stević

Abstract. The boundedness, the oscillatory behavior and the global stability
of the nonnegative solutions of the difference equation

xn+1 =
α + βxn−k

f(xn, ..., xn−k+1)

is investigated, where k ∈ N, the parameters α and β are nonnegative real
numbers and f : Rk

+ → R+ is a continuous function nondecreasing in each
variable such that f(0, ..., 0) > 0.

1. INTRODUCTION

In [3] the authors investigate behavior of the nonnegative solutions of the dif-
ference equation

xn+1 =
α + βxn−1

γ + xn
,

where the parameters α, β and γ are nonnegative real numbers.
Behavior of the nonnegative solutions of the difference equation

xn+1 =
α + βxn−1

1 + g(xn)
,

where g is a nonnegative increasing function on [0,∞), was investigated in [14].
In this paper we investigate the oscillatory behavior, the boundedness character

and the global stability of the nonnegative solutions of the difference equation

(1) xn+1 =
α + βxn−k

f(xn, ..., xn−k+1)
,
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where k ∈ N, the parameters α and β are nonnegative real numbers and f : Rk
+→

R+ is a continuous function nondecreasing in each variable such that f(0, ..., 0) > 0.
This equation is a natural generalization of the above mentioned equations.

Among other results in Section 5 we solve and generalize an open problem posed
in [14].

Similar properties were discussed in the literature (see, e.g. [1, 2, 4, 5, 7-13,
15-18]) for several classes of nonlinear difference equations.

In what follows we may assume that the initial conditions x−k, x−k+1, ..., x0

are positive real numbers.
In our analysis the function

g(x) = f(x, ..., x), x ≥ 0

plays an important role.
Let δ = f(0, ..., 0). Without loss of generality we may assume that δ = 1, since

we can consider the equation

yn+1 =
α1 + β1yn−k

f1(yn, ..., yn−k+1)

where α1 = α/δ, β1 = β/δ and f1(z1, ..., zk) = f(z1, ..., zk)/δ.

2. SEMICYCLE ANALYSIS ABOUT A POSITIVE EQUILIBRIUM

A positive semicycle of a solution (xn) of Eq. (1) consists of a ”string” of terms
{xl, xl+1, ..., xm}, all greater than or equal to x̄, with l ≥ −k and m ≤ ∞ and
such that

either l = −k, or l > −k and xl−1 < x̄

and
either m = ∞, or m < ∞ and xm+1 < x̄.

A negative semicycle of a solution (xn) Eq. (1) consists of a ”string” of terms
{xl, xl+1, ..., xm}, all less than x̄, with l ≥ −k and m ≤ ∞ and such that

either l = −k, or l > −k and xl−1 ≥ x̄

and
either m = ∞, or m < ∞ and xm+1 ≥ x̄.

The first semicycle of a solution starts with the term x−k and is positive if x−k ≥ x̄
and negative if x−k < x̄.

We say that a sequence (xn) oscillates about x̄ if for every n0 ∈ N there are
p, q ≥ n0 such that (xp − x̄)(xq − x̄) ≤ 0.
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The following theorem is the main result of this section and it generalizes The-
orem 3.2 in [3].

Theorem 1. Let k ∈ N be fixed and consider a continuous function H :
(0,∞)k+1 → (0,∞) having the following properties: There is an index i 0 ∈
{1, 2, ..., , k} such that H(z1, ..., zk, y) is nonincreasing in each z i, i ∈ {1, ..., k} \
{i0}, decreasing in zi0, and increasing in y. Let x̄ be a positive equilibrium of the
difference equation

(2) xn+1 = H(xn, ..., xn−k+1, xn−k), n = 0, 1, 2, ...

Then, except possibly for the first semicycle, every oscillatory solution of Eq. (2)
with positive initial values has semicycles of length at most k.

Proof. Let (xn) be an oscillatory solution of Eq. (2) with at least two semicy-
cles. If a semicycle has length greater than or equal to k, then there is an N ≥ 0
such that either

xN−k < x̄ ≤ xN−k+1, ..., xN or xN−k ≥ x̄ > xN−k+1, ..., xN.

Using the conditions of the theorem in the first case we obtain

xN+1 = H(xN , ..., xN−k+1, xN−k) < H(x̄, ..., x̄) = x̄,

and in the second case we get

xN+1 = H(xN , ..., xN−k+1, xN−k) > H(x̄, ..., x̄) = x̄,

as desired.

Corollary 1. Consider Eq. (1) where α, β > 0, k ∈ N, the initial conditions
x−k, x−k+1, ..., x−1 and x0 of Eq. (1) are arbitrary positive numbers and f :
Rk

+ → R+ is a continuous function nondecreasing in each variable and increasing
in at least one.

Then except possibly for the first semicycle, every oscillatory solution of Eq.
(1) has semicycles of length at most k.

3. THE CASE β < 1

In this section we consider the case β < 1.

Theorem 2. Consider Eq. (1), where α > 0, β ∈ [0, 1), k ∈ N, the initial
conditions x−k, x−k+1, ..., x−1 and x0 of Eq. (1) are arbitrary positive numbers,
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f : Rk
+ → R+ is a continuous function nondecreasing in each variable and where

the function g(x) satisfies the following conditions:

(a) g(0) = 1;

(b) g(x) is increasing on [0,∞);

(c) x/(g(x)− 1) is nondecreasing on [0,∞).

Then every positive solution of Eq. (1) converges.

Proof. First we prove that Eq. (1) has the unique positive equilibrium. The
equilibrium points x̄ of Eq. (1) satisfy the equation

x̄ =
α + βx̄

g(x̄)
.

Let G(x) = x− α+βx
g(x)

. It is clear that G is a continuous function on [0,∞) such
that G(0) = − α

g(0) < 0 and limx→+∞ G(x) = +∞. By a well known theorem it
follows that there is an x∗ ∈ (0,∞) such that G(x∗) = 0. On the other hand

G(x)− G(y) = x − y +
α + βy

g(y)
− α + βx

g(x)

=
(x − y)g(y)(g(x)− β) + (α + βy)(g(x)− g(y))

g(x)g(y)
> 0,

if x > y. So G(x) is an increasing function and consequently x∗ is the unique
positive equilibrium of Eq. (1).

Further, we prove that every positive solution of Eq. (1) is bounded. We have

(3) xn+1 =
α + βxn−k

f(xn, ..., xn−k+1)
< α + βxn−k n = 0, 1, 2, ... .

From (3) using induction we obtain

x(k+1)m+r+1 < xr−kβm+1 + α (1 + β + · · ·+ βm)

< xr−k +
α

1− β
, for all m ∈ N ∪ {0} and r ∈ {0, 1, ..., k},

from which the boundedness follows.

Thus there are the finite lim infn→∞ xn = l and lim supn→∞ xn = L. Letting
lim infn→∞ and lim supn→∞ in (1) we obtain

l ≥ α + βl

g(L)
and L ≤ α + βL

g(l)
.
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From this and by (c) we obtain

α + (β − 1)L ≥ L(g(l)− 1) ≥ l(g(L)− 1) ≥ α + (β − 1)l.

Since β ∈ [0, 1) we obtain l = L = x∗, as desired.

Example 1. Consider the difference equation

xn+1 =
α + βxn−k

1 + xγ
n

, n = 0, 1, ... ,

where k ∈ N, α ∈ (0,∞), β ∈ [0, 1) and γ ∈ (0, 1). Then every positive solution
of the equation converges.

Similarly to Theorem 2 we can prove the following theorem.

Theorem 2 (a). Consider the difference equation

(4) xn+1 =
α + βxn

f(xn, ..., xn−k)
, n = 0, 1, 2, ...

where α > 0, β ∈ [0, 1), k ∈ N, the initial conditions x−k, x−k+1, ..., x−1 and x0

of Eq. (4) are arbitrary positive numbers, f : R k
+ → R+ is a continuous function

nondecreasing in each variable and where the corresponding function g(x) satisfies
all conditions as in Theorem 2. Then every positive solution of Eq. (4) converges.

4. THE CASE β > 1

In this section we assume that β > 1 and show that there exist unbounded
solutions of Eq. (1). Although it is interesting to know the behavior of all solutions
of Eq. (1), we provide results only for the case k = 2m + 1 and the odd terms of
the solutions do not affect the denumerator in Eq. (1). This means that we focus
our attention on the case

f(u1, u2, u3, ..., u2m−1, u2m, u2m+1) = F (u1, u3, ..., u2m−1, u2m+1),

and so Eq. (1) takes the form

(5) xn+1 =
α + βxn−2m−1

F (xn, xn−2, xn−4..., xn−2m)
.

We assume that F : Rm+1
+ → R+ is a given continuous function, nondecreasing

in each variable, increasing in at least one and F (0, ..., 0) = 1. Hence g(x) is a
real continuous function defined on the interval [0,∞) which satisfies conditions
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(a) and (b) in Theorem 2 and consequently g−1 is continuous increasing function
on [0,∞).

In this case we show that there exist positive solutions of Eq. (5), which are
unbounded, moreover we show that there exist positive solutions of Eq. (5) such
that the subsequence x2n+1 → 0 as n → ∞ and x2n → ∞ as n → ∞. Choose

x−(2m+1), ..., x−1 ∈ (0, g−1(β))

and
min{x−2m, ..., x0} > g−1

(
α

g−1(β)
+ β

)
.

It is clear that

x1 =
α + βx−(2m+1)

F (x0, ..., x−2m)
<

α + βg−1(β)
g(min{x0, ..., x−2m}) < g−1(β)

and

x2 =
α + βx−2m

F (x1, ..., x−(2m−1))
>

α + βx−2m

F (g−1(β), ..., g−1(β))
= x−2m +

α

β
.

Similarly we have

x2s−1 =
α + βx−(2(m−s+1)+1)

F (x2s−2, ..., x2s−2m−2)
<

α + βg−1(β)
g(min{x2s−2, ..., x2s−2m−2}) < g−1(β)

and

x2s =
α + βx−2(m−s+1)

F (x2s−1, ..., x2s−(2m+1))
>

α + βx−2(m−s+1)

F (g−1(β), ..., g−1(β))
= x−2(m−s+1) +

α

β
.

for s = 2, ..., m+ 1.

By induction we obtain

x2n−1 < g−1(β) and x2s+(2m+2)l > x2s+(2m+2)(l−1) + (l + 1)
α

β
,

for l ≥ 0 and s = 1, 2, ...,m + 1. Hence limn→∞ x2n = ∞ and consequently
limn→∞ x2n+1 = 0.

If α = 0, then as above x2n−1 ∈ (0, g−1(β)) for all n ∈ N and x2s+(2m+2)l >

x2s+(2m+2)(l−1) > g−1(β) for all l ∈ N ∪ {0} and s = 1, 2, ...,m + 1. Hence the
limits liml→∞ x2s+(2m+2)l are finite or +∞. Assume that all these limits are finite,
say ps. Since the sequence (x2n−1) is bounded there is finite lim supn→∞ x2n−1 =
L ≥ 0. Assume that L > 0. Then letting n = 2r → ∞ in (5) we obtain

L ≤ βL

F (ps, ..., ps−m−1)
<

βL

F (g−1(β), ..., g−1(β))
= L,

which is a contradiction. Hence L = 0.
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5. THE CASE β = 1, α > 0

In this section we consider the equation:

(6) xn+1 =
α + xn−k

f(xn, ..., xn−k+1)
n ∈ N.

The equilibrium points x̄ of Eq. (6) satisfy the equation x̄g(x̄) = x̄ + α. Since the
function x(g(x)− 1) is increasing there is the unique positive equilibrium x̄ = x ∗,
of Eq. (6).

Before we formulate and prove the main result we need an auxiliary result which
is incorporated in the following lemma.

Lemma 1. Let h be a function which satisfies the conditions

(a) h(0) ≥ 0.

(b) h(x) is increasing on [0,∞);

(c) x/h(x) is nondecreasing on [0,∞). Then for given l, L, α > 0 such that

l < L, there exist l0 and L0 such that

1. 0 < l0 ≤ l and L ≤ L0;

2. l0h(L0) ≤ α ≤ h(l0)L0.

Proof. Since l < L and by (c) we see that lh(L) ≤ h(l)L. Now we look at
the number α. There are three cases.

(1) (1) lh(L) ≤ α ≤ h(l)L. There is nothing to prove.

(2) α < lh(L). Now we may fix L and decrease the number l. By continuity of
the functions xh(L) and h(x)L, and since xh(L) ≤ h(x)L for x < L, we
obtain that there exists l0 > 0 such that l0h(L) ≤ α ≤ h(l0)L, as desired.

(3) h(l)L < α. Now we may fix l and increase the number L. By continuity of
the functions lh(x) and h(l)x, and since lh(x) ≤ h(l)x for l < x, we obtain
that there exists L0 such that lh(L0) ≤ α ≤ h(l)L0.

Theorem 3. Consider Eq. (6), where α > 0, k ∈ N, the initial conditions
x−k, x−k+1, ..., x−1 and x0 of Eq. (6) are arbitrary positive numbers, f : R k

+ →
R+ is a continuous function nondecreasing in each variable and increasing in at
least one, the function x/(g(x) − 1) is nondecreasing and g(0) ≥ 1. Then every
solution of Eq. (6) is bounded and persists.
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Proof. Choose l and L such that L > max{x−k, ..., x0} and min{x−k, ..., x0} >

l > 0. By Lemma 1 applied on h(x) = g(x) − 1, we may also assume that
l(g(L)− 1) ≤ α ≤ (g(l)− 1)L. Now we may use mathematical induction to prove
the result. Assume the statement is true for x−k, ..., x0, ..., xn, that is,

l ≤ xi ≤ L for all i = −k, ..., 0, 1, ..., n.

Then
xn+1 =

α + xn−k

f(xn, ..., xn−k+1)
≤ α + L

g(l)
.

We claim that α+L
g(l) ≤ L. But this is obvious since

α + L ≤ g(l)L ⇔ α ≤ (g(l)− 1)L.

Similarly,

xn+1 =
α + xn−k

f(xn, ..., xn−k+1)
≥ α + l

g(L)
.

It is easy to see that xn+1 ≥ l. The proof is therefore complete.

Corollary 2. Consider the difference equation

(7) xn+1 =
α + xn−k

1 +
k−1∑
i=0

βixn−i

,

where k ∈ N, α > 0, βi ≥ 0, i = 0, ..., k− 1,
∑k−1

i=0 βi > 0, the initial conditions
x−k, x−k+1, ..., x−1 and x0 of Eq. (7) are nonnegative numbers. Then every
solution of Eq. (7) is bounded and persists.

Now we are in a position to formulate and prove a global convergence result.

Theorem 4. Consider Eq. (6), where α > 0, k ∈ N, the initial conditions
x−k, x−k+1, ..., x−1 and x0 of Eq. (6) are arbitrary positive numbers, f : R k

+ →
R+ is a continuous function nondecreasing in each variable and increasing in at
least one, the function x/(g(x)−1) is increasing and g(0) ≥ 1. Then every solution
of Eq. (6) converges.

Proof. By Theorem 3 the sequence (xn) is bounded. Thus there are the finite
lim infn→∞ xn = l and lim supn→∞ xn = L, moreover l > 0. Letting lim infn→∞
and lim supn→∞ in (6) we obtain

l ≥ α + l

g(L)
and L ≤ α + L

g(l)
.
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From this and since x/(g(x)− 1) is increasing we obtain

α ≥ L(g(l)− 1) > l(g(L)− 1) ≥ α,

which is a contradiction. Hence l = L = x∗, as desired.

Remark 1. Theorem 4 solves the open problem in [13].

Remark 2. The condition x/(g(x) − 1) is increasing, in Theorem 4, cannot
be replaced by x/(g(x) − 1) is nondecreasing. Indeed, it is easy to see that the
difference equation

xn+1 =
α + xn−1

1 + xn
, n = 0, 1, ... ,

has period two solutions.

6. THE CASE α = 0

In this section we consider Eq. (1) where α = 0. The case α = 0 and β > 1
was considered in Section 4. If α = 0, β < 1, then we have

(8) xn+1 =
βxn−k

f(xn, ..., xn−k+1)
n ∈ N.

From which it follows that

xn+1 < βxn−k n ∈ N.

Thus the zero equilibrium is a geometrically global attractor for all positive solutions
of Eq. (8) (see, Definition 1 in [6]).

If α = 0, β = 1, then it is easy to prove the following result:

Theorem 5. Assume that α = 0 and f(u1, u2, ..., uk) is continuous and
increasing with respect to each variable in a right neighborhood of 0. If it holds
g(0) = 1, then every positive solution of Eq. (8) converges to a period - (k + 1)
solution of the form

p, 0, 0, ..., 0, p, 0, 0, ..., 0, p, ... .

Remark 3. In [3] the following problem is posed:
Is there a solution of the difference equation

xn+1 =
xn−1

1 + xn
, x−1, x0 > 0, n = 0, 1, 2, ...
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such that xn → 0 as n → ∞?
The positive answer to a more general problem is given in [11]. For readers

who are interested in this area we leave the following problem:

Open Problem 1. Let the function f be as in Theorem 5 and g(0) = 1 and
k ≥ 2. Is there a solution of Eq. (8) such that xn → 0 as n → ∞?
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