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SPIKE SOLUTIONS OF A NONLINEAR ELECTRIC CIRCUIT
WITH A PERIODIC INPUT

Shui-Nee Chow, Ping Lin and Shaoyun Shi

Abstract. We consider spike solutions of a second order differential equation
with a forcing modeling a nonlinear circuit used in converting analog signals
to digital ones. It is shown that the number of spikes which correspond to
bits in digital signals can be provided by asymptotic expansions. Numerical
results are also presented.

1. INTRODUCTION

An electronic circuit is an interconnection of components which can be modelled
by a system of ordinary differential equations by using Kirchhoff voltage and current
Laws. The typeof circuits we are interested in for this article is illustrated inFig. 1.

Fig. 1. A nonlinear electronic circuit.
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This circuit can be modelled by the following system of nonlinear differential
equations 


dV

ds
=
dVs

ds
− i

C
,

µ
di

ds
= V − ψ(i),

(1.1)

where C is the capacitance, µ is related to inductance, Vs is the input voltage, V
is the output voltage, ψ(i) is the current-voltage characteristic of the circuit. Note
that ψ(i) is piece-wise linear and is of the following form:

ψ(i) =




K1i, if i > 0;

K2i, if i0 < i ≤ 0;

K2i0 +K1(i− i0), if i ≤ i0,

where K1 = Rf , K2 = −(R2/R1)Rf and i0 = −(R1/R2)V1/Rf . The graph of
the function is of (single) S-shape (cf. Figure 2).

Fig. 2. Function V = ψ(i)

For the circuit we are interested, C and µ are usually very small. The problem
is thus a singularly perturbed problem with two small parameters. To ease the
numerical computation and also the theoretical analysis we make a time variable
transformation

s = Ct.

The differential Equations (1.1) then become


dV

dt
=
dVs

dt
− i,

ε
di

dt
= V − ψ(i),

(1.2)
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where ε = µ/C which we assume ε is relatively small.
There are many practical applications of such nonlinear electric circuits in engi-

neering (cf. [9]). Our interest in this particular circuit is in its application in the ultra
wide band technology in wire or wireless communications. We refer our readers
to the website ”www.cellonics.com” for its connection to information technology.
In [1], Chow and Huang gave a detailed study for the existence and stability of
spiking solutions of (1.2). A precise definition of spike solutions and the number of
spikes associated with theses solutions were given. In this paper, we are interested
in the precise number of spikes under a periodic input and finding their asymptotic
formulae.

We are particularly interested in studying the relation between the amplitude and
frequency of a periodic input voltage Vs and the number of spikes of its output. If
there is no input (Vs = 0) and ε is small, then system (1.2) has a stable limit cycle
and its orbit in the phase plane will rotate around a limit cycle which is unique. For
each rotation in the phase plane, the time series of the corresponding solution gives
a spike or pulse as ε is small. We call such solution a spike solution. More precise
definition of the spike solution will be given in the next section (see also [1]). We
will study the formation of spike solutions and compute the number of spikes in
terms of input parameters. The work has been of interest to researchers in wireless
communication. We believe that our work would be of interest to researchers in
demodulation scheme in communication but also be useful to other nonlinear circuits.

In this paper we consider a single S-shaped characteristic function first. The
formation of a spike solution is intuitively described with a phase plane analysis in
§2. Then in §3 the time interval of one spike (one-spike time) is calculated based on
asymptotic analysis. In §4 formulae are derived for computing the number of spikes
associated with piecewise linear periodic and sinusoidal inputs. Numerical experi-
ments are given to demonstrate our computation. Bifurcation diagrams are drawn
to show how input frequency-amplitude regions are associated with the number of
spikes. In §5, a characteristic function which combines two single S-shaped ones
is studied so that much richer and more interesting output spike wave patterns are
obtained.

We note that existence and uniqueness of a limit cycle for a periodically forced
van der Pol equation have been proved in [3] and asymptotic solutions were given in
[5] and [10] (see also, [6]). In [4], a geormetric approach to relaxation oscillation is
presented. However, all these work are related to asymptotic behavior of solutions
as time approached infinity. Whereas we are only interested in the number of spikes
of an orbit in one period which is the period of the periodic forcing.

2. FORMATION OF A SPIKE SOLUTION FOR SINGLE S-SHAPED ψ(i)

The system (1.2) is not autonomous because of the input signal term
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dVs

dt
= f(t).

In practice f(t) is usually a periodic function. We first consider orbits in phase
plan when f(t) is a constant. We then let time to flow to obtain properties of these
solutions. We are able to do this because of the small parameter ε. For a rigorous
proof for such solutions, we refer to [1].

Let Γ : V = ψ(i) be the characteristic curve of the system. Assume that f(t)
is a constant. Thus, the intersection point of the curve Γ and the horizontal line
i = f(t) is a fixed point.

Consider a solution that starts at a point P = (V (0), i(0)). If f(t) is between
zero and i0, then the fixed point is unstable. If f(t) is larger than zero or smaller
than i0, then the fixed point is stable and every solution approaches to the fixed
point.

For any fixed f(t) we note that
di

dt
= 0 on the characteristic curve Γ for all ε,

but at all other points
di

dt
is very large as ε is close to zero. In other words, the

directional field would be nearly vertical at all points except those very close to the
characteristic curve Γ. With this in mind it is not very difficult to argue formally
how solutions of Equation (1.2) behave in the i-V phase plane.

First consider the case where i0 < f(t) < 0. Consider an orbit of (1.2) which
starts at P . The orbit will be nearly a vertical straight line up to P1, where it reaches
Γ. Since the direction field at all points other than those near Γ is nearly vertical,
the solution curve will tend to follow Γ, staying above it, until it gets to a vicinity
of P2. At this point the curve turns almost vertically downwards until Γ is reached
once more at P3. The curve then follows Γ, staying below it, until P4 is reached,
where it turns vertically upwards again to intersect Γ at P5. Then it tends to follow
the path from P5 to P2 (cf. Figure 3). Therefore the limit of the solution as ε→ 0

Fig. 3. Spike solution and spike solution when 0 > f(t) > i0
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consists of the two segments P5P2 and P3P4 of Γ, and the two vertical lines P4P5

and P2P3(for a rigorous proof of this statement, see [1] or [4]). Note that the
limit solution satisfies V = ψ(i) except at certain points (i.e., P2 and P4) where
i has jump discontinuities. These discontinuities cause difficulty in constructing
the asymptotic formulae for the time it takes to go through a whole cycle. For
convenience of description we will call such phase-plane solution a spike solution.
The corresponding time-series for V (t) goes from near zero to near V0 and then
from near V0 back to near zero.

The cases f(t) ≥ 0 and f(t) ≤ i0 can be described similarly and are illustrated
in Figures 4-5, respectively. In these two cases we would not have a spike solution
since the solution approaches a stable fixed point.

Fig. 4. Phase portrait when f(t) ≥ 0

Fig. 5. Phase portrait when f(t) ≤ i0

Now let f(t) be varying in time t. We assume that f(t) is oscillatory around
the axis i = 0 and its amplitude is less than i c = c/K1. Suppose f(t) starts from
some point, say its maximum 1, and moves down. After some time, say t+, f(t)
moves down to zero. During this time segment f(t) is above i = 0. The solution

The maximum should be positive since f(t) is oscillatory around i = 0
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of the system will be near the fixed point – a crossing point (moving with t) of the
curve Γ and the horizontal line i = f(t). After t = t+, f(t) moves down to the
region 0 > i > i0. If f(t) stays long enough (i.e. longer than the time the solution
travels one cycle in the phase plane) in the region (i0, 0) then the solution will turn
around the P3P4P5P2 cycle a few times. For each cycle the output voltage solution
V moves from near zero to near V0 and then turns back to near zero. The number
of cycles the solution travels (or the number of spikes the output voltage produces)
will depend on how long f(t) stays in the region (i0, 0) and how long the solution
needs to travel one cycle (one-cycle time). We will consider this in details in §3
and §4.

For convenience we only consider the voltage V above. A corresponding result
for the current i(t) can be similarly obtained.

If the minimum of f(t) is larger than i0 then after some time, say t−, f(t) will
move up to positive side and the cycling behavior will stop until it turns back to
below zero again. A typical such spike pattern is shown in Figure 6.

Fig. 6. Input and output voltage when the minimum of f(t) does not drop below i0.

The transformed system (1.2) is a singularly perturbed problem with one small
parameter ε. When ε = 0 it is an index-1 differential equation. In order to see the
behavier of the solution we would like to solve it numerically. We have to use stiff
ODE solver because of above mentioned properties. We adopt a variable order stiff
solver which is a quasi-constant step size implementation in terms of backward dif-
ferences of the Klopfenstein-Shampine family of numerical differentiation formulas
of orders one to five (details may be found in [11]). The method works very well
for the system (1.2). Note that in the computational results we take f(t) = dVs

dt
and Vs is a sinusoidal input. From the figure we see that the negative part of f(t)
corresponds to the spikes in the output V .
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If the minimum of f(t) is smaller than i0 then after f(t) drops below i0 the
cycling behavior will also stop until it reaches the minimum and turns back to i0. A
typical spike pattern in this case is shown in Figure 7. From the figure we again see
the negative part of f(t) = dVs/dt corresponds to the spike solution in the output
V . When f(t) drops below i0 we see a flat part of V in the middle of spikes, which
may be counted as a spike as well. But this flat spike solution can be avoided if
we control the amplitude of the input f(t) to be smaller than |i0|.

Fig. 7. Input and output voltage when the minimum of f(t) drops below i0.

To make the notation more conventional we denote

x = V, y = i

in the rest of this paper. And the system (1.2) becomes


dx

dt
= f(t) − y,

ε
dy

dt
= x− ψ(y).

(2.1)

Definition 1. Let f(t) be periodic function and (x(t), y(t)) be solution of
system (2.1). If (x(t), y(t)) rotates n P2P3P4P5-cycles in one period of f(t), then
(x(t, y(t)) is called a n-spike solution.

3. ASYMPTOTIC EXPANSION OF THE ONE-CYCLE TIME OF THE SOLUTION

The computation of the one-cycle time to involves a construction of asymptotic
expansion of the spike solution. Zeroth order approximation of to with respect to
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the small parameter ε is not very difficult to construct. It is just the time travelling
from P5 to P2 along the characteristic curve Γ plus the time travelling from P3 to
P4 along Γ (cf. Figure 3) and can be calculated by using the solution of the reduced
system. In practice ε is not always very small. Higher order approximation of to is
generally needed. In this section we provide the asymptotic expansions for general
oscillatory function f(t). We are only interested in the time segment where

(3.1) f(t) ∈ (i0, 0)

since we study the case that the system has a spike solution.
We divide the solution cycle into four parts according to the piecewise expression

of the function ψ(i) as illustrated in Figure 8.

Fig. 8. Illustration of the construction procedure.

We will construct asymptotic solution of the differential equations and then the
time it travels in each part. The construction is based on the matched asymptotic
expansion combined with some specific techniques used in [7, 8, 12]. Motivated
from a simpler example in [12] we should include ε ln ε in the expansions.

Region I where ψ(y) = K1y.

Let the solution start at a point A near (V0, 0) (cf. Figure 8), that is, initial
conditions are

(3.2) x(0) = xA, y(0) = yA = 0.

Let xA take the following expansion:

(3.3) x(0) = V0 + β0ε ln ε+ γ0ε+ · · · ,

where β0 and γ0 are parameters to be determined later. Note that in this region both
slow and fast modes are involved. We first construct the outer asymptotic expansion
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(slow mode solution) xo(t) and yo(t). Suppose 2

xo(t) = x0(t) + x1(t)ε ln ε+ x2(t)ε+ · · · ,
yo(t) = y0(t) + y1(t)ε ln ε + y2(t)ε+ · · · .

(3.4)

Substituting (3.4) into (2.1) and equating like powers of ε ln ε and ε we have

ε0




dx0

dt
= f(t) − y0,

0 = x0 −K1y0,
(3.5)

ε ln ε

{
dx1

dt
= −y1,

0 = x1 −K1y1,
(3.6)

(3.7)
ε




dx2

dt
= −y2,

dy0
dt

= x2 −K1y2,

...
...

From (3.4) and (3.3), xi, i = 0, 1, 2, should satisfy the following initial condi-
tions

(3.8) x0(0) = V0, x1(0) = β0, x2(0) = γ0.

Solving equations (3.5)-(3.7) with initial conditions (3.8), respectively, we obtain


x0(t) = V0e
− t

K1 + e
− t

K1

∫ t

0
e

ξ
K1 f(ξ)dξ,

y0(t) =
V0

K1
e
− t

K1 +
1
K1

e
− t

K1

∫ t

0
e

ξ
K1 f(ξ)dξ,


x1(t) = β0e

− t
K1 ,

y1(t) =
β0

K1
e
− t

K1 ,


x2(t) = γ0e
− t

K1 +
1
K3

1

(K1f(0)−V0)te
− t

K1 +
1
K2

1

e
− t

K1

∫ t

0

∫ ξ

0
e

η
K1 f ′(η)dηdξ,

y2(t) =
(
γ0

K1
+
V0

K3
1

)
e
− t

K1 +
1
K4

1

(K1f(0)− V0)te
− t

K1 − 1
K2

1

f(t)

+
1
K3

1

e
− t

K1

∫ t

0

∫ ξ

0
e

η
K1 f ′(η)dηdξ+

1
K3

1

e
− t

K1

∫ t

0
e

ξ
K1 f(ξ)dξ.

The term ε ln ε is expected without surprising. Recall that in [2] the period of periodic solution of a
forced Van der Pol equation has the form ε

1
3 + ε ln ε + · · · . Because our system is piece-wise linear,

the term ε
1
3 does not appear.
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Hence,


xo(t) = V0e
− t

K1 + e
− t

K1

∫ t

0
e

ξ
K1 f(ξ)dξ + β0e

− t
K1 ε ln ε+

[
γ0e

− t
K1

+
1
K3

1

(K1f(0)− V0)te
− t

K1 +
1
K2

1

e
− t

K1

∫ t

0

∫ ξ

0

e
η

K1 f ′(η)dηdξ
]
ε+ · · · ,

yo(t) =
V0

K1
e
− t

K1 +
1
K1

e
− t

K1

∫ t

0

e
ξ

K1 f(ξ)dξ +
β0

K1
e
− t

K1 ε ln ε

+
[(

γ0

K1
+
V0

K3
1

)
e
− t

K1 +
1
K4

1

(K1f(0)− V0)te
− t

K1 − 1
K2

1

f(t)

+
1
K3

1

e
− t

K1

∫ t

0

∫ ξ

0
e

η
K1 f ′(η)dηdξ +

1
K3

1

e
− t

K1

∫ t

0
e

ξ
K1 f(ξ)dξ

]
ε+ · · · .

We then construct the inner asymptotic expansion (fast mode solution). Making
the stretched time transformation τ =

t

ε
in the system (2.1), we have


dx

dτ
= ε(f(ετ) − y),

dy

dτ
= x −K1y

(3.9)

satisfying initial conditions (3.2) where x(0) has the expansion (3.3). Let xi(τ) and
yi(τ) stand for inner expansion and assume{

xi(τ) = x̄0(τ) + x̄1(τ)ε lnε + x̄2(τ)ε+ · · · ,
yi(τ) = ȳ0(τ) + ȳ1(τ)ε ln ε+ ȳ2(τ)ε+ · · · .

(3.10)

Substituting (3.10) into (3.9) and equating like powers of ε ln ε and ε, we have

ε0




dx̄0

dτ
= 0,

dȳ0
dτ

= x̄0 −K1ȳ0,

(3.11)

ε ln ε




dx̄1

dτ
= 0,

dȳ1
dτ

= x̄1 −K1ȳ1,

(3.12)

ε




dx̄2

dτ
= f(0) − ȳ0,

dȳ2
dτ

= x̄2 −K1ȳ2,

...
...

(3.13)
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From (3.2) ȳi, i = 0, 1, 2, should satisfy the following initial conditions

(3.14) ȳ0(0) = ȳ1(0) = ȳ2(0) = 0.

Solving equations (3.11)-(3.12) with initial conditions (3.14), respectively, we obtain




x̄0(τ) = c0,

ȳ0(τ) = − c0
K1

e−K1τ +
c0
K1

,




x̄1(τ) = c1,

ȳ1(τ) = − c1
K1

e−K1τ +
c1
K1

,




x̄2(τ) = − c0
K2

1

e−K1τ + (f(0)− c0
K1

)τ + c2,

ȳ2(τ) =
[

1
K2

1

(f(0)− c0
K1

) − c2
K1

]
e−K1τ − c0

K2
1

τe−K1τ

+
1
K2

1

(f(0)− c0
K1

)(K1τ − 1) +
c2
K1

.

Hence,



xi(τ) = c0 + c1ε ln ε+
[
− c0
K2

1

e−K1τ + (f(0)− c0
K1

)τ + c2

]
ε+ · · · ,

yi(τ) = − c0
K1

e−K1τ +
c0
K1

+
c1
K1

(1 − e−K1τ )ε ln ε

+
[(

1
K2

1

(f(0)− c0
K1

)− c2
K1

)
e−K1τ

− c0
K2

1

τe−K1τ +
1
K2

1

(f(0)− c0
K1

)(K1τ − 1) +
c2
K1

]
ε+ · · · ,

Here c0, c1, c2 are constants which will be determined by matching with the outer
solution. Using Van Dyke’s matching principle (cf. [7], Section 4.1) we have

c0 = V0, c1 = β0 and c2 = γ0

and the composite asymptotic solution
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(3.15)


xI(t) = V0e
− t

K1 +e−
t

K1

∫ t

0

e
ξ

K1 f(ξ)dξ+β0e
− t

K1 ε ln ε+
[
γ0e

− t
K1 − V0

K2
1

e−K1
t
ε

+
1
K3

1

(K1f(0) − V0)te
− t

K1 +
1
K2

1

e−
t

K1

∫ t

0

∫ ξ

0

e
η

K1 f ′(η)dηdξ
]
ε+· · · ,

yI (t) =
V0

K1
e
− t

K1 − V0

K1
e−K1

t
ε +

1
K1

e
− t

K1

∫ t

0

e
ξ

K1 f(ξ)dξ − V0

K2
1

te−K1
t
ε

+
[
β0

K1
e
− t

K1 − β0

K1
e−K1

t
ε

]
ε ln ε+

[(
γ0

K1
+
V0

K3
1

)
e
− t

K1 − 1
K2

1

f(t)

+
1
K4

1

(K1f(0) − V0)te
− t

K1 +
1
K3

1

e−
t

K1

∫ t

0

∫ ξ

0

e
η

K1 f ′(η)dηdξ

+
1
K3

1

e
− t

K1

∫ t

0

e
ξ

K1 f(ξ)dξ+
(

1
K2

1

(f(0) − V0

K1
) − γ0

K1

)
e−K1

t
ε

]
ε+· · · .

Thus the time t1 needed for the solution of (2.1) to travel from A to B is determined
by

(3.16) yI(t) = 0.

Assume

(3.17) t1 = p1 + q1ε ln ε+ r1ε+ · · · .
Then by (3.15) and (3.16), p1, q1 and r1 satisfy the following equations, respectively∫ p1

0
e

ξ
K1 f(ξ)dξ = −V0,(3.18)

q1 = − β0

f(p1)
e
− p1

K1 ,(3.19)

r1 =
1
K1

− K1

f(p1)
L1(p1)e

− p1
K1 ,(3.20)

where

L1(p1) =
γ0

K1
+

1
K4

1

(K1f(0)− V0)p1 +
1
K3

1

∫ p1

0

∫ ξ

0
e

η
K1 f ′(η)dηdξ.

We then have

xI(t1) = α1 + β1ε ln ε+ γ1ε+ · · · ,
where
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(3.21) α1 = β1 = 0, γ1 =
f(p1)
K1

.

Region II where ψ(y) = K2y.

Only fast mode is involved in this region. Introducing the stretched time τ =
t− t1
ε

we have




dx

dτ
= ε(f(ετ + t1) − y),

dy

dτ
= x−K2y

(3.22)

with initial conditions{
x(t1) = α1 + β1ε ln ε+ γ1ε+ · · · ,
y(t1) = 0.

(3.23)

Suppose {
xII(τ) = x̄0(τ) + x̄1(τ)ε ln ε+ x̄2(τ)ε+ · · · ,
yII(τ) = ȳ0(τ) + ȳ1(τ)ε lnε+ ȳ2(τ)ε+ · · · .

(3.24)

Substituting (3.23) into (3.22) and equating like powers of ε ln ε and ε, we have

ε0




dx̄0

dτ
= 0,

dȳ0
dτ

= x̄0 −K2ȳ0,

(3.25)

ε ln ε




dx̄1

dτ
= 0,

dȳ1
dτ

= x̄1 −K2ȳ1,

(3.26)

ε




dx̄2

dτ
= f(t1) − ȳ0,

dȳ2
dτ

= x̄2 −K2ȳ2,

...
...

(3.27)

From (3.23), x̄i and ȳi, i = 0, 1, 2, should satisfy the following initial conditions
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(3.28) x̄0(0) = α1, x̄1(0) = β1, x̄2(0) = γ1, ȳ0(0) = ȳ1(0) = ȳ2(0) = 0.

Noting α1 = β1 = 0 and solving equation (3.25)-(3.27) with initial conditions
(3.28), respectively, we obtain{

x̄0(τ) ≡ 0,

ȳ0(τ) ≡ 0,{
x̄1(τ) ≡ 0,

ȳ1(τ) ≡ 0,


x̄2(τ) = f(t1)τ + γ1,

ȳ2(τ) =
1
K2

2

(f(t1) −K2γ1)e−K2τ +
f(t1)
K2

τ +
1
K2

2

(K2γ1 − f(t1)).

Hence, changing the time variable back to t, yields



xII(t)=f(t1)(t− t1)+γ1ε+· · · ,

yII(t)=
f(t1)
K2

(t− t1)+
[

1
K2

2

(f(t1)−K2γ1)e−K2
t
ε +

1
K2

2

(K2γ1−f(t1))
]
ε+· · · .

Solving

yII(t) = i0,

we get

t2 = t1 +
1
K2

ε ln ε+
1
K2

ε ln
f(t1) −K2γ1

K2V0
+ · · · ,

which is the time needed for the solution to reach C in Figure 8. We can also
compute

xII(t2) = α2 + β2ε ln ε+ γ2ε+ · · · ,

where

(3.29) α2 = 0, β2 =
f(t1)
K2

, γ2 =
f(t1)
K2

ln
f(t1)−K2γ1

K2V0
+ γ1.

Region III where ψ(y) = K1y + (K2 −K1)i0.
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The construction is similar to that for Region I. Let

a = (K1 −K2)i0.

We can obtain the following composite expansion


xIII(t) = ae
− t−t2

K1 − a+ e
− t−t2

K1

∫ t

t2

e
ξ

K1 f(ξ)dξ + β2e
− t−t2

K1 ε ln ε

+
[

1
K1

(
V0

K2
− a

K1

)
e−K1

t−t2
ε +γ2e

− t−t2
K1 +

1
K3

1

(K1f(t2)−a)(t − t2)e
− t−t2

K1

+
1
K2

1

e
− t−t2

K1

∫ t

t2

∫ ξ

t2

e
η

K1 f ′(η)dηdξ
]
ε+ · · · ,

yIII (t) =
a

K1
e
− t−t2

K1 +
1
K1

e
− t−t2

K1

∫ t

t2

e
ξ

K1 f(ξ)dξ +
(
V0

K2
− a

K1

)
e−K1

t−t2
ε

+
1
K1

(
V0

K2
− a

K1

)
(t− t2)e−K1

t−t2
ε +

(
β2

K1
e
− t−t2

K1 − β2

K1
e−K1

t−t2
ε

)
ε ln ε

+
{(

γ2

K1
+

a

K3
1

)
e
− t−t2

K1 +
1
K4

1

(K1f(t2) − a)(t− t2)e
− t−t2

K1

− 1
K2

1

f(t) +
1
K3

1

e
− t−t2

K1

∫ t

t2

∫ ξ

t2

e
η

K1 f ′(η)dηdξ +
1
K3

1

e
− t−t2

K1

∫ t

t2

e
ξ

K1 f(ξ)dξ

+
(

1
K2

1

(f(t2) − a

K1
) − γ2

K1

)
e−K1

t−t2
ε

}
ε+ · · · .

The time for the solution to reach D is obtained from

yIII(t3) = i0,

that is,

t3 = t2 + p3 + q3ε ln ε+ r3ε+ · · · ,

where p3, q3 and r3 are determined by the following equations∫ p3

0

e
ξ

K1 f(t2 + ξ)dξ =
K1

K2
V0e

p3
K1 − a,(3.30)

q3 =
K2β2

V0 −K2f(t2 + p3)
e
− p3

K1 ,(3.31)

r3 =
K2f(t2 + p3)

K1(K2f(t2 + p3) − V0)
− K1K2L3(p3)
K2f(t2 + p3) − V0

e
− p3

K1 ,(3.32)

and in (3.32)
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L3(p3) =
γ2

K1
+

V0

K2
1K2

e
p3
K1 +

1
K4

1

(K1f(t2)− a)p3

+
1
K3

1

∫ p3

0

∫ ξ

0

e
η

K1 f ′(t2 + η)dηdξ.

We can then obtain

xIII(t3) = α3 + β3ε ln ε + γ3ε + · · · ,
where

(3.33) α3 = V0, β3 = 0, γ3 =
1
K2

1

f(t2 + p3) − V0

K1K2
.

Region IV where ψ(y) = K2y again.

The construction is similar to that in Region II. The composite asymptotic ex-
pansion in this region is



xIV (t) = V0 + (f(t3)− V0

K2
)(t− t3) + γ3ε+ · · · ,

yIV (t) =
V0

K2
+

1
K2

(
f(t3) − V0

K2

)
(t− t3)

+
[(

1
K2

2

(
f(t3)− V0

K2

)
− γ3

K2

)
e−K2

t−t3
ε

+
γ3

K2
− 1
K2

2

(
f(t3) − V0

K2

)]
ε+ · · · .

The time needed for the solution to reach E is determined from yIV (t4) = 0

t4 = t3 +
1
K2

ε ln ε+
1
K2

ln
(
γ3

V0
− f(t3)
K2V0

+
1
K2

2

)
ε+ · · · .

We can calculate

xIV (t4) = V0 +
1
K2

(
f(t3) − V0

K2

)
ε ln ε

+
[

1
K2

(
f(t3) − V0

K2

)
ln

(
γ3

V0
− f(t3)
K2V0

+
1
K2

2

)
+ γ3

]
ε + · · · ,

To obtain a spike solution E must coincide with A. We thus have the following
formula for calculating β0 and γ0:

β0 =
1
K2

(f(t3) − V0

K2
),(3.34)
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γ0 =
1
K2

(
f(t3) − V0

K2

)
ln

(
γ3

V0
− f(t3)
K2V0

+
1
K2

2

)
+ γ3.(3.35)

Now we can summarize above result into a theorem.

Theorem 1. Assume that for periodic input f(t), system (2.1) has at least
one-spike solution. Then the one-cycle time of the spike solution is given by

(3.36) to = p+ qε ln ε + rε,

where

p = p1 + p3, q = q1 + q3 +
2
K2

,

r = r1 + r3 +
1
K2

ln
K1f(t1) −K2f(p1)

K1K2V0

+
1
K2

ln
(
K1f(t2 + p3) −K2f(t3)

K2
2V0

+
K1 −K2

K1K
2
2

)

and p1, p3, q1, q3, r1, r3 satisfy the following equations, respectively∫ p1

0

e
ξ

K1 f(ξ)dξ = −V0,

q1 = − β0

f(p1)
e
− p1

K1 ,

r1 =
1
K1

− K1

f(p1)
L1(p1)e

− p1
K1 ,∫ p3

0
e

ξ
K1 f(t2 + ξ)dξ =

K1

K2
V0e

p3
K1 − a,

q3 =
K2β2

V0 −K2f(t2 + p3)
e
− p3

K1 ,

r3 =
K2f(t2 + p3)

K1(K2f(t2 + p3) − V0)
− K1K2L3(p3)
K2f(t2 + p3) − V0

e
− t2+p3

K1 ,

here

L1(p1) =
γ0

K1
+

1
K4

1

(K1f(0)− V0)p1 +
1
K3

1

∫ p1

0

∫ ξ

0
e

η
K1 f ′(η)dηdξ.

L3(p3) =
γ2

K1
+

V0

K2
1K2

e
p3
K1 +

1
K4

1

(K1f(t2) − a)p3

+
1
K3

1

∫ p3

0

∫ ξ

0
e

η
K1 f ′(t2 + η)dηdξ.
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and other parameters can be determined by (3.21), (3.29), (3.33), (3.34) and
(3.35).

Remark 1. In order for the system to have a spike solution, we need to assume
that

to < t−,

where t− is the time f(t) spends in the region (i0, 0) in one period of f(t).

4. FORMULAS FOR COMPUTING THE NUMBER OF SPIKES AND NUMERICAL

DEMONSTRATION

As we analyzed above when f(t) locates and stays long enough in the region
(i0, 0) (e.g. to < t−), the phase plane solution will produce cycles and the output
voltage will produce spikes. Generally, from the phase plane analysis the number
of spikes in one period of f(t) produced in the output voltage can be determined
roughly as [t−to ] + 1, where [·] denotes the integral part of the number. Since f(t) is
given it is not difficult to obtain t−. The formula for computing to has been found
in the previous section after a construction of uniform asymptotic expansion of the
cycling solution. From the formula we can see that the number of spikes depends
mainly on the slopes of the characteristic curve Γ, i0 (or V0), and the function f(t).
Next we are going to consider a couple of special cases where the formula may be
simpler. Then we run some numerical experiments to demonstrate the correctness
of these formulas. In numerical simulation, taking numerical errors into account,
it is better to choose parameters so that

t−
to

locates near the middle of the interval

([
t−
to

], [
t−
to

] + 1) to ensure that the expected number of spikes is produced.

Case I. (Periodic piecewise linear inputs)

Vτ (t) =

{ −kt+ A, t ∈ [2nt−, (2n+ 1)t−],

kt− 3A, t ∈ [(2n+ 1)t−, (2n+ 2)t−].

That is,

f(t) =

{ −k, t ∈ [2nt−, (2n+ 1)t−],

k, t ∈ [(2n+ 1)t−, (2n+ 2)t−],

where 0 < k < −i0, t− =
2A
k

, A > 0.
In this case the formula (3.36) can be obtained explicitly:
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to = p1 + p3 + (q1 + q3 +
2
K2

)ε lnε +
[
r1 + r3

+
1
K2

ln
(K2 −K1)k
K1K2V0

+
1
K2

ln
(kK1 − V0)(K2 −K1)

K1K
2
2V0

]
ε + · · · ,

where

p1 = K1 ln(1 +
V0

K1k
),

q1 = − β0

f(p1)
e
− p1

K1 = −K1(V0 +K2k)
K2

2 (V0 +K1k)
,

r1 =
1
K1

− K1

f(p1)
L1(p1)e

− p1
K1 =

1
K1

+
K2

1

K1k + V0
L1(p1),

p3 = K1 ln
(

1− K2V0

K1(K2k + V0)

)
,

q3 =
K2β2

V0 −K2f(p3)
e
− p3

K1 = − K1k

K1K2k + (K1 −K2)V0
,

r3 =
K2k

K1(V0 +K2k)
+

K2
1K2

K1K2k + (K1 −K2)V0
L3(p3),

with

L1(p1) = −V0 +K2k

K1K2
2

ln
(
− K2

1k +K2V0

K1K2
2V0

+
V0 +K2k

V0K2
2

)

−K
2
1k +K2V0

K2
1K

2
2

− V0 +K1k

K3
1

ln
(

1 +
V0

K1k

)
,

L3(p3) = − k

K2
1

− k

K1K2
ln

(K1 +K2)k
−K1K2V0

+
V0(K1K2k +K1V0 −K2V0)
K2

1K2(K1K2k +K1V0)

−K1k + a

K3
1

ln
(

1− K2V0

K1K2k +K1V0

)
.

To demonstrate above formulas we take the following data from a real electronic
circuit which is modeled by (1.2): K1 = 103, K2 = −104, i0 = −10−5. In order
to have spike solution we take a pretty large t− = 5 × 104 so the condition (3.1)
is satisfied. Let n be the number of spikes in each period of the input. Then from
above formula we can roughly obtain a relationship between the amplitude k of f(t)
and the number of spikes n:

k =
1
2

[
1 +

√
1 − 440

e
50
n − 1

]
× 10−5.

The following table shows some data obtained by the above relationship.
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k .99999e-5 .99959e-5 .9498e-5 .97281e-5 .90370e-5 .69297e-5
n 3 4 5 6 7 8

Now we use again the variable order stiff ODE solver to solve the system (1.2)
with k given in the table. Figure 9 shows numerical solutions where the number of
spikes exactly matches those given in the table.

Fig. 9. V vs t for various choices of k

Furthermore, it is interesting to examine for which values of amplitude k and
frequency 1/2t− we have certain number of spikes. For above given input and i0 =
−10−5 we draw bifurcation diagrams about the number of spikes for various choices
of slopes of the piecewise linear characteristic function. From the computational
results shown in Figures 10-13 we observe that when the slope ratio |K2/K1| is
larger the region to have a certain number of spikes is longer, and when the slope
ratio is smaller the region is wider.

Fig. 10. Bifurcation diagram for K1 = 1000 and K2/K1 = −0.5.
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Fig. 11. Bifurcation diagram for K1 = 1000 and K2/K1 = −1.

Fig. 12. Bifurcation diagram for K1 = 1000 and K2/K1 = −5.

Fig. 13. Bifurcation diagram for K1 = 1000 and K2/K1 = −10.



572 Shui-Nee Chow, Ping Lin and Shaoyun Shi

Case 2. (Sinusoidal inputs)

Vτ =
k

ω
cosωt or f(t) = −k sinωt,

where 0 < k < −i0. Unlike case 1, there is no explicit expression for the parameters
in the formula (3.36). However, if we ignore the complicated O(ε ln ε) terms we
can have a relatively simple expression for the one-cycle time:

to = p1 + p3 +O(ε ln ε),

where p1 and p3 can be obtained from the following equations

e
p1
K1 (sinωp1 −K1ω cosωp1)− 1 +K2

1ω
2

kK1
V0 +K1ω = 0,

e
p3
K1

(
sinω(p1 + p3) −K1ω cosω(p1 + p3) +

1 +K2
1ω

2

kK2
V0

)

−1 +K2
1ω

2

kK1
(K1 −K2)i0 +K1ω cosωp1 + sinωp1 = 0.

We take the same data (K1, K2 and i0) as in case 1 from a real electronic circuit.
In this case we are going to fix the amplitude of Vτ , for example, k/ω = 0.05
and making the frequency ω change. We can then obtain a set of data showing
relationship between the frequency ω and the number of spikes n in the following
table, where fr = ω/2π.

fr = ω/2π 3.20e-5 2.40e-5 1.70e-5 1.35e-5 1.10e-5 0.92e-5
n 3 4 5 6 7 8

We use the variable order stiff ODE solver again to solve the system (1.2) with
ω given in the table. Figure 14 shows numerical solutions where the number of
spikes matches those given in the table.

5. SPIKE SOLUTION FOR A DOUBLE S-SHAPED CHARACTERISTIC FUNCTION

In this section we consider again the system (2.1) with a double S-shaped ψ(y)
defined by

ψ(y) =




K1y −K1a2, if y ≥ a2,
K2y −K2a2, if a3 ≤ y < a2,
K3y, if 0 ≤ y < a3,

K4y, if a4 ≤ y < 0,
K5y −K5a5, if a5 ≤ y < a4,

K6y −K6a5, if y < a5.
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Its graph is depicted in Figure 15.

Fig. 14. V vs t for various choices of ω.

Fig. 15. The double S-shaped ψ.

For this characteristic function the solution may have spikes both above or below
the time axis. We thus define the upper and lower spike solutions accordingly. We
give the definition below according to the variable y. From the phase analysis and
computational results we will see that the spikes count in terms of the current y is
more clear than that in terms of the voltage x.

By the phase plane analysis described in §2, it is easy to see that any solution
of the system (2.1) approaches the upper cycle Γ1 : OP3P1P2 when f(t) stays long
enough in the interval [a3, a2], and approaches the lower cycle Γ2 : OP4P6P5 when
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f(t) stays long enough in the interval [a5, a4] (See Figure 16). One upper cycle of
the phase plane solution corresponds to one upper spike of the solution y in the y-t
plane. One lower cycle of the phase plane solution corresponds to one lower spike
of the solution y in the y-t plane. There would be no any solution cycle when f(t)
stays in other regions. Figure 17 shows a typical upper and lower spike solution (2
spikes) with a sinusoidal input.

Fig. 16. Solution cycles in the phase plane.

Fig. 17. Output y vs. t and input f vs. t.
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The spike count based on x(t) is different for the double S-shaped characteristic
function. From the phase plane analysis when the solution moves from the upper
cycle to the lower cycle (P3 to P4) or from the lower cycle to the upper cycle (P4

to P3) an extra peak and an extra valley will appear in the solution x(t) (See Figure
18 with the same parameters as in Figure 17). Obviously the spike count is more
clear in the y-t curve. So we suggest to use the current (i.e. y) versus time curve
to examine the spike signal in practice.

Fig. 18. Output x vs. t and input f vs. t.

Again our interest is to compute the period of solution cycles Γ1 and Γ2 in order
to derive formulas to compute the number of spikes in spike solutions associated
with the system. For simplicity we will only provide the zeroth order approximation
for the double S case. Higher order approximations can be obtained similarly as
we did in Section 3.

Let ε = 0 in the system (2.1). We then obtain the degenerated system{
ẋ = f(t) − y,
0 = x− ψ(y).

(5.1)

The general solution of the system (5.1) is


x = ψ(y),

y = e−
t
K

(
c+

∫ t

0

1
K
e

ξ
K f(ξ)dξ

)
,

(5.2)

where K is the slope of the piecewise linear ψ(y) in each corresponding interval
and c is an arbitrary constant.



576 Shui-Nee Chow, Ping Lin and Shaoyun Shi

The zeroth order approximate period T ′
1 of the cycle Γ1 and T ′

2 of the cycle Γ2

It is easy to see that

T ′
1 = p1 + p2,

where p1 is the time traveling from P1 to P2, and p2 is the time traveling from O
to P3. In the line P1P2, K = K1. By (5.2), the solution of the degenerated system
(5.1) starting at the point P1 is


x = K1y −K1a2,

y = e
− t

K1

(
a3 +

∫ t

0

1
K1

e
ξ

K1 f(ξ)dξ
)
.

So the time p1 traveling from P1 to P2 can be obtained from the nonlinear equation:

a2 = e
− p1

K1

(
a3 +

∫ p1

0

1
K1

e
ξ

K1 f(ξ)dξ
)
,

or
1
K1

∫ p1

0
e

ξ
K1 f(ξ)dξ = a2e

p1
K1 − a3.(5.3)

In the line OP3, K = K3. By (5.2), the solution of the degenerated system
(5.1) starting at the point O is


x = K3y,

y = e
− t

K3

∫ t

0

1
K3

e
ξ

K3 f(ξ)dξ.

So the time p2 traveling from O to P3 can be obtained from

a3 = e
− p2

K3

∫ p2

0

1
K3

e
ξ

K3 f(ξ)dξ,

or
1
K3

∫ p2

0
e

ξ
K3 f(ξ)dξ = a3e

p2
K3 .(5.4)

Similarly, we have

T ′
2 = p3 + p4,

where p3 is the time traveling from O to P4 and p4 is the time traveling from P6

to P5. p3 and p4 can be obtained from the following two nonlinear equations:

1
K4

∫ p3

0
e

ξ
K4 f(ξ)dξ = a4e

p3
K4(5.5)
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and

1
K6

∫ p4

0
e

ξ
K6 f(ξ)dξ = a5e

p4
K6 − a4,(5.6)

respectively.

Formulas for special periodic inputs

(1) Periodic piecewise linear inputs

f(t) =




k0 ∈ (a4, a3), t ∈ [0, T0].
k1 ∈ (a3, a2), t ∈ [T0, T1],
k2 ∈ (a5, a4), t ∈ [T1, T2].

By (5.3)-(5.6), we have

p1 = K1 ln
k1 − a3

k1 − a2
, p2 = K3 ln

k1

k1 − a3
,

p3 = K4 ln
k2

k2 − a4
, p4 = K6 ln

k2 − a4

k2 − a5
.

So
T ′

1 = p1 + p2 = K1 ln
k1 − a3

k1 − a2
+K3 ln

k1

k1 − a3
,

T ′
2 = p3 + p4 = K4 ln

k2

k2 − a4
+K6 ln

k2 − a4

k2 − a5
.

Hence, the number of spikes can be roughly determined.

(2) Sinusoidal inputs

f(t) = k sinωt.

By (5.3)-(5.6), p1, p2, p3 and p4 can be obtained from the following nonlinear
equations:

K1ωk + k
(
sinωp1 −K1ω cosωp1

)
e

p1
K1 = a2(1 +K2

1ω
2)e

p1
K1

−a3(1 +K2
1ω

2),

K3ωk + k
(
sinωp2 −K3ω cosωp2

)
e

p2
K3 = a3(1 +K2

3ω
2)e

p2
K3 ,

K4ωk + k
(
sinωp3 −K4ω cosωp3

)
e

p3
K4 = a4(1 +K2

4ω
2)e

p3
K4 ,

K6ωk + k
(
sinωp4 −K6ω cosωp4

)
e

p4
K6 = a5(1 +K2

6ω
2)e

p4
K6

−a4(1 +K2
6ω

2).
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Then T ′
1 and T ′

2 can be obtained afterwards.

Numerical experiments

We now do some numerical computations to see various spike patterns for the
double S-shaped characteristic function. The parameters we first choose are: K1 =
K6 = 103, K2 = K5 = −104 and K3 = K4 = −K2. The input function
f(t) = A sin(2πCft) with C = 10−5 and f = 0.5. Figures 19-21 show the output
current y for various input amplitudes A = 0.6, 0.5 and 0.35, respectively.

Fig. 19. Four upper spikes and four lower spikes.

Fig. 20. Three upper spikes and three lower spikes.
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Choosing different input amplitudes A and slopes of the double S-shaped char-
acteristic function ψ we can see other spike signal patterns. By changing the slope
K4 to 0.00015 we obtain a four upper and three lower spike pattern depicted in
Figure 22. By changing the amplitude of the input, Figure 23 depicts a similar case
as in Figure 7 for the single S-shaped characteristic. By changing slopes of ψ we
can easily obtain various patterns of spike-wave solutions corresponding to various
numbers of upper and lower spikes.

Fig. 21. One upper spike and one lower spike.

Fig. 22. Four upper spikes and three lower spikes.
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Fig. 23. The spike pattern x(t) with input A = 0.8 and K4 = 0.0001.
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