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EXISTENCE AND STABILITY OF THREE-DIMENSIONAL
BOUNDARY-INTERIOR LAYERS FOR THE ALLEN-CAHN EQUATION

Kunimochi Sakamoto

Abstract. A minimal surface intersecting the boundary of a smooth bounded
domain ⊂ R

3, when it is non-degenerate, gives rise to a family of transition
layer solutions of the Allen-Cahn equation. The stability properties of the tran-
sition layer solution are determined by the eigenvalues of the Jacobi operator
on the minimal surface with Robin type boundary conditions which encode
the geometric information of the domain boundary.

1. INTRODUCTION

We are interested in transition-layer solutions of the following scalar reaction-
diffusion equation

(1.1)




ut = ∆u+
1
ε2
f(u) (in Ω, t > 0)

∂u

∂n
= 0 (on ∂Ω, t > 0)

with the homogeneous Neumann boundary conditions. This system, called the Allen-
Cahn equation, has been studied extensively for bistable reaction kinetics. A typical
example of the nonlinearity f is a cubic polynomial f(u) = u − u3. In general,
we assume that the nonlinearity f is obtained from a double-well potential F (u)
of equal depth, f(u) = −F ′(u). Namely, F (u) with F (u) ≥ 0 is smooth and
attains its absolute minimum at exactly two non-degenerate critical points u = ±1,
F (±1) = 0. The non-degeneracy here means that F ′′(±1) > 0. These conditions
ensure the existence of a special function Q(z) (z ∈ R), called a standing wave,
which satisfies

(S-W)
d2Q

dz2
+ f(Q) = 0, z ∈ R, lim

z→±∞Q(z) = ±1, Q(0) = 0.
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The function Q(z), together with its derivatives, will play important roles in the
following discussion.

Throughout this article, the domain Ω ⊂ R
N is smooth and bounded, n stands

for the unit inward normal vector on ∂Ω, and the parameter ε > 0 is small.
Our main concern in this paper is to show the existence of internal transition

layers which exhibit a sharp transition from u ≈ −1 to u ≈ +1 across such a
hypersurface Γ that intersects the boundary of the domain; Γ ∩ ∂Ω �= ∅. We call
this kind of internal transition layer a boundary-interior layer. We also characterize
the stability property of boundary-interior layers in terms of geometric information
of Γ, ∂Ω and ∂Γ ⊂ ∂Ω.

When ε > 0 is small, the solutions of (1.1) for a class of initial functions are
known to develop transition layers within a short time scale of O(ε2| log ε|) [3].
This phenomenon is caused by the strong bistability of the ordinary differential
equation ut = 1

ε2 f(u) with u = ±1 being stable equilibria. According to the sign
of the value of the initial function, the solution is quickly attracted to either u = +1
or u = −1, thus creating a sharp transition from u ≈ −1 to u ≈ 1 near the set,
called an interface,

Γ(t) := {x ∈ Ω | uε(u, t) = 0}.
The interface divides Ω into two sub-domains Ω±(t) (cf. Fig. 1) defined by Ω±(t) :
= {x ∈ Ω | ± uε(x, t) > 0}. When x ∈ Ω±(t), uε(x, t) → ±1 as ε → 0. Such
solutions with sharp spatial transition are called transition layer solutions.

It is also well known (cf. [3], for instance) that, to the lowest order of approx-
imation, the interface Γ(t) evolves according to its mean curvature:

Fig. 1. The interface Γ(t) and the normal vector ν(x, t).
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(1.2) VΓ(t)(x) = −κ(x; Γ(t)
)

(x ∈ Γ(t), t > 0 ),

where VΓ(t)(x) is the speed of the interface measured along the unit normal ν(x, t)
of Γ(t) at x (ν points to the Ω+(t)-side, cf. Fig. 1) and κ(x; Γ) stands for the sum
of the principal curvatures of Γ at x ∈ Γ. Hereafter, κ is simply called the mean
curvature and the equation (1.2) is referred to as the mean curvature flow. To be
precise about the sign of κ (which is the opposite to geometers’ convention), let us
extend the unit normal vector ν to a neighbourhood of Γ. Then our mean curvature
is defined as the divergence of ν;

κ(x; Γ) = div ν(x), x ∈ Γ.

When the interface Γ(t) stays away from the boundary ∂Ω, the dynamics of (1.2)
has been studied rather extensively ([6, 8]). In such a case, the interface governed
by the mean curvature flow (1.2) does not feel the presence of the boundary ∂Ω.
Therefore, the domain Ω does not play any role in the dynamics of (1.2).

Our concern in this paper, on the other hand, is the case in which the interface
Γ(t) intersects the boundary ∂Ω (cf. Fig. 2). The motion of Γ(t) in such a situation
is still described by the mean curvature flow (1.2) to the lowest order approximation.
Main questions we raise in this article are:

When (1.2) has an equilibrium interface which intersects the boundary
of the domain Ω, does it give rise to an equilibrium boundary-interior
layer for (1.1)? If the answer is affirmative, what is it that determines
the stability of the layer?

. Fig. 2. The interface intersecting the boundary.
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Since we have identified Γ(t) as the 0-level set of the solution to (1.1), the
homogeneous Neumann boundary conditions demand that Γ(t) be perpendicular to
∂Ω at the intersection ∂Γ(t) = Γ(t)∩∂Ω. Therefore, the interface Γ(t) immediately
feels the presence of the boundary, and the geometry of ∂Ω certainly will influence
the dynamics of (1.2).

The dynamics of interfaces intersecting the boundary of domain has been studied
by several authors ([2, 14, 4, 5, 12, 15, 10]) from various viewpoints and by differing
methods. The existence of energy-minimising solutions (of (1.1)) with interface
intersecting the boundary was first rigorously established in [15] by a variational
method. For competition-diffusion systems, stable internal layers intersecting the
boundary was established in [12] for rotationally symmetric domains. Exponentially
slow motions of flat interfaces are discussed in [2, 14], where interfaces intersect
flat parallel parts of the boundary. Motions of interfaces with contact angle was
treated in [4] for a generalized mean curvature flow. Dynamics of flat interfaces in
a strip-like domain was discussed in [5], where the speed of the interface is of order
O(ε2) with respect to the time scale of (1.1). In [10], the existence and stability of
equilibrium boundary-interior layers with flat interfaces were established. Recently,
the same results as [10] have been obtained by [16] via a different method. In all of
these works, the geometry of the boundary ∂Ω has essential effects on the dynamics
of (1.1).

2. MAIN RESULTS

The purpose of this article is to extend the results in [10] and [16] to 3-
dimensional domains.

2.1. General Domains

The most difficult part of all to obtain results similar to the main theorems in [10] and
[16] for general 3-dimensional domains is to find a minimal surface that intersects
∂Ω in the right angle. We therefore assume the existence of such a minimal surface.
Later, we will exhibit some special situations in which the existence of such minimal
surfaces are easily established.

(A1): There exists a minimal interface Γ ⊂ Ω that is smooth, embedded
and intersects ∂Ω in the right angle along its boundary ∂Γ = Γ ∩ ∂Ω.

As in [10, 16] the existence of minimal surfaces as in (A1) alone is not enough
to ensure the existence of boundary-interior layers. We need some kind of non-
degeneracy condition imposed on Γ. In order to state such a condition, let us
consider an eigenvalue problem defined on Γ:
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(2.1)

{
∆Γv + (κ2

1 + κ2
2)v = λv in Γ,

∂v(y)/∂n− κ(y)v(y) = 0 on ∂Γ,

where ∆Γ is the Laplace-Beltrami operator on Γ, κj (j = 1, 2) the principal curva-
tures of Γ, and

(2.2) κ(y) =
〈
∂n
∂ν
, ν

〉
, y ∈ ∂Γ ⊂ ∂Ω.

We recall again that n is the inward unit normal vector on ∂Ω, and hence, it is
the unit normal vector on ∂Γ tangent to Γ because of the perpendicularity of Γ and
∂Ω. Since a curve on the surface ∂Ω is a geodesic if and only if its normal vector
is parallel to the normal vector n of ∂Ω. Therefore, κ(y) is the curvature of the
geodesic on ∂Ω passing through y ∈ ∂Γ in the direction ν(y).

Let us denote by σΓ the set of distinct eigenvalues for (2.1);

σΓ = {λj}∞j=0, λ0 > λ1 > . . . > λj > . . .→ −∞.

The multiplicity of λj is denoted by mj .
The non-degeneracy condition for Γ is:

(A2): 0 �∈ σΓ.

Our main result is the following.

Theorem 2.1. (Existence and stability of boundary-interior layers) Assume
that conditions (A1) and (A2) are satisfied. Then there exist an ε ∗ > 0 and a family
of equilibrium solutions U ε(x) of (1.1) defined for ε ∈ (0, ε∗] with the following
properties.

(i) For each δ > 0,

lim
ε→0

U ε(x) =
{

1
−1

uniformly in
{
x ∈ Ω+\Γδ,
x ∈ Ω−\Γδ,

where Γδ = {x ∈ Ω | dist(x,Γ) < δ} is the δ-neighborhood of Γ in Ω.
(ii) Near the interface Γ, the solution U ε has the following behavior

U ε(x) ≈ Q

(
dist(x,Γ)

ε

)
,

where Q(z) is the standing wave (cf. (S-W) in §1).

(iii) If 0 > λ0, then U ε is asymptotically stable with respect to (1.1).

(iv) If there exits j ≥ 0 satisfying λ j > 0 > λj+1, then U ε is unstable with Morse
index equal to

∑j
k=0 mk.
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It is illuminating to put the results of Theorem 2.1 in a variational formulation.
Let us define the class of admissible interfaces;

AΩ := {Γ | Γ is a C2 surface with Γ ∩ ∂Ω = ∂Γ and Γ ⊂ Ω}.

Let S : AΩ → R be the surface area functional. The problem (1.2) is nothing but
the gradient flow with respect to the functional S(Γ);

∂Γ
∂t

= −δS(Γ)
δΓ

= −κ(x; Γ),

where the interface Γ varies within the class AΩ of admissible surfaces. Critical
points of S(Γ) are characterized as

(2.3) κ(x; Γ) ≡ 0 and Γ ⊥∂Γ ∂Ω.

Moreover, (2.1) is an eigenvalue problem associated with the second variation of
the functional S at the critical point Γ ∈ AΩ satisfying (2.3). Therefore we may
restate Theorem 2.1 as follows (cf. Fig. 3):

A non-degenerate critical point Γ ∈ AΩ of S gives rise to an equi-
librium boundary-interior layer of (1.1). The Morse index of the
boundary-interior layer is the same as that of Γ with respect to the
area functional S .

An interesting implication of Theorem 2.1 is that the boundary-interior layer with
transition layers occurring near any Plateau stable minimal hypersurface Γ ∈ AΩ,
with Γ ⊥∂Γ ∂Ω, can be made stable by deforming the boundary ∂Ω near ∂Γ so that

inf
y∈∂Γ

κ(y) =: κ0 � 1.

Fig. 3. Non-degenerate critical point of S give rise to boundary-interior layers.
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A minimal surface is, by definition, Plateau stable if the principal eigenvalue
λD

0 of the associated Dirichlet eigenvalue problem{
∆Γφ+ (κ2

1 + κ2
2)φ = λφ in Γ,
φ(y) = 0 on ∂Γ

is negative. Let us denote by λ0(p), p ∈ R, the principal eigenvalue of{
∆Γφ+ (κ2

1 + κ2
2)φ = λφ in Γ,

∂φ(y)/∂n− pφ(y) = 0 on ∂Γ.

One can readily verify that λ0(p) is monotone decreasing in p ∈ R and that limp→∞
λ0(p) = λD

0 . On the other hand, the principal eigenvalue λ0 of (2.1) satisfies
λ0 ≤ λ0(κ0). If Γ is Plateau stable, i.e., if λD

0 < 0, the by choosing κ0 > 0
large, we obtain λ0 < 0, showing the stability of U ε thanks to Theorem 2.1. We
summarize this as follows.

Corollary 2.1. Let Γ be a minimal surface as in (A1).

(i) If Γ is Plateau stable, then one can deform the boundary ∂Ω of domain so
that the corresponding boundary-interior layer is stable with respect to (1.1).

(ii) If Γ is not Plateau stable, then the associated boundary-interior layer can
never be stable as an equilibrium solution of (1.1), no matter how one deforms
the boundary ∂Ω of domain.

2.2. Rotationary-symmetric Domains

We first apply Theorem 2.1 to a special class of domains; rotationally symmetric
domains. Let the axis of rotation be in x-direction (x ∈ R here and below within
§2.2), and consider a domain Ω ⊂ R

3 which (or, part of which) is obtained by
rotating the graph of a positive function ψ(x) around x-axis:

(2.4) Ω = {(x, y) ∈ R
3 | y ∈ R

2, |y| < ψ(x)}.

In this situation it is easy to find an equilibrium to (1.2).

Proposition 2.1. (Existence of flat disk-type interfaces) Let x0 ∈ R satisfy
ψ′(x0) = 0. Then the disk Γ = {x0} × Ωx0 := {(x0, y) | |y| < ψ(x0)} is an
equilibrium solution of (1.2).

We have therefore a situation in which the condition (A1) is verified.
In order to see if the condition (A2) is satisfied, let us consider an eigenvalue

problem:
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(2.5)

{
∆yφ = λφ in Ωx0 := {y ∈ R

2 | |y| < ψ(x0)},
∂φ/∂n′ − ψ′′(x0)φ = 0 on Sx0 := {y ∈ R

2 | |y| = ψ(x0)},
where n′ is the inward unit normal vector on Sx0 . Let us denote by σx0 the set of
eigenvalues of (2.5). Applying to (2.5) the procedure of separation of variables, one
finds that λ ∈ R belongs to σx0 if and only if the boundary value problem

(2.6)




φrr + 1
rφr − k2

r2 φ = λφ, r ∈ (0, ψ(x0)),

−φr(ψ(x0)) − ψ′′(x0)φ(ψ(x0)) = 0,

φ(r) is bounded on [0, ψ(x0)]

has a nontrivial solution for some k = 0, 1, 2, . . .. For λ = 0, (2.6) has a nontrivial
solution φ(r) = rk if and only if

k + ψ(x0)ψ′′(x0) = 0.

Namely, (A2): 0 �∈ σx0 is realized if and only if

(2.7) −ψ(x0)ψ′′(x0) �∈ {0, 1, 2, 3, . . .}.
Therefore, we can apply Theorem 2.1 if (2.7) is fulfilled. In order to count the
Morse index, however, it is more convenient to view (2.5) from a different angle.

Let us define the Dirichlet-to-Neumann map Π for the Laplacian:

Π : C2+α(Sx0) −→ C1+α(Sx0); Πφ(y) :=
∂v

∂n
(y), y ∈ Sx0,

where v(y) is the unique solution of the boundary value problem:

∆yv = 0, y ∈ Ωx0, v(y) = φ(y), y ∈ Sx0 .

Namely, to a given Dirichlet data φ ∈ C2+α(Sx0) on Sx0 , the map Π asigns the
Neumann data ∂v/∂n of the harmonic extension v of φ. It is known that the map
Π is a first order elliptic operator on Sx0 . In the present case, the operator is exactly
given by

Π = −
√

−∆Sx0 ,

and extends to an unbounded operator on L2(Sx0). Let us denote by σ(Π) the set
of eigenvalues of Π:

(2.8) σ(Π) = {µj}∞j=0; 0 = µ0 > µ1 > . . . > µj > . . .→ −∞,

where we only listed distinct eigenvalues. We denote by mj the multiplicity of µj .
By using the separation of variables, one can easily compute these eigenvalues and
their multiplicities;
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µj = −j/ψ(x0) (j ≥ 0), m0 = 1, mj = 2 (j ≥ 1).

To see the relationship between σx0 and σ(Π), let us consider the following boundary
value problem for a parameter µ ∈ R.

(2.9)

{
∆yφ = λφ in Ωx0,

∂φ/∂n′ − µφ = 0 on Sx0,

We denote by {λj(µ)}∞j−0, λ0(µ) > λ1(µ) > . . ., the distinct eigenvalues of (2.9),
and by mj(µ) the multiplicity of λj(µ). The variational characterization of eigen-
values of (2.9) implies that λj(µ) is strictly monotone decreasing in µ for each j,
and that λj(µ) > 0 as µ→ −∞. On the other hand, the definition of the Dirichlet-
to-Neumann map implies that λj(µj) = 0 and mj = mj(µ). Therefore, the number
of positive eigenvalues (counted with multiplicity) of (2.9) is equal to∑

µj>µ

mj(µ) =
∑
µj>µ

mj.

Since we have
σx0 = {λj(ψ′′(x0))}∞j=0, λ0(0) = 0,

the number of positive eigenvalues of (2.5) equals

k∑
j=0

mj if µk > ψ′′(x0) > µk+1.

We are ready to state:

Theorem 2.2. (Existence and stability of flat layers) Assume that x 0 is such
that ψ ′(x0) = 0 and the following non-degeneracy condition is satisfied

(a): ψ′′(x0) �∈ σ(Π).

Then there exist an ε∗ > 0 and a family of equilibrium solutions U ε(x, y) of (1.1)
for ε ∈ (0, ε∗], enjoying the following properties:

(i) For each δ > 0,

limε→0 U
ε(x, y) =

{
1

−1

{
(x, y) ∈ Ω̄, x ≤ x0 − δ,

(x, y) ∈ Ω̄, x ≥ x0 + δ.

(ii) Near x = x0, the solution U ε(x, y) has the asymptotic characterization:

U ε(x, y) ≈ Q

(
x− x0

ε

)
.
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(iii) As an equilibrium solution of (1.1), U ε(x, y) is

(1) stable if ψ ′′(x0) > 0 = µ0,

(2) unstable if µj > ψ′′(x0) > µj+1 with the Morse index equal to
∑j

k=0 mk.

3. PROOF OF THEOREM 2.1.

We give a proof to Theorem 2.1 in the case of disk type interfaces Γ by using
the method employed in [10]. For other types of interfaces, the proof is essentially
the same. Moreover, the proof to be presented below works equally well for higher
(N ≥ 4) dimensional domains.

3.1. Coordinate System Near the Interface

Our method of proof consists of two steps: (1) to construct approximate solutions
with desired properties, and (2) to find a solution near the approximation. For the
first step, we need to work with a suitable coordinate system near the minimal
interface.

Let γ0(·) : D → Γ ⊂ Ω be a smooth parametrization of the interface Γ, where Γ
is the miminal interface appeared in (A1) in Section 2.1 and D := {y ∈ R

2 | |y| < 1}
is the unit disk. We extend γ0 smoothly to Dδ = {y ∈ R

2 | |y| < 1 + δ} for some
fixed constant δ > 0. The extension is still denoted by γ0 and its image by Γδ.
Let ν(y) ∈ R

3 be the unit normal vector of Γδ at γ0(y) ∈ Γδ. We now define a
neighborhood Ωr0

δ of Γδ by

(3.1) Ωr0
δ := {x ∈ R

3 | x = γ0(y) + rν(y), |r| < r0, y ∈ Dδ}

for some fixed constant r0 > 0. When we deal with the portion of ∂Ω in Ωr0
δ , we

use coordinate (θ, ρ) ∈ ∂D × [0, δ) on D where (θ, ρ = 0) is sent to the boundary
of interface ∂Γ by γ0 and〈

∂γ0

∂θ
,
∂γ0

∂ρ

〉
= 0 for ρ = 0

is satisfied.

Lemma 3.1. There exist constants δ > 0, r0 > 0, which depend only on Γ
and ∂Ω, and a smooth diffeomorphism

γ(·, ·) : (−r0, r0) × D → Ω ∩ Ωr0
δ

such that
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(i) γ(0, y) = γ0(y) for y ∈ D, γ(r, y) ∈ ∂Ω for y ∈ ∂D, −r0 < r < r0;

(ii) γr(0, y) = ν(y) for y ∈ D;
(iii) as r → 0, γ(r, y) has the following expansion

γ(r, y) = γ0(y) + rν(y) +
r2

2
p(y) +

r3

6
q(y) +O(r4), y ∈ D

where p(y) and q(y) are vector functions orthogonal to ν(y).
(iv) If we write γ as γ(r, θ, ρ) in terms of the coordinates (r, θ, ρ), then the

derivative along the inward unit normal vector n of ∂Ω is expressed as

∂

∂n
=

1√
g̃33

(
g̃13 ∂

∂r
+ g̃23 ∂

∂θ
+ g̃33 ∂

∂ρ

)

where at (r, θ, ρ= 0)

g̃13(r, θ) = r

(
−
∣∣∣∣∂γ0

∂ρ

∣∣∣∣−2 〈
p,
∂γ0

∂ρ

〉)
+ O(r2),

g̃23(r, θ) = r

(
2
∣∣∣∣∂γ0

∂θ

∣∣∣∣
−2 ∣∣∣∣∂γ0

∂ρ

∣∣∣∣
−2〈∂γ0

∂θ
,
∂ν

∂ρ

〉)
+O(r2),

g̃33(r, θ) =
∣∣∣∣∂γ0

∂ρ

∣∣∣∣
−2

+ r

(
2
∣∣∣∣∂γ0

∂ρ

∣∣∣∣
−4〈∂γ0

∂ρ
,
∂ν

∂ρ

〉)
+O(r2).

The proof will be given in §4.

3.2. Approximate Solutions

Let us construct approximate solutions to the boundary value problem

(3.2)




ε2∆u+ f(u) = 0 in Ω,

∂u

∂n
= 0 on ∂Ω.

3.2.1. Outer expansion

Let Ω± be two subdomains of Ω divided by the minimal interface Γ. For (3.2), our
outer solution is very simple and is given by

(3.3) uout(x) =

{
−1, x ∈ Ω−,
+1, x ∈ Ω+.
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We always agree that the unit normal ν on Γ is pointing into Ω+-region.

3.2.2. Inner expansion

We now construct inner solutions which bridge the gap of the outer solution uout

along Γ. For this purpose, we use the coordinate system (r, y) introduced in §3.1.
Since we need to deal with the jump of uout from u = −1 to u = +1, we further
introduce a stretched variable s in the r-coordinate by r = εs.

Lemma 3.2. In terms of the coordinate system (s, y), the differential equation
in (3.2) is expressed as

(3.4)

0 =
∂2u

∂s2
+ f(u) + εκ(y)

∂u

∂s

+ε2
[
∆Γ − {κ1(y)2 + κ2(y)2}s∂u

∂s
− 2∇Γ

p(s
∂u

∂s
) −∇Γ

pu

]
+
∑
j≥3

εjPj(s, y)u,

where

κk(y) (k = 1, 2) are principal curvatures of Γ at γ 0(y);

κ(y) is the sum of principal curvatures of Γ at γ 0(y) (mean curvature);

∆Γ is the Laplace-Beltrami operator on Γ;

∇Γ
p is the gradient operator in p-direction;

Pj(s, y) are differential operators in (s, y).

This will be proved in §4.
Note that O(ε)-term in (3.4) is actually absent because Γ is minimal (cf. (A1)).
Let us now substitute a formal expression

(3.5) uε
in(s, y) =

∑
j≥0

εjuj(s, y)

into (3.4). Equating like powers of ε in the resulting equation, we obtain a series
of equations for uj (j ≥ 0).

(3.6) u0
ss + f(u0) = 0,

(3.7) uj
ss + f ′(u0(s))uj = hj(s, y; u0, . . . , uj−1) (j ≥ 1).
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We consider these equations on (s, y) ∈ R × D with boundary conditions

(3.8) |u0(s, y)− (±1)| = O(e−d0|s|) as s→ ±∞,

(3.9) |uj(s, y)| = O(e−d0|s|) as s→ ±∞ for j ≥ 1,

where d0 > 0 is some constant satisfying d0 <
√
F ′′(±1). These conditions, called

inner-outer matching conditions, are imposed in order to join inner solutions to the
outer solution uout in a compatible way.

Lemma 3.3.
(i) The equation (3.6) with the boundary condition (3.8) has a unique solution

u0(s, y) = Q(s + α(y)), where Q(z) is the standing-wave appeared in §1
and α(y) is an arbitrary function of y ∈ D.

(ii) The equation (3.7) with the boundary condition (3.9) for j = 1 has a unique
solution u1(s, y) = c1(y)u0

s(s, y), where c1(y) is an arbitrary function.
(iii) The equation (3.7) with the boundary condition (3.9) for j = 2 has a unique

family of solutions

u2(s, y) = c2(y)u0
s(s, y) + u2(s, y),

if and only if α(y) ≡ α∗ with α∗ being the unique value for which∫ ∞

−∞
s (Qs(s+ α∗))2 ds = 0

is realized, where c2(y) is an arbitrary function and u 2 is a function which
depends only on c1 and u0(s, y). Therefore, u0(s, y) ≡ u0(s) = Q(s + α∗)
and u1(s, y) = c1(y)u0

s(s).
(iv) For j ≥ 3, the equation (3.7) with the boundary condition (3.9) has a unique

family of solutions

uj(s, y) = cj(y)u0
s(s) + uj(s, y; c1, . . . , cj−1)

if and only if cj−2 satisfies

(3.11) ∆Γc1 + (κ1(y)2 + κ2(y)2)c1 = h1(y) in Γ,

for j = 3 and

(3.12) ∆Γcj−2 + (κ1(y)2 + κ2(y)2)cj−2 = hj−2(y; c1, . . . , cj−3) in Γ,
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for j ≥ 4.
By using (3.4), the proof of Lemma 3.3 is almost identical to that in §2.1 of

[10], and hence omitted.
We thus obtain the inner expansion uε

in(s, y) =
∑
εjuj(s, y), as soon as the

functions cj(y) (j ≥ 1) satisfying (3.11) and (3.12) are found. In order to determine
cj uniquely, we need to supply boundary conditions to (3.11) and (3.12). These
boundary conditions will naturally emerge in the boundary correction.

3.2.3. Boundary correction

If we arbitrarily choose cj satisfying (3.11) and (3.12), then we obtain an inner
expansion uε

in. This approximation in general does not satisfy the boundary condition
in (3.2). In order to remedy the defect, we add boundary corrections to the inner
expansion:

(3.13) uε(s, y) = uε
in(s, θ, εη) +

∑
j≥1

εjbj(s, θ, η)

where a stretched coordinate in ρ-direction η is introduced by ρ = εη. As we
will see in the following, in order for bj to be determined so that the expression in
(3.13) satisfies the homogenous Neumann boundary conditions, cj have to satisfy
certain boundary conditions which are the desired conditions supplementing (3.11)
and (3.12).

Lemma 3.4. In terms of the coordinate system (s, θ, η), the equation in (3.2)
is expressed as

(3.14)

0 =
∂2u

∂s2
+

1
l2(θ)2

∂2u

∂η2
+ f(u)

+ε
{
−2η

A(θ)
l2(θ)4

∂2u

∂η2
− 2s

C(θ)
l1(θ)2l2(θ)2

∂2u

∂s∂η

+
(

B(θ)
l1(θ)2l2(θ)2

− A(θ)
l2(θ)4

− C(θ)
l1(θ)2l2(θ)2

)
∂

∂η

}

+
∑
j≥2

εj P̃j(s, θ, η)u,

where

l1(θ) =
∣∣∣∣∂γ0(θ, 0)

∂θ

∣∣∣∣ , l2(θ) =
∣∣∣∣∂γ0(θ, 0)

∂ρ

∣∣∣∣ ,
A(θ) =

〈
∂2γ0(θ, 0)

∂ρ2
,
∂γ0(θ, 0)

∂ρ

〉
,
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B(θ) =
〈
∂2γ0(θ, 0)
∂θ∂ρ

,
∂γ0(θ, 0)

∂θ

〉
, C(θ) =

〈
p(θ, 0),

∂γ0(θ, 0)
∂ρ

〉

P̃j are second order differential operators in (s, θ, η).

The boundary condition in (3.2) is recast as

(3.15)
0 =

∂u

∂η
+ εs

{
−
〈
p,
∂γ0

∂ρ

〉
∂u

∂s
+ 2

1
l2(θ)2

〈
∂γ0

∂ρ
,
∂ν

∂ρ

〉
∂u

∂η

}

+
∑
j≥2

εjP̂j(s, θ)u,

where P̂j(s, θ) are first order differential operators in (s, θ, η) with coefficients
depending only on (s, θ).

The proof will be given in §4.
Substituting (3.13) into (3.14) and (3.15), equating like powers of ε in the result-

ing equation and taking into account the equations satisfied by the inner expansion,
we obtain the following boudary value problems for j = 1, 2, . . ..

(3.16)
∂2bj

∂s2
+

1
l2(θ)2

∂2bj

∂η2
= �j(s, θ, η), (s, θ, η) ∈ R × ∂D × [0,∞),

(3.17)
∂bj

∂η
(s, θ, 0) = �̂j(s, θ), (s, θ) ∈ R × ∂D,

(3.18) bj(s, θ, η) = O(e−d0|s|e−d0η) as s→ ±∞ and η → ∞,

where d0 > 0 is the same constant as appeared in (3.8) and (3.9). In the last
three equations, θ is considered as a parameter. The conditions in (3.18), called
boundary-inner matching conditions, are imposed so that the boundary correction
terms are joined smoothly to the inner expansion.

Lemma 3.5.
(i) For j = 1, the problem (3.16)-(3.17)-(3.18) has a unique solution b 1(s, θ, η)

because of our choice of u0(s) as in Lemma 3.3 (iii)∫ ∞

−∞
s(u0

s(s))
2ds = 0.

(ii) For j ≥ 2, the problem (3.16)-(3.17)-(3.18) has a unique solution b j(s, θ, η)
if and only if cj(y) appeared in Lemma 3.3 satisfies
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(3.19)
∂c1
∂n

−
〈
∂n
∂ν
, ν

〉
c1 = k1(θ) on ∂D (j = 1),

(3.20)
∂cj
∂n

−
〈
∂n
∂ν
, ν

〉
cj = kj(θ; c1, . . . , cj−1) on ∂D (j ≥ 2),

where kj (j ≥ 1) are some functions of variables indicated.

By using (3.14) and (3.15), the proof of this lemma is almost identical to that
in §2.2 of [10]. Therefore, we omit the proof.

Since (2.1) has no 0-eigenvalue thanks to the condition (A2), we find that the
boundary value problems (3.11)-(3.19) and (3.12)-(3.20) have unique solutions cj(y)
for j = 1, 2, . . ..

3.2.4. Completion of approximate solutions

Let δ0 := 1
2 min{δ, r0} > 0. We choose a smooth cut-off function Θ(τ) which

verifies the following conditions;

Θ(τ) = 1, if |τ | ≤ δ0
2
, Θ(τ) = 0, if |τ | ≥ δ0, and 0 ≤ Θ(τ) ≤ 1.

We denote the inverse of γ(r, y) by

Ωr0
δ � x �−→ (r̂(x), ŷ(x)) ∈ (−r0, r0) × D.

When we need to express this inverse map in the coordinates (r, θ, ρ), we write it
as

Ωr0
δ � x �−→ (r̂(x), θ̂(x), ρ̂(x)) ∈ (−r0, r0) × ∂D × (−δ, δ).

Now, choose k ≥ 4 and define a k-th order inner expansion by

uε,k
in (s, y) =

k∑
j=0

εjuj(s, y).

Our k-th order approximate solution uε,k
app(x) to a solution of (3.2) is defined by

(3.21)

uε,k
app(x) = uout(x) + Θ(r̂(x))

[
uε,k

in (r̂(x)/ε, ŷ(x))− uout(x)
]

+Θ(r̂(x))Θ(ρ̂(x))
k+1∑
j=1

bj(r̂(x)/ε, θ̂(x), ρ̂(x)/ε)
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In the sequel, we use weighted Hölder-norms defined by

‖u‖0 = sup
x∈Ω

|u(x)|, ‖u‖Cα
ε (Ω) = ‖u(x)‖0 + εα sup

x,x′∈Ω

|u(x)− u(x′)|
|x− x′|α ,

for < α < 1. We also use higher order weighted Hölder-norms

‖u‖C2,α
ε (Ω) = ‖u‖0 + ε‖∂xu‖0 + ε2‖∂2

xu‖0 + ε2+α sup
x,x′∈Ω

|∂2
xu(x)− ∂2

xu(x′)|
|x− x′|α .

We have the following.

Lemma 3.6. The function uε,k
app(x) defined above satisfies

(3.22) ‖ε2∆uε,k
app + f(uε,k

app)‖Cα
ε (Ω) = O(εk+1−α) as ε→ 0,

(3.23)

∥∥∥∥∥∂u
ε,k
app

∂n

∥∥∥∥∥
C2,α

ε (∂Ω)

= O(εk+1−α) as ε→ 0.

The proof of this lemma is almost trivial from our construction of the approx-
imate solutions. This can be made rigorous by following the method of [11], and
hence the proof is omitted.

3.3. Existence of Boundary-interior Layers

Let us modify the approximation (3.21) so that the boundary conditions are satisfied
exactly.

For x ∈ Ω with dist(x, ∂Ω) < δ0, we define x′ ∈ ∂Ω as the unique point x′ so
that dist(x, ∂Ω) = dist(x, x′). Then, our correction-function uε,k

cor(x) is defined by
(3.24)

uε,k
cor(x) :=


 Θ(dist(x, x′))dist(x, x′)

∂uε,k
app

∂n
(x′), if dist(x, ∂Ω) < δ,

0, if dist(x, ∂Ω) ≥ δ.

Let uε,k
app(x) be defined by

(3.25) uε,k
app(x) = uε,k

app(x) − uε,k
cor(x)

Then Lemma 3.6 is improved to the following.

Lemma 3.7. The function uε,k
app(x) defined above satisfies
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(3.26) ‖ε2∆uε,k
app + f(uε,k

app)‖Cα
ε (Ω) = O(εk+1−α) as ε→ 0,

(3.27)

∥∥∥∥∥∂u
ε,k
app

∂n

∥∥∥∥∥
C2,α

ε (∂Ω)

= 0.

The proof is easy because the correction defined in (3.24) make the boundary
condition satisfied exactly and its C2,α

ε (Ω)-norm is O(εk+1−α) as ε→ 0.
We now show that (3.2) has a solution near the approximation uε,k

app for suffi-
ciently large k ≥ 4. Let us look for a solution of (3.2) as a perturbation of the
approximation;

(3.28) uε(x) = uε,k
app(x) + φ(x).

Then (3.2) is rewritten as

(3.29)




Lεφ +N ε(φ) + Rε = 0 in Ω,

∂φ

∂n
= 0 on ∂Ω,

where

(3.30)




(a) Lεφ = ε2∆φ+ f(φ),

(b) N ε(φ) = f(uε,k
app + φ)− f(uε,k

app)− f ′(uε,k
app)φ,

(c) Rε = ε2∆uε,k
app + f(uε,k

app).

In order to show the solvability of (3.29), the following eigenvalue problem
plays a decisive role.

(3.31)




Lεϕε = λεϕε in Ω,

∂ϕε

∂n
= 0 on ∂Ω.

We call an eigenvalue λε of (3.31) non-critical, if

lim sup
ε→0

λε

ε2
= −∞.

Otherwise, an eigenvalue λε is called critical.

Theorem 3.1. The critical eigenvalues of (3.31) has the following behavior

λε = ε2λ+ o(ε2) as ε→ 0,
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and λ is an eigenvalue of (2.1).
The proof of this theorem is carried out by the method developed in [1] (cf.

§3 of [10]). Based upon this theorem and elliptic estimates in [7], we obtain the
following result (cf. §3 of [10]).

Corollary 3.1. The operator Lε is invertible as a map

Lε : C2,α
ε (Ω) −→ Cα

ε (Ω),

and there exists a constant C > 0, independent of ε, such that

‖(Lε)−1‖
Cα

ε (Ω)→C2,α
ε (Ω)

≤ C

ε4
.

Let us now show the solvability of (3.29). We choose k = 8 and set φ = ε4φ̃

in (3.29). Thanks to Corollary 3.1, we can rewrite it as

(3.32) φ̃ = −ε−4(Lε)−1
[
N ε(ε4φ̃) + Rε

]
:= F ε(φ̃).

One can then show, as in [10], that F ε is a contraction mapping in an O(ε1−α)-
neighborhood of the origin in Cα

ε (Ω). This completes the existence part of proof
for Theorem 2.1.

Since the difference of the true solution and its approximation isO(ε4) measured
in L∞(Ω)-norm, Theorem 3.1 applies to an eigenvalue problem associated with the
linearization of (1.1) around the true solution. Therefore the stability property of
U ε is determined by the spectrum of Lε. This completes the proof of the stability
properties in Theorem 2.1

4. PROOF OF TECHNICAL RESULTS

In this section, we prove technical results used in §3.

4.1. Proof of Lemma 3.1.

Let γ0,D,Dδ and Γδ be as in §3.1. We choose r0 > 0 so that(
Ωr0

δ ∩ Ω
) ∩ {γ0(y) + rν(y) | |r| < r0, |y| = 1 + δ} = ∅.

We define γ : (−r0, r0) × Dδ → R
3 by

γ(r, y) = γ0(y) + rν(y),

and denote by S the preimage of Ωr0
δ ∩ ∂Ω;

(4.1) S = γ−1(Ωr0
δ ∩ ∂Ω).
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Since ∂Ω ⊥ Γ by (A1), we have

(4.2) S ⊥∂ ({0} × D) .

We also denote by C the preimage of Ωr0
δ ∩ Ω;

(4.3) C = γ−1(Ωr0
δ ∩ Ω),

and by C(r) the r-slice of C;

(4.4) C(r) = {y ∈ Dδ | (r, y) ∈ C} (|r| < r0).

Since ∂Ω and γ0 are smooth, C(r) is a smooth domain, diffeomorphic to C(0) =
D. Therefore, there exists a smooth family of diffeomorphisms

(4.5) Y (r, ·) : D → C(r)

parametrized by r ∈ (−r0, r0). Moreover, thanks to (4.2), we can choose Y so that

(4.6) Y (0, y) = y,
∂Y

∂r
(0, y) = 0 (y ∈ D).

Let us now define the desired γ by

(4.7) γ(r, y) := γ(r, Y (r, y)) = γ0(Y (r, y)) + rν(Y (r, y))

for (r, y) ∈ (−r0, r0)×D. It is now straightforward to verify that γ in (4.7) satisfies
Lemma 3.1 (i). By elementary computations and (4.6), we find that

∂γ

∂r
(0, y) = ν(y),

p(y) :=
∂2γ

∂r2
(0, y) =

2∑
j=1

∂γ0

∂Y j

∂2Y j

∂r2
(0, y) ⊥ ν(y),

q(y) :=
∂3γ

∂r3
(0, y) =

2∑
j=1

(
∂γ0

∂Y j

∂3Y j

∂r3
(0, y) + 2

∂ν

∂Y j

∂2Y j

∂r2
(0, y)

)
⊥ ν(y),

proving the statements (ii) and (iii).
To prove Lemma 3.1 (iv), we use the coordinates (θ, ρ) introduced in §3.1.

Recall that (θ, ρ = 0) parametrizes ∂D and ρ is chosen so that

0 =
〈
∂γ0

∂θ
,
∂γ0

∂ρ

〉
at ρ = 0.

For y ∈ D near ∂D, we express γ(r, y) by

γ(r, y) = γ(r, θ, ρ).
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We also denote by n(r, θ) the unit inward normal vector of ∂Ω at γ(r, θ, 0). Note
that at ρ = 0 (i.e. on ∂Ω ∩ Ωr0

δ ), vectors

∂γ

∂r
,

∂γ

∂θ
,

∂γ

∂ρ
∈ R

3

constitute a basis for R
3. Hence n(r, θ) is expressed as

(4.8) n = a
∂γ

∂r
+ b

∂γ

∂θ
+ c

∂γ

∂ρ
at ρ = 0,

where c > 0. Since
{

∂γ
∂r ,

∂γ
∂θ

}
spans the tangent space of ∂Ω at x = γ(r, θ, 0), we

have

(4.9)
〈
∂γ

∂r
,n
〉

= 0,
〈
∂γ

∂θ
,n
〉

= 0, 〈n,n〉 = 1 at ρ = 0.

From (4.8) and (4.9), we easily obtain

(4.10) a =
g̃13√
g̃33

, b =
g̃23√
g̃33

, c =
g̃33√
g̃33

=
√
g̃33,

where (g̃ij) = (g̃ij)−1 with

(4.11)




g̃11 = 〈∂γ
∂r
,
∂γ

∂r
〉, g̃12 = g̃21 = 〈∂γ

∂r
,
∂γ

∂θ
〉,

g̃22 = 〈∂γ
∂θ
,
∂γ

∂θ
〉, g̃13 = g̃31 = 〈∂γ

∂r
,
∂γ

∂ρ
〉,

g̃33 = 〈∂γ
∂ρ
,
∂γ

∂ρ
〉, g̃23 = g̃32 = 〈∂γ

∂θ
,
∂γ

∂θ
〉,

at ρ = 0.

Therefore, ∂/∂n is given by

(4.12)
∂

∂n
=

1√
g̃33

(
g̃13 ∂

∂r
+ g̃23 ∂

∂θ
+ g̃33 ∂

∂ρ

)
.

Let us now expand g̃jk(r, θ, 0) in r at r = 0. From the expansion of γ(r, θ, 0) in
Lemma 3.1 (iii), we have

(4.13)




∂γ

∂r
= ν(θ, 0) + rp(θ, 0) +

r2

2
q(θ, 0) +O(r3),

∂γ

∂θ
=
γ0

∂θ
(θ, 0) + r

∂ν

∂θ
(θ, 0) +

r2

2
∂p

∂θ
(θ, 0) + O(r3),

∂γ

∂ρ
=
γ0

∂ρ
(θ, 0) + r

∂ν

∂ρ
(θ, 0) +

r2

2
∂p

∂ρ
(θ, 0) +O(r3).
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By using the orthogonalities ∂γ0
∂y ⊥ ν, ∂ν

∂y ⊥ ν, p ⊥ ν and ∂γ0
∂θ ⊥ ∂γ0

∂ρ , together with
(4.13), we find

 g̃11 g̃12 g̃13

g̃21 g̃22 g̃23

g̃31 g̃32 g̃33


 =


 1 0 0

0 |∂γ0
∂θ |2 0

0 0 |∂γ0
∂ρ |2




+ r


 0 〈p, ∂γ0

∂θ 〉 〈p, ∂γ0
∂ρ 〉

〈p, ∂γ0
∂θ 〉 −2L̃ −2M̃

〈p, ∂γ0

∂ρ 〉 −2M̃ −2Ñ


+ O(r2),

where

−L̃ = 〈∂γ0

∂θ
,
∂ν

∂θ
〉, −Ñ = 〈∂γ0

∂ρ
,
∂ν

∂ρ
〉,

−2M̃ = 〈∂γ0

∂θ
,
∂ν

∂ρ
〉 + 〈∂γ0

∂ρ
,
∂ν

∂θ
〉.

Therefore, we obtain
 g̃11 g̃12 g̃13

g̃21 g̃22 g̃23

g̃31 g̃32 g̃33


 =


 g̃11 g̃12 g̃13

g̃21 g̃22 g̃23

g̃31 g̃32 g̃33




−1

=


 1 0 0

0 |∂γ0
∂θ |−2 0

0 0 |∂γ0
∂ρ |−2




+r




0 −|∂γ0
∂θ |−2〈p, ∂γ0

∂θ 〉 −|∂γ0
∂ρ |−2〈p, ∂γ0

∂ρ 〉
−|∂γ0

∂θ |−2〈p, ∂γ0
∂θ 〉 2|∂γ0

∂θ |−4L̃ 2|∂γ0
∂θ |−2|∂γ0

∂ρ |−2M̃

−|∂γ0
∂ρ |−2〈p, ∂γ0

∂ρ 〉 2|∂γ0
∂ρ |−2|∂γ0

∂θ |−2M̃ 2|∂γ0
∂ρ |−4Ñ


+ O(r2).

This completes the proof of Lemma 3.1.

4.2. Proof of Lemma 3.2.

We first express the Laplacian ∆ =
∑3

i=1(
∂

∂xi )2 in terms of (r, y) ∈ (−r0, r0)×D.
Since x = γ(r, y), the standard metric in Ωr0

δ ⊂ R
3 is pulled back to gjk(r, y);

(4.14) gjk(r, y) =
〈
∂γ

∂yj
,
∂γ

∂yk

〉
, j, k = 0, 1, 2,

where y0 stands for r. Therefore, the Laplacian ∆ is pulled back to the Laplace-
Beltrami operator

(4.15) ∆ =
1√
g

2∑
j,k=0

∂

∂yj

(√
ggjk ∂

∂yk

)
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on (−r0, r0) × D, where g = g(r, y) = det(gjk(r, y)) and (gjk) = (gjk)−1. Sepa-
rating out the summation with respect to j, k = 1, 2 in (4.15), we have

(4.16) ∆ = g00 ∂
2

∂r2
+ ∆Γ(r) + 2

2∑
j=1

gj0 ∂2

∂yj∂r
+ R

∂

∂r
+

2∑
k=1

ηk ∂

∂yk

where

(4.17) ∆Γ(r) =
1√
g

2∑
j,k=1

∂

∂yj

(√
ggjk ∂

∂yk

)
,

(4.17-R) R =
1
2g
∂g

∂r
g00 +

∂g00

∂r
+

1
2g

2∑
j=1

∂g

∂yj
gj0 +

2∑
j=1

∂gj0

∂yj
,

(4.17-η) ηk =
1
2g
∂g

∂r
gk0 +

∂gk0

∂r
(k = 1, 2).

Note that (4.17) is the pull-back of the Laplace-Beltrami operator on Γ(r) = {x =
γ(r, y) | y ∈ D} to the r-slice C(r).

In order to prove Lemma 3.2, we will express ε2∆ in terms of the variables
(s, y) (s = r/ε), and give explicit forms to the coefficients of ε0, ε1, ε2. For this
purpose, we need to find coefficients of ri (i = 0, 1, 2) in the following expansions.

(4.18)




(i)g00(r, y) = g00
(0)(y) + rg00

(1)(y) +
r2

2
g00
(2)(y) + O(r3),

(ii)gj0(r, y) = gj0
(0)(y) + rgj0

(1)(y) + O(r2) (j = 1, 2),

(iii)R(r, y) = R(0)(y) + rR(1)(y) + O(r2),

(iv)ηk(r, y) = ηk
(0)(y) +O(r) (k = 1, 2).

It is convenient to use an isothermal representation γ0 : D → Γ. Namely, we
use γ0 that satisfies

(4.19)
∣∣∣∣∂γ0

∂y1

∣∣∣∣
2

=
∣∣∣∣∂γ0

∂y2

∣∣∣∣
2

= λ2(y),
〈
∂γ0

∂y1
,
∂γ0

∂y2

〉
= 0.

Therefore, the tangent vectors ∂γ0

∂yi (i = 1, 2) have the same length λ(y) > 0 and
are mutually orthogonal. In the isothermal representation, it is known [13] that the
following identities hold true.
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(4.20)

(i)
(

∂

∂y1

)2

γ0 =
∂ logλ
∂y1

∂γ0

∂y1
− ∂ log λ

∂y2

∂γ0

∂y2
+ Lν,

(ii)
∂2

∂y1∂y2
γ0 =

∂ log λ
∂y2

∂γ0

∂y1
+
∂ logλ
∂y1

∂γ0

∂y2
+Mν,

(iii)
(

∂

∂y2

)2

γ0 = −∂ log λ
∂y1

∂γ0

∂y1
+
∂ logλ
∂y2

∂γ0

∂y2
+Nν,

where

L =

〈(
∂

∂y1

)2

γ0, ν

〉
= −

〈
∂γ0

∂y1
,
∂ν

∂y1

〉
,

M =
〈

∂2γ0

∂y1∂y2
, ν

〉
= −

〈
∂γ0

∂y1
,
∂ν

∂y2

〉
= −

〈
∂γ0

∂y2
,
∂ν

∂y1

〉
,

N =

〈(
∂

∂y2

)2

γ0, ν

〉
= −

〈
∂γ0

∂y2
,
∂ν

∂y2

〉
.

It is also known [13] that derivatives of the normal vector ν are given by

(4.21)
∂ν

∂y1
= − L

λ2

∂γ0

∂y1
− M

λ2

∂γ0

∂y2
,

(4.22)
∂ν

∂y2
= −M

λ2

∂γ0

∂y1
− N

λ2

∂γ0

∂y2
.

Therefore, with our sign convention for curvatures, the sum and product of principal
curvatures κi (i = 1, 2) are given by

κ = κ1 + κ2 = −L+N

λ2
, κ1κ2 =

LN −M2

λ4
.

Proposition 4.1. The coefficients in (4.18) are as follows.

g00
(0)(y) = 1, g00

(1)(y) = g00
(2)(y) = 0,

gj0
(0)

(y) = 0,

gj0
(1)

(y) = −λ2

〈
p,
∂γ0

∂yj

〉
= − 1√

g(0, y)

〈
p,
∂γ0

∂yj

〉
(j = 1, 2),

R(0)(y) = κ, R(1)(y) = −(κ2
1 + κ2

2),

ηk
(0)(y) = gk0

(1)(y) (k = 1, 2).
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Proof. The proof consists of simply computing relvant quantities by using
(4.19), (4.20) and (4.21)-(4.22). We omit the computational details, since they are
long but elementary.

Since the gradient operator on Γ is pulled back to

∇Γ =
2∑

j=1

1√
g(0, y)

∂γ0

∂yj

∂

∂yj
,

the directional derivative in p(y)-direction is expressed as

(4.23) ∇Γ
p =

1√
g(0, y)

2∑
j=1

〈
p,
∂γ0

∂yj

〉
∂

∂yj
.

We are now ready to complete the proof of Lemma 3.2. By uisng (4.18), we
have

(4.24)

ε2∆ = g00 ∂
2

∂s2
+ ε


2

2∑
j=1

gj0 ∂

∂yj

∂

∂s
+R

∂

∂s




+ε2


∆Γ +

2∑
j=1

ηj ∂

∂yj


+ O(ε3),

where coefficients are evaluated at (r, y) = (εs, y). Therefore, by using (4.18),
(4.23) and Proposition 4.1, we easily see that (4.24) is written as in (3.4). This
completes the proof of Lemma 3.2.

4.3. Proof of Lemma 3.4.

We will prove Lemma 3.4. For this purpose, we use the coordinate system (θ, ρ) in
place of y, introduced in §3.1. We then introduce stretched variables s = r/ε, η =
ρ/ε.

4.3.1. Proof of (3.15).

From Lemma 3.1 (iv), we have at (r, θ) = (εs, θ)

ε
√
g̃33

∂

∂n
=
(
g̃13 ∂

∂s
+ g̃33 ∂

∂η

)
+ εg̃23 ∂

∂θ

= −εs
∣∣∣∣∂γ0

∂ρ

∣∣∣∣
−2〈

p,
∂γ0

∂ρ

〉
∂

∂s
+
∣∣∣∣∂γ0

∂ρ

∣∣∣∣
−2 ∂

∂η

+2εs
∣∣∣∣∂γ0

∂ρ

∣∣∣∣
−4〈∂γ0

∂ρ
,
∂ν

∂ρ

〉
∂

∂η
+O(ε2)
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=
∣∣∣∣∂γ0

∂ρ

∣∣∣∣−2{ ∂

∂η
+ εs

[
−
〈
p,
∂γ0

∂ρ

〉
∂

∂s
+

2
l2(θ)2

〈
∂γ0

∂ρ
,
∂ν

∂ρ

〉
∂

∂η

]}

+O(ε2),

which establishes (3.15).

4.3.2. Proof of (3.14).

We now establish (3.14). In §4.2, we have obtained

(4.25)

ε2∆ =
∂2

∂s2
+ εκ(θ, ρ)

∂

∂s
(note κ(θ, ρ) ≡ 0)

+ε2
{

∆Γ − [κ2
1 + κ2

2

]
s
∂

∂s
− 2s∇Γ

p

∂

∂s
−∇Γ

p

}
+
∑
j≥3

εjPj(s, θ, ρ).

We will now express ∆Γ and ∇Γ
p in terms of (θ, ρ), and then in terms of (θ, η),

where η = ρ/ε is the stretched variable.

Proposition 4.2. In terms of the coordinate system (θ, ρ) introduced in §3.1,
the Laplace-Beltrami ∆Γ and the directional derivative ∇Γ

p are expressed as follows.

(4.26)

∆Γ =
∣∣∣∣∂γ0

∂θ
(θ, ρ)

∣∣∣∣
−2 ∂2

∂θ2
+
∣∣∣∣∂γ0

∂ρ
(θ, ρ)

∣∣∣∣
−2 ∂2

∂ρ2

+
{∣∣∣∣∂γ0

∂θ
(θ, ρ)

∣∣∣∣
−2 ∣∣∣∣∂γ0

∂ρ
(θ, ρ)

∣∣∣∣
−2 〈 ∂2γ0

∂θ∂ρ
(θ, ρ),

∂γ0

∂θ
(θ, ρ)

〉

−
∣∣∣∂γ0

∂ρ (θ, ρ)
∣∣∣−4 〈

∂2γ0

∂ρ2 (θ, ρ), ∂γ0
∂ρ (θ, ρ)

〉}
∂
∂ρ

+
{∣∣∣∣∂γ0

∂θ
(θ, ρ)

∣∣∣∣
−2 ∣∣∣∣∂γ0

∂ρ
(θ, ρ)

∣∣∣∣
−2 〈 ∂2γ0

∂θ∂ρ
(θ, ρ),

∂γ0

∂ρ
(θ, ρ)

〉

−
∣∣∣∣∂γ0

∂θ
(θ, ρ)

∣∣∣∣
−4 〈∂2γ0

∂θ2
(θ, ρ),

∂γ0

∂θ
(θ, ρ)

〉}
∂

∂θ
.

(4.27)
∇Γ

p =
∣∣∣∣∂γ0

∂θ
(θ, ρ)

∣∣∣∣
−2 ∣∣∣∣∂γ0

∂ρ
(θ, ρ)

∣∣∣∣
−2〈

p(θ, ρ),
∂γ0

∂ρ
(θ, ρ)

〉
∂

∂ρ

+
∣∣∣∣∂γ0

∂θ
(θ, ρ)

∣∣∣∣−2 ∣∣∣∣∂γ0

∂ρ
(θ, ρ)

∣∣∣∣−2 〈
p(θ, ρ),

∂γ0

∂θ
(θ, ρ)

〉
∂

∂θ
.
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To obatin (4.26) and (4.27), we simply compute relvant quantities according to
the definitions of ∆Γ and ∇Γ

p . We omit the detail.
We substitute ρ = εη in (4.26) and (4.27), and expand them in the powers of ε.

This gives rise to

ε2∆Γ =
1

l2(θ)2
∂2

∂η2

+ε
{
−2η

A(θ)
l2(θ)4

∂2

∂η2
+
(

B(θ)
l1(θ)2l2(θ)2

− A(θ)
l2(θ)4

)
∂

∂η

}
+ O(ε2),

ε2∇Γ
p = ε

C(θ)
l1(θ)2l2(θ)2

∂

∂η
+ O(ε2).

Substituting these into (4.25), we immediately establish (3.14).
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