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MULTIPLE POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC
EQUATIONS IN ESTEBAN-LIONS DOMAINS WITH HOLES

Tsung-Fang Wu

Abstract. In this paper, we study a Palais-Smale condition in unbounded
domains. Furthermore, we apply this result to prove that the semilinear elliptic
equation in a Esteban-Lions domain with holes has multiple positive solutions.

1. INTRODUCTION

Let N > 2 and 2 < p < 2%, where 2* = ]\QZ—JLforNZSandQ*:oofor
N = 2. Consider the semilinear elliptic equation
—Au+u=|[uP?u inQ
() 1
A HO <Q> ’

where  is a domain in RY and H} () is the Sobolev space in 2 with dual space
H1(Q).

Associated with Equation (1), we consider the energy functionals ¢, b and .J in
Hg (),

alw) — /Q (Vul? +u?),

b = [ Jul,
Ju) — %a(u)—%b(u).

It is well-known that the solutions of Equation (1) in €2 and the critical points of the
energy functional J in Hg (€2) are the same. By the Rellich compactness theorem,
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it is easy to obtain a solution of Equation (1) in a bounded domain. For general
unbounded domains €2, because the lack of compactness, the existence of solutions
of Equation (1) in 2 is very difficult and unclear. The breakthrough was made by
Esteban-Lions [8]. They asserted that Equation (1) in Esteban—Iions domain does
not admit any nontrivial solution, where the definition of Esteban-Lions domain is:
for a proper unbounded domain € in R”, there exists a y € RY, ||x|| = 1, such
that n(z) - x > 0 and n(z) - x # 0 on 99, where n(z) is the unit outward normal
vector to 0f) at the point z. Some typical examples are:
(¢) upper half space RY = {(z,y) e RN "1 xR | y > 0}
(¢) upper half strip ST = {(z,y) e RV "' x R| |2| <rg, y > 0} UBN (0;70).
Thus, perturbing the Esteban—ILions domain to obtain the existence of solutions
for Equation (1) is applied in a great deal of research in recent years. First, we
consider a perturbation of the upper half strip S that is the interior flask domain
F, = ST UBY(0;r). Then F, is not a Esteban—Lions domain for all » > rq.
Moreover, Lien-Tzeng-Wang [9] and Chen-Wang [5] proved that there is a »* > 0
such that for » > »* Equation (1) in F, has a ground state solution. The definition
of ground state solution of Equation (1) in €2 is as follows: Consider the minimax
problem

2 Q) = inf t
) or(@) = f  max J(v(t),

where
L(Q) = {y € C((0,1], Hy(Q)) [ 7(0) = 0,~(1) = ¢},

J(e) = 0 and e # 0. By the well-known mountain pass lemma due to Ambrosetti-
Rabinowitz [1], we call the nonzero critical point u € H}(S2) of J a ground state
solution of Equation (1) in  if J (u) = ar(2). We remark that ground state
solutions of Equation (1) in €2 can also be obtained by the Nehari minimization

problem
Q)= inf J(v),
(@) veM(Q) ()
where M(Q) = {u € H} () \{0} | a(u) = b(u)}. Note that ar(Q2) = a(2) > 0
and if there exists a nonzero solution vy of Equation (1) such that J (vg) > «a(€),
then we called the solution vy is a higher energy solution. (see Willem [14] and
Wang [12]).
Next, we shall consider another perturbation. Let 7 < rg is a positive number,
consider the upper half strip with hole

Q@) =8T\B((0,t);7).

Wang [12] used the Palais-Smale decomposition lemma in the infinite strip A =
{(z,y) eRV"Ix R | |2| <7} (see Lien-Tzeng-Wang [9]) and the center mass
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function. He assumed that the positive solution of Equation (1) in infinite strip A is
unique, asserting that there exists a £y > 0 such that for ¢ > ¢y, Equation (1) in € (¢)
has a positive higher energy solution. However, the uniqueness of positive solution
of Equation (1) in infinite strip A only has been solved in dimension NV = 2 (see
Dancer [6]). In general, this problem is still open.

The main purpose of this paper is using a new method to improve a result of
Wang [12]. In particular we do this without any assumption on the uniqueness
of positive solution of Equation (1) in infinite strip A. This paper is organized as
follow. In section 2, we describe various preliminaries. In section 3, we describe
a Palais-Smale condition in unbounded domains. In section 4, we proved that
the semilinear elliptic equation in upper half strip with holes has multiple positive
solutions.

2. PRELIMINARY

First, we define the (PS)—sequences, (PS)—values, and (PS)—conditions in
H} (Q) for J as follows:

Definition 1. We define

(i) For 3 € R, a sequence {u,, } is a (PS)g—sequence in Hg () for J if J(u,,) =
B+ o(1) and J'(u,) = o(1) strongly in H ! (Q) as n — oo;
(ii) B € R is a (PS)—value in Hg () for J if there exists a (PS)g—sequence in
HE (Q) for J;
(iii) (447) J satisfies the (PS)z—condition in Hg () if every (PS)g—sequence in
H¢ () for J contains a convergent subsequence.

By Willem [14]. for any 5 € R, a (PS)g—sequence in X () for J is bounded.
Moreover, a (PS)—value 3 should be nonnegative.

Lemma 2. Let § € R and {u,} be a (PS)z—sequence in Hg () for J, then
there exists a ¢ > 0 such that ||u,| ;1 < ¢ for all n € N. Furthermore,

a(tt) — blun) + o(1) — ]%ﬁ +o(1)

and 3> 0.

Now, we consider the Nehari minimization problem

Q)= inf
al) = it I,

where M(Q2) = {u € Hj () \{0} | a(u) = b(u)}. Note that M(2) contain every
nonzero solution of Equation (1) in Q and if ug € M(Q) achieves «(f2) then
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ug is a ground state solution of Equation (1) in €2 (see Wang-Wu [13] or Willem
[14]. Moreover, we have the following useful lemmas, whose proof can be found
in Chen-Wang [5] and Wang-Wu [13, Lemma 7].

Lemma 3. Let 8> 0and {u,}in Ha () \{0} be a sequence for J such that
J(un) = B+o(1) and a(u,) = b(uy,) +o(1). Then there is a sequence {s,} C R"
such that s,, =1+ 0(1), {spu,} is in M (Q) and J(s,u,) = 3+ o(1).

Lemma 4.  Let {u,} be in H} (Q). Then {u,} is a (PS),q)—sequence in
H (Q) for J if and only if J (u,) = a(Q) + o (1) and a (w,) = b(u,) +o(1).

Let Q' G Q2 clearly o(Q?) < a(Q'). If a(9?) = a(Q'). then we have the
following useful results.

Lemma 5. Let ' G Q7 and let J : Hy (%) — R be the energy functional.
Suppose that a(Q?) = a(Q'). We have

(1) Equation (1) in Q' does not admit any solution u' such thatJ (u') = o(Q1);
(i) J does not satisfy the (PS),q2)-condition.

By the Rellich compact theorem, J satisfies the (PS) ,, (o) —condition in X ()
if €2 is a bounded domain.

Lemma 6. Let Q) be a bounded domain in RN Then the (PS)o(q) —condition
holds in H3(QY) for J. Furthermore, Equation (1) in Q has a positive solution ug
such that J (ug) = o(€).

Lemma 7. Let u € H} () be a change sign solution of Equation (1) in .
Then J(u) > 20($2).

Proof.  See the proof of Theorem A in Benci-Cerami [3]. ]

3. PALAIS-SMALE CONDITIONS
Throughout this section, denote
Ag (o, 7) = {(m,y) cRV I xR | |z —aol <r,s<y< l}

is a finite strip in RY. Let Q be unbounded domain in RVand let

M (0,7, 51) = {uemmn/[A ( )]C|u|P<<pr>a<Q>};

N (zg,7,8,1) = {u e M(Q) | /[AM(IOM]C |l = G f 2>a(Q)} ,
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be subsets of M (), where A (20,7) N2 # ¢ for some w9 € RV~ » > 0 and
s,1 € R. 1t is easy to verify that M (wg, r, s, 1) is nonempty set for all » > 0. Define
the minimization problem in M (zg, 7, s,1) and N (2o, 7, s,1) for J,

B(r)= inf J (v)

v€M (zg,r,s,l)

and

= inf J .
v <T> 1;6]\/&10,1”,5,[) ('U)

Note that, if N (zg,r, s,1) is empty then we define the v (r) = oo.
Let £ € C*(]0,00)) such that 0 < ¢ < 1 and

o= 0, fortel0,1]
£ = 1, forte[2,00).

Let

2|]
n

3) En(2) = £(=).

Then we have the following results.

Lemma 8. Let {u,} be a (PS)g—sequence in H} (Q) for J satisfying u,, — 0
wealdy in Hg (Q) and let v,, = & u,,. Then there exists a subsequence {u,,} such
that ||u, — vy g1 = o(1) as n — oo. Furthermore, we have a (v,) = b (v,) +o (1)
and J (v,) =B+ o(1).

Proof. Note that
a (un - vn) — <un — Un, Up — vn>H1
= a(uy) +a(vy) — 2 (Un, vy) g1 -

Thus, it suffices to show that (u,,, v,) ;1 = a (u,) +0(1) = a(v,) +o(1). Since
(Uny Vp) 1 = / Vu, Vv, + tu,vn,
Q
= [a[vul ]+ [ wvunve.
Q Q
Note that |V¢,| < £ and {u,} is a (PS)g—sequence in H{ () for J, so

4 / 1w, Vu,VE&, = o(1) for g > 0.
Q
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Hence,

s (s s = [ & [Vl 2] +0(0).
Similarly, we have
© aon) = [ & [Vual + 2] +o01).
For r > 1. Since {¢7u,,} is bounded in Hg (), we have
o(1) = {J'(un), &rum)
[ €IVl e Ve + ) - [ Gl

By (4) we conclude that

) /Q & (| Vunl? 1 u2) — /Q & lunl? 1 o(1).

Since u,, — 0 weakly in H}(£2), there exists a subsequence {u,,} such that u,, — 0
strongly in .7 (), or there exists a subsequence {u, } such that

loc
/ = o(1),
Q(n)

where @ (n) = QN BN (0;n). Clearly,

®) /Q &L lunl? = /Q unl? 1 o(1).

By (5-8), we have
(th, v} 1 = a () +0(1) = a(va) +o(1).

Therefore, ||w, — v, || ;1 = o(1) as n — oc. ]

Then we have the following Palais-Smale conditions.

Theorem 9. Let Q be unbounded domain in RN and let Ag (o, 7) be a
finite strip such that Ay (vo,r) NQ # ¢ for some xg € RN "L r > 0 and
s, € R If{u,} C M (wo,r,5,1) is a (PS)z(,)—Sequence in HE (Q) for J with
0 < B(r) <v(r). Then there exist a subsequence {u,} and vy € M (g, 7, s,1)
such that w, — ug strongly in H} (Q) and J (ug) = B (r). Furthermore, wg is a
nonzero solution of Equation (1) in €.
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Proof.  Let {uy,} be a (PS)g(, —sequence in Hj(Q2) for J, then by Lemma
2, there exist a subsequence {u,} and ug in H}(€2) such that u,, — up weakly in
H} (). Moreover, ug is a solution of Equation (1) in Q. If up = 0. By Lemma 8,
there exists a subsequence {u, } such that J (&,u,) = 8(r) +o (1) and a (& u,) =
b (&nun) +o (1), where &, is as in (3). Moreover, by Lemma 3 there exists a {s,, }
such that

a (Sngnun> =b (Sngnun> )

J (snénun) = B(r) +o(1),
5, = 1+o(l).

Let v, = s,&uy,. Then, there exist a ng € N such that for n > 2ng

v, = 0in Agy (o, ) N

/Q|vn|p/g|£nun|p+o<1>
= unl? + o P,
_ /{AS,Z(W)]J A o) < L),

which is a contradiction. Therefore, wg # 0. By the Fatou lemma, we have

o P
lug|P < hmmf/ |, |P < a(9)
/[As,l(zo,r)]c [ASJ(IO,T)]C (p — 2)

Moreover,

TN
3
|
[\]
S——
Q
—~
2
~—
|

and

© [ o <imint [ r = (S25) 500 < (L2 ) 00,

Thus, ug € M (Q2) and f[As,l(Io,T)]c lug|P < Zp%ja<9>' If f[As,z(m,r)]C lug|P =
(p%joz(ﬁ). Then ug € N (29,7, s,1) and from (9) that

002 [ wl < o),

p—2

which is a contradiction. Thus, f[ A e lupl? < ﬁa (©). This implies

s,l(IO,T
ug € M (xg,7,s,1) and J (ug) = B (r). Let p, = w, — ug, by Bahri-Lions [2], we
have

J(pn) = J(wp) — J(uo) + o(1) = o(1)



252 Tsung-Fang Wu

and
<J/<pn)7pn> = O<1)'

By Lemma 2, we have
2p
a<pn> - D J<pn> + O<1> - O<1>

Thus, u,, — ug strongly in Ha ().

4. MULTIPLE POSITIVE SOLUTIONS
We need the following definition.

Definition 10. A domain ) in A is large if for any m > 0 there exist s < [
such that { —s =m and A;; C Q where A;; = {(z,y) € A | s <y <l}.
Then we have the following results.

Lemma 11. If Q is a large domain in A, then o(Q) = a(A). Furthermore,
if ) is a proper large domain in A, then Equation (1) in ) does not admits any
solution ug such that J (ug) = ().

Proof. By Lien-Tzeng-Wang [9, Lemma 2.5] and Lemma 5. ]

Corollary 12. I Q) is a proper large domain in A, then J (v) > a(Q) for all
veM(Q).

Throughout this section, denote Q( ) = ST\ [U’l”lBN ((0,4t);7)] is an up-
per half strip with holes and A;; = A;;(0,70) is a finite strip. Then Q (¢) is
a proper large domain in A and o (9 (¢)) = a(A) for all ¢ > 0. Let M; ({) =
M (0,ro, (i — 1) t,ét) and N; (t) = N (0,ro, (: — 1)¢,4t), fori = 1,2,...,m. De-
fine the minimization problem in M; (¢) and N; (¢) for J,

Gi(t)y= inf J(v)

DGMZ‘(t)

and
i(t) = inf J(v).
CEN
Clearly, 8 (t),v(t) > a(A) for each t > 0 and ¢ = 1,2,...,m. Let M; (¢) be
denoting the closure of M; (¢), then we have M, (£) = M; (t) U N; (¢) and N; (t)
is the boundary of AZ; (¢). Then, we have the following results.

Lemma 13. For each t > 27, we have M; (t) N M; (t) = ¢ for i # j.
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Proof.  Suppose on the contrary, there exist a vgp € M (2 ({)) and ¢ # j such
that vy € M; (t) N Mj (t) Then

P P
/[A(i Deit] |v0| = (]9— 2) <A>

P P .
/[A(im,it]c |v0| = (]9 - 2) <A>

Since A(; 1) N A 1) = ¢ for all £ > 27/, we have

ool < [ P [ el
Q(t) [A(ifl)t,it] [A(jfl)t,jt]

2p

and

IN

IN

Therefore,
-2
10~ (52) [l <a(a) - a@w),
2p Q(t)
This contradicts Corollary 12.
Lemma 14. For each = > 0 there exists a t1 > 0 such that
6@(15) < Oé(A) +&
foralli=1,2,....mandl > 1.
Proof. By the Lien-Tzeng-Wang [9, Lemma 2.2], we have
a (Ap 1) = a(Aoy) \a(A) ast /oo
Thus, there exists a £; > 0 such that
(10) (0% (A(ifl)t,it) <« (A) + &

for each ¢ = 1,2,---,m. By Lemma 6, Equation (1) in A(;_1);; has a positive
solution v; such that J (v;) = « (A(i,l)tﬂ-t), v; € M (A(iq)t,it) CM(Q(¢)) and

/ |v;|? = 0.
[AG1yeie]
We obtain v; € M, (t) and

(11) Bi (1) < o (A_1ye,it)



254 Tsung-Fang Wu

forall¢=1,2,---,mand { > {;. By (10) and (11), we can conclude that

6i<t)<Oé<A)+€

foralli=1,2,...,mand t > ¢;. [
Lemma 15. There exist positive numbers 0, Lo such that for eachi=1,2,...,m
we have

Yi(t) > a(A) +6 forall t > ts.
Proof.  Fix i. Assume to the contrary that there exist ¢{,, — oo as n — oo and
{un} C N; (t,) C M (Q(¢,)) such that
J (1) = a(A) +o(1)

and

r—_L (A,
" /[A(il)tn,itn]c |un| (]9 — 2) a( )

By Lemma 4, {u,} is a (PS),(a)—sequence in Hy (A) for J. Applying the
concentration-compactness principle of Lions [10] there exist R > 0, d > 0 and
{(0,4,)} € RN~ x R such that

/ |un|? > d for all n.
BN((0,yn);R)

Let vy, (2) = un (@, + yn), then {v,} is a (PS),(a)—sequence in Hj (A) for J
and {v,} C M (A). Thus, there is a ug € H} (A) such that

v, — up weakly in Hj (A) as n — oo,
v, — Ug a.e. I A asn — oo

and

/ |vn|p—>/ lug|? > d as n — oo.
BN(0;R) BN(0;R)

Moreover, g is a nonzero solution of Equation (1) in A and J (up) = o (A). By
Bahri-Lions [2], Lemma 7 and the maximum principle, we may assume that

v, — ug strongly in Hg (A) as n — oo

and wug 1s a positive solution. We complete the proof by establishing the contradiction
that
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P
|tn)f = ——a(A) for all n.
\/[A(il)tnyitn]c <p a 2>

Consider the sequence {it,, — y, } . By passing to a subsequence if necessary, we
may assume that one of the following cases occurs:

(a) {ity, — yn} is bounded;

(b) it,, — yp — o0 as n — oo; and

(¢) ity — Yy, — —00 as n — 0.

In case (a), we may assume il, — ¥y, — Yo. Since

v, € HE (A\BY ((0, ity — yn) , 7))
we have
Q(rn) = A\BY ((0,0) ,7) as n — oo.

Then wy € H} (A\BY ((0,),7)), and this contradicts the fact that ug is a
positive solution of Equation (1) in A.
In case (b), since

v, — g strongly in H} (A) as n — oo,

ug 1s a positive solution such that J (ug) = «(A). By the compact imbedding
theorem and the Vitali convergence theorem, given g9 — (pf;Q)oz (A) there is a

R () > 0 such that

(13) / . [vn|? < %Oz (A) for all n.
[A— r0),R=0)] (p—2)

Since v, = 0 in [Q ({,)]".
U, — Up a.c. 1N A as n — oo
and ug is a positive solution of Equation (1) in A, we have

lim Q (¢,) = A.

n—od

By hypothesis, we have (i — 1) t,, —y,, — —o0 as n — oo. Then there is a ng such
that

A _Rieo) R(zo) C [Ai—1)tnit, — (0,yn)] forall n > ng.
Thus,

lonl?
[A G 1) tnity —(0,yn)]

(14)
< / |on [P < ——=a(A) for all n > ny.
[A— reeo). (0] (r=2)
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Since {u,} C M (Q(t,)) and € (¢,) is large domain in A, this means

(15) /Q(tn) || > <]%> a(Q(t,)) = <]%> a(A) for all n.

From (14) and (15), we have

F O N T A A
[A(ifl)tn,itn] Q(tn) A D, itn
— [ - ol
Qtn) [A 1)t it —(0yn)]

p
(r—2)

a(A) for all n > ny,

which contradicts (13) .
In case (c), the proof is similar to that of case (13). Therefore, we have completed
our proof. ]

Here, we will use the idea of Cao-Noussair [4] and Tarantello [11] to get the
following results.

Lemma 16. For any u' € M;(t), there exist ¢ > 0 and differentiable
Sfunction t* : B(0;¢) C Ha (1)) — R such that t*(0) = 1, the function
2=t (w) (v’ —w) € M; (t) and

(1) (0),v)
(16) B QfQ(t) VulVo+ulv—p fQ(t) ‘ui‘VQ ulv
Jo IVl 4 () =(p=1) fo Il

for all v € H} (Q (1)) .

Proof. Define a function ' : R x H} (2 (t)) — R given by

F<t:w)t/Q(t)‘V(ui—w)‘2+(ui—w)2—tp1/

0

R
Since u' € M; (t), we have I (0,1) = 0 and
d 9 2 .
—Fl,O/ Vull” + (u)” — —1/ i” <.
arao - [ el -e-n [

According to the implicit function theorem, there exists a continuous function #* :
B(0;¢) € H§(Q(t)) — RT such that ¢*(0) = 1 and F (#* (w),w) = 0 for
w € B (0;¢). This is equivalent to

(J'(# (w) (" —w)) , t (w) (v —w)) = 0.
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Furthermore, by the continuity of the functionals b and ¢, we have

‘/[A(il)t,it]c

if € is sufficiently small. ]

t (w) (ui—w)‘p< P a(A),

Proposition 17. There exists a 1o > 0 such that for each t > 1y and i =
1,2,-+-,m. We have 3; (t) < min{2a (Q (1)) ,~: (t)} and 3; (t) has a minimizing
sequence {ul,} C M, (t) satisfying

T () = Bi(t) +o(1),
J (W) = o(l) in H 1 (Q(@®)).

Proof.  Using Lemmas 14 and 15, we see that there exists £y > 0 such that for
r 2> to

(17) Bi (t) <min{2a(Q (1)), 7 ()}

It follows that for ¢ > ig

(18) Gi(t) = inf J(v).
DGMZ‘(t)

Since M; (1) is a closure of M; (). By (18) and the Ekeland variational principle
[7]. there exists a minimizing sequence {uﬁl} C M; (t) such that

(19) J (uh) < Bi(t) + %
and
(20) J () <J(w)+%Hw—uleH1 for any w € M, (1),

Using (17) we may assume that u!, € M; (t) for n sufficiently large. Applying
Lemma 16 with u* = u!, to obtain the functions ¢, : B (0;¢,) — RT for some
€, > 0. such that ¢, (w) (ul, —w) € M*(t). Choose 0 < p < €,. Let u €
H& (Q(t)) withw # 0 and let w, = ﬂﬁ%' We set 25, = &£, (w)) (ul, — w)) . Since
z, € M; (t) , we deduce from (19) that

i
n|| g1

"

. . 1, .
T~ h) = L

By the mean value theorem, we have
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(I () sz = by o ([l = whll ) = = [l = bl -
Thus,
(" (1) =)+ (th () = 1) (I (ud) (i — w,))
1 7 7 7 7
> —— [z = bl + o (|15 = will ) -

e2y)

From t}, (w,) (v}, —w,) € M*(Q(t)) and (25), we have

n

— <J’ (). L> (8 () = 1) (T () — T (23) (i — w0,))
[l e
e R (EATA R

Thus,

<J/(ui), % > < sz_uizHIpJrO(HZ;_u:zqu)
np p

+w (I (u) = ' (2h) s (u, — )

On the other hand, by (16) we can find a constant C' > 0, independent of p, such
that

2 =il <o+ |6 Cp) = 1] €
and _
iy =2 < iy 0 s

If we let p — 0 in (20) for a fixed 7 and use the fact that 2/, — uf, in Hj (Q (1)),

we get
(7 @) =) < £
[ullgre/ —
This shows that {u/,} is a (PS)g,(;)—sequence in Hj (Q (¢)) for J. |

Theorem 18. There exists to > 0 such that for t > to, Equation (1) in € (t)
has m positive higher energy solutions ub,u3, ..., ud* with

U
‘/[A(il)t,it]c

6‘p< Loz(A) for cachi =1,2...,m.

(r—2)
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Proof. 1t follows from Proposition 17 that there exists {5 > 0 such that for
each t > {p and ¢ = 1,2,..., m we can find minimizing sequence {uﬁl} of 3; (t)
with

Bi (1) <min {2 (2 (2)),7i (1)} -

By Lemma 7 and Theorem 9, there exists uj € M; (¢) such that
ul, — ud strongly in I} (Q (1)),

J (uh) = B; (t) and u is a positive solution of Equation (1) in  (¢) . By Lemma
13, that M; (¢) N M; (t) = ¢ for i # j, we get ui # ul) for i # j. Furthermore,
Q (1) is a large domain in A, we have

J (uh) = Bi (t) > a(Q(t)), foreachi =1,2...,m.

This implies, u}, u3, . .., u5* are higher energy solutions of Equation (1) in  (¢).m
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