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ON THE DIFFERENTIAL EQUATION u′′ − up = 0

Meng-Rong Li

Abstract. In this paper we work with the ordinary differential equation u′′−up

= 0 for some well-defined functions up.We obtain some interesting phenomena
concerning blow-up, blow-up rate, life-span, stability, instability for solutions.

0. INTRODUCTION

In our papers [Li 1, 2] we studied the semi-linear wave equation u+f (u) = 0
under some conditions, and we found some interesting results on blow-up, blow-up

rate and estimates for the life-span of solutions, but no information on the singular

set. So we would like to deal with particular cases in lower dimensional wave

equations. We hope that this will help us understand the singular sets of the solutions

for the semi-linear wave equations later.

In this work we denote up by the well-defined functions. We say p is odd

(even, respectively) if p = r/s, r, s ∈ 2N+1, (r, s) = 1 (common factor) and r is
odd (even, respectively) . By direct computation one sees that the following initial
value problem for the ordinary differential equation

{
u′′ − up = 0, p ∈ (0, 1) ,

u (0) = 0 = u′ (0)

has at least two solutions, for instance, u (t)=0 and u (t)=
(
(1−p) t/

√
2 + 2p

) 2
1−p ,

so the solutions to the above initial value problem are not unique, in general. These

functions up, p ≥ 1 are locally Lipschitz; hence by the standard theory, the local
existence and uniqueness of classical solutions of the equation

(0.1)

{
u′′ − up = 0, p ∈ (1,∞) ,

u (0) = u0, u′ (0) = u1,
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can be obtained.

In section 1 we deal with estimates for the life-span of the solutions to problem

(0.1), in section 2 with blow-up rates and blow-up constants, in section 3 with
critical points, in section 4 with the zeros and triviality, in section 5 with stability

and instability.

Notation and Fundamental Lemmas

For a given function u in this work we use the following abbreviations

au (t) = u (t)2 , Eu (0) = u2
1 −

2
p + 1

up+1
0 ,

Ju (t) = au (t)−
p−1
4 , H2 := C2[0, T ].

Definition. A function g : R → R has a blow-up rate q means that there exist
a finite number T ∗ and a non-zero β ∈ R such that

(0.2) lim
t→T ∗

g (t)−1 = 0,

(0.3) lim
t→T ∗

(T ∗ − t)q g (t) = β,

in this case β is called the blow-up constant of g.
According to the uniqueness of solutions to the equation (0.1), we rewrite

au (t) = a (t) , Ju (t) = J (t) and Eu (t) = E (t) for convenience. After some
elementary calculations we obtain the following lemma 1.

Lemma 1. Suppose that u ∈ H2 is the solution of (0.1) , then

(0.4) E (t) = u′ (t)2 − 2
p + 1

u (t)p+1 = E (0) ,

(0.5) (p + 3)u′ (t)2 = (p + 1)E (0) + a′′ (t) ,

(0.6) J ′′ (t) =
p2 − 1

4
E (0)J (t)

p+3
p−1

and

(0.7) J ′ (t)2 = J ′ (0)2 − (p − 1)2

4
E (0)J (0)

2(p+1)
p−1 +

(p − 1)2

4
E (0)J (t)

2(p+1)
p−1 .

The following lemmas are easy to prove, so we omit their arguments.
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Lemma 2. Suppose that k1 and k2are real constants and u ∈ C2 (R) satisfies

u′′ + k1u
′ + k2u ≤ 0, u ≥ 0,

u (0) = 0, u′ (0) = 0,

then u must be trivial, that is, u ≡ 0.

Lemma 3. If g (t) and h (t, r) are continuous with respect to their variables

and the limit limt→T

∫ g(t)

0
h (t, r)dr exists, then

lim
t→T

∫ g(t)

0
h (t, r)dr =

∫ g(T )

0
h (T, r)dr.

1. ESTIMATES FOR THE LIFE-SPANS

To estimate the life-span of the solution to the equation (0.1) , we separate this

section into three parts, E (0) < 0, E (0) = 0 and E (0) > 0.

Here the life-span T ∗ of u means that u is the solution of problem (0.1) and u
exists only in [0, T ∗) so that the problem (0.1) possesses the solution u ∈ H2 for
T < T ∗.

1.1.1 E (0) ≤ 0
In this subsection we study the cases E (0) < 0 and E (0) = 0, a′ (0) > 0. The

case that E (0) = 0 and a′ (0) ≤ 0 will be considered in section 3 and section 4.
We have the following result.

Theorem 4. If T ∗ is the life-span of u and u ∈ H2 is the solution of the
problem (0.1) with E (0) < 0, then T ∗ is finite, that is, u is only a local solution

of (0.1) . Further, for a′ (0) ≥ 0 we have the estimate

(1.1.1) T ∗ ≤ T ∗
1 (u0, u1, p) =

2
p − 1

J(0)∫

0

dr√
k1 + E (0) rk2

.

for a′ (0) < 0, we have

(1.1.2)

T ∗ ≤ T ∗
2 (u0, u1, p)

=
2

p − 1




k∫

0

dr√
k1 + E (0) rk2

+

k∫

J(0)

dr√
k1 + E (0) rk2


 ,
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where k1 :=
2

p + 1
, k2 :=

2p + 2
p − 1

and k :=
(

2
p + 1

−1
E (0)

) p−1
2p+2

.

Furthermore, if E (0) = 0 and a′ (0) > 0, then

(1.1.3) T ∗ ≤ T ∗
3 (u0, u1, p) :=

4
p − 1

a (0)
a′ (0)

.

Proof. Under the condition, E (0) < 0, we know a (0) > 0; otherwise u0 = 0,

and then E (0) = u2
1 ≥ 0, yet this is contrary to E (0) < 0. The proof is divided

into two cases, a′ (0) ≥ 0 and a′ (0) < 0.

(i) a′ (0) ≥ 0. By (0.5) , we find

(1.1.4)





a′ (t) ≥ a′ (0)− (p + 1)E (0) t ∀t ≥ 0,

a (t) ≥ a (0) + a′ (0) t − p + 1
2

E (0) t2 ∀t ≥ 0.

From (0.7) , a′ (0) ≥ 0 and J ′ (t) = −p − 1
4

a (t)−
p+3
4 a′ (t) < 0, it follows that

(1.1.5) J ′ (t) = −p − 1
2

√
k1 + E (0)J (t)k2 ≤ J ′ (0) ∀t ≥ 0

and

J (t) ≤ a (0)−
p−1
4 − p − 1

4
a (0)−

p+3
4 a′ (0) t ∀t ≥ 0,

where k1 =
1
4
a (0)−

p+3
2 a′ (0)2 − E (0)a (0)−

p+1
2 =

2
p + 1

.

Thus, there exists a finite number T ∗
1 (u0, u1, p) ≤ 4

p−1
a(0)
a′(0) such that

J (T ∗
1 (u0, u1, p)) = 0

and

a (t) → ∞ for t → T ∗
1 (u0, u1, p) .

This means that the life-span T ∗ of u is finite and T ∗ ≤ T ∗
1 (u0, u1, p) .

Nowwe estimate this life-spanT ∗
1 (u0, u1, p) . By (1.1.5) and J (T ∗

1 (u0, u1, p)) =
0 we find

(1.1.6)

J(0)∫

J(t)

dr√
k1 + E (0) rk2

=
p − 1

2
t ∀t ≥ 0
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and hence we obtain the estimate (1.1.1) .

(ii) a′ (0) < 0. Using (1.1.4) and a′ (0) < 0 we find a unique finite number
t0 (u0, u1, p) such that

(1.1.7)





a′ (t) < 0 for t ∈ (0, t0 (u0, u1, p)) ,

a′ (t0 (u0, u1, p)) = 0,

a′ (t) > 0 for t > t0 (u0, u1, p) ,

and a (t0 (u0, u1, p)) > 0. If not, then u (t0 (u0, u1, p)) = 0 and

E (0) = E (t0 (u0, u1, p)) = u′ (t0 (u0, u1, p))2 ≥ 0;

yet this is in contradiction with E (0) < 0.

In this way it is easy to see that a (t) > 0 ∀t ≥ 0. Hence we get u′ (t0 (u0, u1, p)) =
0 and

E (0) = − 2
p + 1

u (t0 (u0, u1, p))p+1 ,

J (t0 (u0, u1, p))k2 =
2

p + 1
−1

E (0)
.

After arguments similar to those in step (i), there exists a T ∗
2 (u0, u1, p) such

that the life-span T ∗ of u is bounded by T ∗
2 (u0, u1, p) , that is, T ∗ ≤ T ∗

2 (u0, u1, p).
Analogously, by (1.1.7) and (0.7) we obtain

J ′ (t) = −p − 1
2

√
k1 + E (0)J (t)k2 ∀t ≥ t0 (u0, u1, p) ,(1.1.8.1)

J ′ (t) =
p − 1

2

√
k1 + E (0)J (t)k2 ∀t ∈ [0, t0 (u0, u1, p)](1.1.8.2)

and

(1.1.9.1)

J(t0(u0 ,u1,p))∫

J(t)

dr√
k1 + E (0) rk2

=
p − 1

2
(t − t0 (u0, u1, p)) ∀t ≥ t0 (u0, u1, p) ,

(1.1.9.2)

J(t0(u0 ,u1 ,p))∫

J(0)

dr√
k1 + E (0) rk2

=
p − 1

2
t0 (u0, u1, p) .
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Using (1.1.9) and J (t0 (u0, u1, p))k2 =
2

p + 1
−1

E (0)
, J (T ∗

2 (u0, u1, p)) = 0, it

results

(1.1.10) T ∗
2 (u0, u1, p) = t0 (u0, u1, p) +

2
p − 1

k∫

0

dr√
k1 + E (0) rk2

.

This estimate (1.1.10) is equivalent to (1.1.2) .

(iii) E (0) = 0. Now we prove (1.1.3) . By (0.6) and E (0) = 0 we get
J ′′ (t) = 0 ∀t ≥ 0. From the positiveness of a′ (0) , it follows that J ′ (0) < 0 and

J (t) = a (0)−
p−1

4 − p − 1
4

a (0)−
p+3
4 a′ (0) t ∀t ≥ 0

and also

(1.1.11) a (t) = a (0)
p+3
p−1

(
a (0)− p − 1

4
a′ (0) t

)− 4
p−1

∀t ≥ 0.

Therewith we conclude the estimate (1.1.3).

1.1.2. Properties of T ∗
1 (u0, u1, p)

In principle, T ∗
1 (u0, u1, p) depends on three variables u0, u1 and p. Set ck,p :=

(p+1)u2
1

2up+1
0

, then

T ∗
1 (u0, u1, p) =

√
2p + 2
p − 1

u
− p−1

2
0 (1 − ck,p)

− p−1
2p+2

(1−ck,p)
p−1
2p+2∫

0

dr√
1 − r

2p+2
p−1

and

lim
p→∞

T ∗
1 (u0, u1, p) = 0, lim

p→∞
T ∗

1 (u0, u1, p) = ∞.

For convenience, we consider the case u1 = 0,

T ∗
1 (u0, 0, p) =

√
π√

2p + 2
u
−

p − 1
2

0

Γ
(

p − 1
2p + 2

)

Γ
(

p

p + 1

) .

Using Maple we obtain the graphs of T ∗
1 (u0, 0, p) below:
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Fig. 1. Graph of T ∗
1 (u0, 0, p)

Fig. 2. Graphs of T ∗
1 (u0, 0, p) , u0 ≤ 1

Fig. 3. Graphs of T ∗
1 (u0, 0, p) , u0 > 1
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The above pictures show the properties of T ∗
1 (u0, 0, p):

(1) there exists a constant u∗
0 such that T ∗

1 (u0, 0, p) is monotone decreasing in p
for u0 ∈ [u∗

0, 1);
(2) there is a p0 such that T ∗

1 (u0, 0, p) is decreasing in (1, p0) and increasing in
(p0,∞) provided u0 ∈ [0, u∗

0);
(3) T ∗

1 (u0, 0, p) is differentiable in its variables and
(4) for u0 > 1 the life-span T ∗

1 (u0, 0, p) is decreasing in p.

We now show the validity of statements (3) and (4) using the monotonicity of
T ∗

1 (1, 0, p) for u0 6= 0. To prove (1) and (2) we must show the existence of u∗
0

with
∂

∂p
T ∗

1 (u0, 0, p) ≤ 0 for 1 > u0 ≥ u∗
0, that is,

0 ≤ p−1
p+1

(p+3)
∫ 1

0

(
1−r

2 p+1
p−1

)−1/2
dr+4

∫ 1

0

(
1−r

2 p+1
p−1

)−3/2
r
2 p+1

p−1 ln r dr

+ (p − 1)2 (ln u0)
∫ 1

0

(
1− r

2 p+1
p−1

)−1/2
dr,

thus the existence of u∗
0 can be obtained provided

p − 1
p + 1

(p + 3)
(
r
2 p+1

p−1 − 1
)
− 4 ln r > 0 ∀r > 1.

After some calculations it is easy to get the above assertion.

To grasp the property of the life-span T ∗
1 (u0, u1, p) is very difficult, but for

fixed initial data we want to know how the life-span varies with p, so now we

consider the life-span T ∗
1 (0.6, 0.2, p) and list the following tables as below.

p T ∗
1 (0.6, 0.2, p)

1.001 2001. 5
1.004 501. 42
1.008 251. 42
1.012 168. 08

p T ∗
1 (0.6, 0.2, p)

2 3. 4135
2.5 2. 7698
3 2. 4659

3.6497 2. 2644

After some computations we get

T ∗
1 (u0, u1, p)

=
√

2p + 2
p − 1

(
up+1

0 − p + 1
2

u2
1

)− p−1
2p+2

∫ 1− p+1

2up+1
0

u2
1

p−1
2p+2

0

dr√
1 − r

2p+2
p−1

.
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By the experience in studying the life span T ∗
1 (u0, 0, p) , we consider the properties

of the life-span T ∗
1 (u0, u1, p) with u0u1 ≥ 0 in three cases:

Case 1. 0 < up+1
0 − (p + 1)u2

1/2 < 1. In this situation we find that

(i) for fixed u1,

(5) there exists a constant u∗
0 depending on u1 such that T

∗
1 (u0, u1, p) is monotone

decreasing in p for u0 ≥ u∗
0,

(6) there is a p0 so that T
∗
1 (u0, u1, p) decreases in (1, p0) and increases in (p0,∞)

provided u0 ∈ [0, u∗
0);

(ii) for fixed u0, the life-span T ∗
1 (u0, u1, p) decreases in u2

1.

Case 2. u
p+1
0 − (p + 1)u2

1/2 > 1. The life-span T ∗
1 (u0, u1, p) decreases in p.

Case 3. u
p+1
0 − (p + 1)u2

1/2 = 1. On the surface
{
(u0, u1, p) ∈ R3

∣∣∣up+1
0 − (p + 1)u2

1/2 = 1, p > 1
}

we find that

T ∗
1 (u0, u1, p) = T ∗

1 (u0, p) =
√

2p + 2
p − 1

∫ u
−(p−1)/2
0

0

1√
1− r2(p+1)/(p−1)

dr

and T ∗
1 (u0, p) is monotone decreasing in u0 and in p.

1.2. E (0) > 0, a′ (0)2 ≥ 4a (0)E (0)

In this subsection we consider two cases

• E (0) > 0, a′ (0)2 > 4a (0)E (0)

and

• E (0) > 0, a′ (0)2 = 4a (0)E (0) , u1 > 0.

The case that E (0) > 0, a′ (0)2 < 4a (0)E (0) will be considered in section
3 and section 4. The case that E (0) > 0, a′ (0)2 = 4a (0)E (0) , u1 < 0 will
be postponed to section 3. For E (0) > 0 and a′ (0)2 ≥ 4a (0)E (0) we have the
following blow-up result.

Theorem 5. If T ∗ is the life-span of u and u ∈ H2 is the solution of the
problem (0.1) with E (0) > 0, then T ∗ is finite, that is, u is only a local solution

of (0.1) , if one of the following is valid
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(i) a′ (0)2 > 4a (0)E (0)

or

(ii) a′ (0)2 = 4a (0)E (0) and u1 > 0

or

(iii) a′ (0)2 = 4a (0)E (0), u1 < 0 and p is odd.

Further, in the case of (i) we have the estimate

(1.2.1) T ∗ ≤ T ∗
4 (u0, u1, p) =

2
p − 1

J(0)∫

0

dr√
k1 + E (0) rk2

and also

(1.2.2) a′ (0) ≥ 0.

In the case of (ii) we have

(1.2.1.1) T ∗ ≤ T ∗
5 (u0, u1, p) =

2
p − 1

∞∫

0

dr√
k1 + E (0) rk2

.

In the case of (iii) we have

(1.2.1.2) T ∗ ≤ T ∗
6 (u0, u1, p) =

2
p − 1

∞∫

0

dr√
k1 + E (0) rk2

.

Proof. (i) a′ (0)2 > 4a (0)E (0) . By (0.6) we find

(1.2.3)





k3 (u0, u1, p)J ′′ (t) = (k3 (u0, u1, p)J (t))q ,

k3 (u0, u1, p)J (0) = k3 (u0, u1, p)a (0)−
p−1
4 ,

k3 (u0, u1, p)J ′ (0) =
1 − p

4
k3 (u0, u1, p)a (0)−

p+3
4 a′ (0) ,

where k3 (u0, u1, p) :=
(

p2 − 1
4

E (0)
) p−1

4

and q :=
p + 3
p − 1

.

Now we set

Ẽ (t) := k3 (u0, u1, p)2 J ′ (t)2 − 2
q + 1

(k3 (u0, u1, p)J (t))q+1 ,



On the Differential Equation u′′ − up = 0 49

after some calculations we see that Ẽ (t) is a constant and

Ẽ (t) = Ẽ (0)(1.2.4)

=
(

p − 1
4

)2

k3 (u0, u1, p)2 a (0)−
p+3
2

(
a′ (0)2 − 4E (0)a (0)

)
.

From the condition (i) and (0.4) follows

0 < Ẽ (t) =
(p − 1)2

2 (p + 1)
k3 (u0, u1, p)2 a (t)−

p+3
2 u (t)p+3

=
(p − 1)2

2 (p + 1)
k3 (u0, u1, p)2 ,

thus

(1.2.5) u (t)p+1 > 0 ∀t ≥ 0.

By (0.5) we find

(1.2.6) a′ (t) = a′ (0) + 2E (0) t + 2
p + 3
p + 1

t∫

0

u (r)p+1 dr ∀t ≥ 0

and then

(1.2.7) a′ (t) ≥ a′ (0) + 2E (0) t ∀t ≥ 0.

Thus, for a′ (0) ≥ 0, using the same arguments as in the proof of theorem 4 we
get the conclusions (1.2.1).

Now let us show (1.2.2) . For a′ (0) < 0, from (1.2.7) it follows that a′ (t) ≥ 0
for large t. Suppose that t̄0 is the first number such that a

′ (t) = 0. Using (0.5) we
get for t ≥ t̄0

(1.2.6.1) a′ (t) = 2E (0) (t − t̄0) + 2
p + 3
p + 1

t∫

t̄0

u (r)p+1 dr ≥ 0.

Hence,

(1.2.8)





a′ (t) < 0 for t ∈ (0, t̄0) ,

a′ (t̄0) = 0,

a′ (t) > 0 for t > t̄0,
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and a (t̄0) > 0; if not, then u (t̄0) = 0; this is contrary to (1.2.5) . Thus,

(1.2.9) u′ (t̄0) = 0.

Therefore, by (1.2.5) ,

(1.2.10) (p + 1)E (0) = −2u (t̄0)
p+1 < 0.

The identity (1.2.10) and the condition E (0) > 0 contradict each other; thus
the existence of t̄0 is false, therefore (1.2.2) is obtained.

(ii) By condition (ii) and (1.2.6) we find

(1.2.11) a′ (t) = 2E (0) t + 2
p + 3
p + 1

t∫

0

u (r)p+1 dr ∀t ≥ 0.

We claim that a′ (t) > 0 for every t > 0. If not, then there exists t̃ > 0
such that a′

(
t̃
)

= 0. Let T̃ be the first non-zero value so that a′
(
T̃

)
= 0, then

u (t) > 0 in
(
0, T̃

)
. By (1.2.6) we get

0 = a′
(
T̃

)
= 2E (0) T̃ + 2

p + 3
p + 1

T̃∫

0

u (r)p+1 dr.

This is therefore in contradiction with E (0) > 0; hence a′ (t) > 0 ∀t > 0 and
J ′ (t) < 0 ∀t > 0. Using (0.6) for each t ≥ ť > 0 we obtain

(1.2.12)

J ′ (t) = −

√

J ′
(
ť
)2 − (p − 1)2

4
E (0)J

(
ť
)2p+2

p−1 +
(p − 1)2

4
E (0)J (t)

2p+2
p−1

and

lim
ť→0

J ′ (ť
)2 − (p − 1)2

4
u2

1J
(
ť
) 2p+2

p−1 =
(p − 1)2

2 (p + 1)
,

thus from (1.2.12) , the estimate (1.2.1.1) follows.
(iii) To see (1.2.1.2) , we use the fact that u0 = 0 and a′ (0) = 2u0u1 = 0 and

(1.2.6), we can also get the identity (1.2.11), thus (1.2.1.2) follows.
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2. BLOW-UP RATE AND BLOW-UP CONSTANT

In this section we study the blow-up rate and blow-up constant for a, a′ and a′′

under the conditions in section 1. We have the following results.

Theorem 6. If u ∈ H2 is the solution of the problem (0.1) with one of the
following properties that

(i) E (0) < 0

(ii) E (0) = 0, a′ (0) > 0
or

(iii) E (0) > 0, a′ (0)2 > 4a (0)E (0)
or

(iv) E (0) > 0, a′ (0)2 = 4a (0)E (0) , u1 > 0
or

(v) E (0) > 0, a′ (0)2 = 4a (0)E (0) , u1 < 0 and p is odd.

Then the blow-up rate of a is 4/ (p − 1) , and the blow-up constant of a is
p−1

√
4 (p − 1)−4 (p + 1)2, that is, for m ∈ {1, 2, 3, 4, 5, 6}

(2.1.1)
lim

t→T ∗
m (u0,u1 ,p)−

(T ∗
m (u0, u1, p)− t)

4
p−1 a (t)

= 2
2

p−1 (p + 1)
2

p−1 (p − 1)−
4

p−1 .

The blow-up rate of a′ is (p + 3) / (p − 1) , and the blow-up constant of a′ is

2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
p+3
p−1 , that is, for m ∈ {1, 2, 3, 4, 5, 6}

(2.1.2)

lim
t→T ∗

m(u0 ,u1 ,p)−
(T ∗

m (u0, u1, p)− t)
p+3
p−1 a′ (t)

= 2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
p+3
p−1 .

The blow-up rate of a′′ is (2p + 2) / (p − 1), and the blow-up constant of a′′ is

2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
2p+2
p−1 (p + 3), that is, for m ∈ {1, 2, 3, 4, 5, 6}

(2.1.3)

limt→T ∗
m(u0 ,u1,p)− a′′ (t) (T ∗

m (u0, u1, p)− t)
2p+2
p−1

= 2
2p

p−1 (p + 3) (p + 1)
2

p−1 (p − 1)−
2p+2
p−1 .

Proof. (i) Under this condition, E (0) < 0, a′ (0) ≥ 0 by (1.1.1) and (1.1.6)
we get

(2.1.4)

J(t)∫

0

1
T ∗

1 (u0, u1, p)− t

dr√
k1 + E (0) rk2

=
p − 1

2
∀t ≥ 0.
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By lemma 4 and (2.1.4) we obtain

(2.1.5) lim
t→T ∗

1 (u0 ,u1 ,p)−

1√
k1

J (t)
T ∗

1 (u0, u1, p)− t
=

p − 1
2

.

This identity (2.1.5) is equivalent to (2.1.1) for m = 1.

For E (0) < 0, a′ (0) < 0, using (1.1.9) we have also

(2.1.6)

J(t)∫

0

dr√
k1 + E (0) rk2

=
p − 1

2
(T ∗

2 (u0, u1, p)− t) ∀t ≥ t0.

From lemma 4 and (2.1.6) , the estimate (2.1.1) for m = 2 follows.
By (1.1.5) and (1.1.8) , for m = 1, 2, we find

(2.1.7) lim
t→T ∗

m(u0 ,u1 ,p)−
J ′ (t) = − p − 1√

2p + 2

and

lim
t→T ∗

m(u0 ,u1,p)−
a′ (t) (T ∗

m (u0, u1, p)− t)
p+3
p−1(2.1.8)

= 2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
p+3
p−1

and thus,

lim
t→T ∗

m(u0,u1 ,p)−
u′ (t)2 (T ∗

m (u0, u1, p)− t)
2p+2
p−1(2.1.9)

= 2
2p

p−1 (p + 1)
2

p−1 (p− 1)−
2p+2
p−1 , m = 1, 2.

Through (0.5) and (2.1.9) we obtain

lim
t→T ∗

m(u0,u1 ,p)−
a′′ (t) (T ∗

m (u0, u1, p)− t)
2p+2
p−1(2.1.10)

= (p + 3) lim
t→T ∗

m(u0 ,u1,p)−
u′ (t)2 (T ∗

m (u0, u1, p)− t)
2p+2
p−1 , m = 1, 2.

This estimates (2.1.10) and (2.1.3) are equivalent for m = 1, 2.

(ii) For E (0) = 0, a′ (0) > 0, for m = 3, using (1.1.11) we get
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(2.1.11) a (t) = a (0)
p+3
p−1

(
p − 1

4
a′ (0)

)− 4
p−1

(T ∗
m (u0, u1, p)− t)−

4
p−1 ∀t ≥ 0.

Therefore (2.1.1) , (2.1.2) and (2.1.3) for m = 3 follow.

(iii) The proof of estimates (2.1.1) , (2.1.2) and (2.1.3) for m = 4, 5, 6 are
similar to the above arguments (i) in the proof of this theorem.

Now we consider the property of the blow-upconstantsK1, K2 andK3.Wehave

K1 (p) = 2
2

p−1 (p + 1)
2

p−1 (p − 1)−
4

p−1 ,

K2 (p) = 2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
p+3
p−1 ,

K3 (p) = 2
2p

p−1 (p + 3) (p + 1)
2

p−1 (p − 1)−
2p+2
p−1 .

Using Maple we have the graphs of K1, K2 and K3 below.

We see that the graphs, Ki (p) , i = 1, 2, 3 are all decreasing in p, and Ki (p)
tends to zero, as p tends to infinity. The monotonicity of these functions can be

obtained after showing the following inequalities

p − 1
p + 1

− 2 ≤ ln (2p + 2) − 2 ln (p − 1) ∀p > 1,

2p− 2
p + 1

+ 4 ln (p − 1) ≤ 2 ln 2 + 2 ln (p + 1) + p + 3 ∀p > 1,

(p − 1)2

p + 3
+

2p− 2
p + 1

+ 4 ln (p − 1) ≤ 2 (ln 2) + 2 ln (p + 1) + 2p + 2 ∀p > 1.

Fig. 4. graphs of K1 (p) in thin, K2 (p) in medium, K3 (p)in thick.
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These inequalities are easy to check, so we omit the arguments.

3. CRITICAL POINTT

In this section we study the following cases:

(i) E (0) = 0, a′ (0) < 0.

(ii) E (0) > 0, a′ (0)2 < 4a (0)E (0) .

(iii) E (0) > 0, a′ (0)2 = 4a (0)E (0) , u1 < 0 and p is even.

Under the condition (i) it is easily to see that

a (t) = a (0)
p+3
p−1

(
a (0)− p − 1

4
a′ (0) t

)− 4
p−1

∀t ∈ (0, T ) .

Hence we find the limit limt→∞ a (t) = 0 and

lim
t→∞

t
4

p−1 a (t) = a (0)
p+3
p−1

(
p − 1
−4

a′ (0)
)− 4

p−1

.

For the convenience we consider the critical points and critical values of a and u
of the solution (0.1) , and we will prove the existence of critical points in section IV.

3.1 Estimate of the Critical Points

Under (ii) and (iii) we have the critical result.

Theorem 7. Suppose that u ∈ H2 is the solution of the problem (0.1) with
the property (ii) or (iii) and T0 (u0, u1, p) is the critical point of u, that is,

u′ (T0 (u0, u1, p)) = 0,

then u0 ≤ 0 and T0 (u0, u1, p) is given by

(3.1) T0 (u0, u1, p) =
∫ −u(T0(u0 ,u1 ,p))

−u0

dr√
E (0) − 2rp+1/(p + 1)

,

where −u (T0 (u0, u1, p)) = ((p + 1)E (0) /2)1/(p+1) . Further under condition (ii)

u0 must be negative and p must be even.

Proof. By some computations one can find the non-positiveness of u0 under (ii)
or (iii) ; and in case of (ii) , then p must be even. For E (0) > 0 and a′ (0)2 < 4a
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(0)E (0), using (1.2.4) we find

Ẽ (t) = k3 (u0, u1, p)2 J ′ (t)2 − p − 1
p + 1

(k3 (u0, u1, p)J (t))
2p+2
p−1

(3.2) = Ẽ (0)

=
(

p − 1
4

)2

k3 (u0, u1, p)2 a (t)−
p+3
2

(
a′ (t)2 − 4E (0)a (t)

)
∀t ∈ [0, T ) ,

for all t in [0, T ) , where k3 (u0, u1, p) =
(

p2−1
4 E (0)

) p−1
4

.

By (3.2) and condition (ii), E (0) > 0, a′ (0)2 < 4a (0)E (0) , it is easy to see
that u0 6= 0 and therefore we find that

0 > Ẽ (t) = Ẽ (0) =
(p− 1)2

2p + 2
k3 (u0, u1, p)2

∣∣∣u−p−3
0

∣∣∣ up+3
0 ;

thus up+3
0 < 0, therefore we obtain that u0 < 0, p is even and

(3.3) Ẽ (t) = Ẽ (0) = −(p − 1)2

2p + 2
k3 (u0, u1, p)2 .

Since u (t) < 0 in a neighborhood of t = 0, Ẽ (t) can be defined at t = 0, so that
Ẽ (t) is continuous in [0, ε) for some ε > 0.

Under the condition (ii) or (iii) , by the definition of T0 (u0, u1, p) and (0.4) we

get the critical value of u at T0 (u0, u1, p) , u (T0 (u0, u1, p)) = −
(

p+1
2 E (0)

) 1
p+1

.

Using the continuity and negativity of u′ in [0, T0 (u0, u1, p)] we find

(3.4) u′ (t) = −
√

E (0) +
2

p + 1
u (t)p+1 ∀t ∈ [0, T0 (u0, u1, p)] .

From (3.4) , the identity (3.1) follows.

3.2 Some Properties Concerning T0 (0, u1, p)

Because of some difficulties in the graphing of T0 (u0, u1, p), we consider the
property of T0 (u0, u1, p) only for the case that u0 = 0 > u1 and p is even. After
some computations one can easily find that

T0 (0, u1, p) = (−u1)
1−p
1+p

(
p + 1

2

) 1
1+p

√
π

1 + p

Γ
(

1
1+p

)

Γ
(

p+3
2p+2

) .
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By Maple we get the graph of T0 (0, u1, p) below

Fig. 5. The graph of T0 (0, u1, p) , u1 ∈ [−5,−4]

Fig. 6. The graph of T0 (0, u1, p) , u1 ∈ [−4,−3]

Fig. 7. Graph of T0 (0,−1, p)
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From the pictures we see:

(i) for each fixed u1, there exists a constant c depends on u1 with T0 (0, u1, p) ≥
c (u1) for each p > 1 and

(ii) there exists a constant p0 so that T0 (0,−1, p) decreases in p ≥ p0 and in-

creases in p ∈ (1, p0).

4. EXISTENCE OF ZERO AND CRITICAL POINT

To the cases that E (0) > 0, a′ (0)2 < 4a (0)E (0) and that E (0) > 0 = u0 >
u1, we have the result.

Theorem 8. Suppose that u is the solution of the problem (0.1) with E (0) >
0and one of the following holds

(i) a′ (0)2 < 4a (0)E (0)
(ii) a′ (0)2 = 4a (0)E (0) and u1 < 0.

Then u possesses a critical point T0 (u0, u1, p) given by (3.1) , provided condition
(ii) holds or condition (i) together with a′ (0) > 0 holds ; under (i) , there exists
z < ∞ such that

(4.1) a (z) = 0.

For a′ (0) ≤ 0 and z1 (u0, u1, p) given by

(4.2) z1 (u0, u1, p) =

√
p2 − 1√

2

4a(0)

(p2−1)E(0)∫

0

dr√
2 − (p − 1)k2

3r
p+1

,

is the zero of a. Further we have

(4.3) T ≤ T ∗
7 (u0, u1, p) := (z1 + T ∗

5 ) (u0, u1, p) .

where k3 (u0, u1, p) =
(

p2−1
4 E (0)

) p−1
4

.

Furthermore we have

(4.4) lim
t→z1(u0 ,u1 ,p)

a (t) (z1 (u0, u1, p)− t)−2 = E (0) ,

(4.5) lim
t→z1(u0,u1 ,p)

(z1 (u0, u1, p)− t)−1 a′ (t) = −2E (0) ,
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(4.6) lim
t→z1(u0,u1 ,p)

a′′ (t) = 2E (0) ,

and a blows up at T ∗
7 (u0, u1, p) , that is, limt→T ∗

7 (u0,u1 ,p) 1/a (t) = 0.

For a′ (0) > 0 the zero z2 (u0, u1, p) of a is given by

z2 (u0, u1, p)(4.7)

=

√
p2 − 1√

2




β∫

0

dr√
2− (p − 1)k2

3r
p+1

+

β∫

α

dr√
2 − (p − 1)k2

3r
p+1


 ,

where α = 2
√

a(0)
(p2−1)E(0)

, β = p+1

√
2

(p−1)k2
3

and

(4.8) T ≤ T ∗
8 (u0, u1, p) := (z2 + T ∗

6 ) (u0, u1, p) .

Furthermore we have

(4.9) lim
t→z2(u0 ,u1,p)

a (t) (z2 (u0, u1, p)− t)−2 = E (0) ,

(4.10) lim
t→z2(u0 ,u1 ,p)

(z2 (u0, u1, p)− t)−1 a′ (t) = −2E (0) ,

(4.11) lim
t→z2(u0,u1 ,p)

a′′ (t) = 2E (0) ,

and a blows up at T ∗
8 (u0, u1, p) , that is, limt→T ∗

8 (u0,u1 ,p) 1/a (t) = 0.

Further, under the condition (ii) we have also that z3 (u0, u1, p)given by

(4.12) z3 (u0, u1, p) = 2t0 (u0, u1, p) ,

is a zero of a and

(4.13) T ≤ T ∗
9 (u0, u1, p) = (z3 + T ∗

5 ) (u0, u1, p)

and a blows up at T ∗
9 (u0, u1, p). Furthermore we have

(4.14) lim
t→z2(u0 ,u1,p)

a (t) (z2 (u0, u1, p)− t)−2 = E (0) ,

(4.15) lim
t→z2(u0 ,u1 ,p)

(z2 (u0, u1, p)− t)−1 a′ (t) = −2E (0) ,
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(4.16) lim
t→z2(u0 ,u1,p)

a′′ (t) = 2E (0) ,

Proof. We prove this theorem in four steps. First we show the estimates

(4.1) , (4.2) and (4.7); secondly (4.4) , (4.5) , (4.6) ; (4.9) , (4.10) and (4.11) ;
thirdly (4.3) and (4.8) , at last (4.12)− (4.16) .

Step 1. At first we prove the existence of z zero of a. By theorem 7 we find
that J (t) is defined in interval (0, T ) . Let us set

J̃ (t) := k3 (u0, u1, p)J (t) , q :=
p + 3
p − 1

,

A (t) := J̃ (t)2 , I (t) := A (t)−
q−1
4 .

Then I (t) = k3 (u0, u1, p)−
2

p−1 a (t)
1
2 , by (0.6) we have

(4.17) J̃ ′′ (t) = J̃ (t)q
in (0, T ) .

By (3.5) , Ẽ (t) can be defined at t = 0; under the conditions E (0) > 0 and
4a (0)E (0) > a′ (0)2 ,

(4.18) Ẽ (t) = Ẽ (0) = J̃ ′ (t)2 − 2
q + 1

J̃ (t)q+1 = − (p − 1)2

2 (p + 1)
k3 (u0, u1, p)2 .

Employing theorem 4 we obtain the existence of z, a zero of a, therefore (4.1)
is proved.

For A′ (0) = 2k3 (u0, u1, p)2 J (0)J ′ (0) ≥ 0, that is, a′ (0) ≤ 0, by theorem 4
we get J̃ (z1 (u0, u1, p)) = 0, where

(4.19)

z1 (u0, u1, p) =
2

q−1

I(0)∫

0

dr√
2

q+1
+ Ẽ (0) r

2q+2
q−1

=
p−1

2

4a(0)

(p2−1)E(0)∫

0

dr√
p−1
p+1

− (p−1)2

2 (p+1)
k3 (u0, u1, p)2 rp+1

.

The estimates (4.19) and (4.2) are equivalent.
For A′ (0)<0, that is, a′ (0)>0 by (1.1.2) we get J̃ (z2 (u0, u1, p))=0, where
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(4.20)

z2 (u0, u1, p)

=

√
p2 − 1
2




p+1
2

(p − 1)k2
3∫

0

+

p+1
2

(p − 1)k2
3∫

I(0)




dr√
1 − p − 1

2
k2

3r
p+1

,

where k3 = k3 (u0, u1, p) . The estimates (4.20) and (4.7) are equivalent.

Step 2. To (4.4) and (4.9) for m = 1, 2, by (2.1.1) we get

(4.21)
limt→zm(u0,u1 ,p) (zm (u0, u1, p)− t)

4
q−1 A (t)

= 2
2

q−1 (q + 1)
2

q−1 (q − 1)−
4

q−1 .

Using (4.21) we obtain that

(4.22)

limt→zm(u0 ,u1,p) (zm (u0, u1, p)− t)p−1 k2
3J (t)2

= 2
p−1
2

(
2p + 2
p − 1

) p−1
2

(
4

p − 1

)1−p

for m = 1, 2 .

The estimates (4.22) and (4.4) , (4.9) are equivalent for m = 1, 2 respectively.
To (4.5) and (4.10) for m = 1, 2, applying (2.1.2) we find

(4.23)
limt→zm(u0 ,u1,p) (zm (u0, u1, p)− t)

q+3
q−1 A′ (t)

= 2
2q

q−1 (q + 1)
2

q−1 (q − 1)−
q+3
q−1 .

From (4.23) it follows

(4.24)

limt→zm(u0 ,u1,p)
p−1
4a(t)k3 (u0, u1, p)2 (zm (u0, u1, p)− t)p J (t)2 a′ (t)

= 2
p+1
2

(
2p+2
p−1

) p−1
2

(
4

p−1

)−p
for m = 1, 2.

Together with (4.22) and (4.24) we obtain that
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(4.25) lim
t→zm(u0,u1 ,p)

(zm (u0, u1, p)− t) a (t)−1 a′ (t) = −2, m = 1, 2.

Together (4.25) , (4.4) and (4.9) , imply (4.2.5) and (4.2.10) .

The estimates (4.6) and (4.11) follow from (0.5) and the fact that

lim
t→z−m(u0,u1 ,p)

u′ (t)2 = E (0) , m = 1, 2.

Step 3. Suppose that T > T ∗
7 (u0, u1, p) , then by the fact that u (z1 (u0, u1, p)) =

0 and u ∈ H2 we find that

a′ (z1 (u0, u1, p))2 = 4a (z1 (u0, u1, p))u′ (z1 (u0, u1, p))2 = 0.

Using u′ (z1 (u0, u1, p)) > 0 and theorem 5, u must blow up in a finite time
since E (z1 (u0, u1, p)) = E (0) > 0 at T ∗

7 (u0, u1, p) .

For the case that a′ (0) > 0, the arguments for the assertion that T ≤ T ∗
8 (u0, u1, p)

are similar to the above and the existence of critical point of u is obtained by the
mean value theorem for ordinary C1−function under the condition (i) .

Step 4. Under the condition (ii) we claim that there exists no strictly monotone
negative solution, that is, if u is the solution of (0.1) , then u′ posses a zero; if not,
according to the negativeness of u, u′ in the neighborhood of zero and (0.4) , one
can see that

−u (t) ≤
(

p + 1
2

u2
1

)1/(p+1)

and

u′ (t) = −
√

u2
1 +

2
p + 1

u (t)p+1 ∀t ≥ 0,

therefore we find

t =
∫ −u(t)

0

dr√
u2

1 −
2

p + 1
rp+1

≤ (−u1)
1−p
1+p

(
p + 1

2

) 1
1+p

∫ 1

0

dr√
1 − sp+1

< 2−
p+2
p+1 (−u1)

1−p
1+p (p + 1)

1
p+1 π,
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but this is impossible for large t; thus u must posses a critical point at t =
T0 (u0, u1, p).

Now we show the existence of zero of u. Suppose that u (t) < 0 for each t > 0,
then by the increasing nature of u′ we know that

u′ (t) =
√

u2
1 +

2
p + 1

u (t)p+1 ∀t ≥ T0 (u0, u1, p)

and

(4.26)
∫ −u(T0(u0,u1 ,p))

−u(t)

dr√
u2

1 − 2
p+1rp+1

= t − T0 (u0, u1, p) ,

by a similar argument to the above, we get also a contradiction; therefore we get the

existence of zero of u. Using (4.26) one can easily obtain the assertions (4.12)−
(4.16).

Property Concerning Zero z1 (u0, u1, p)

Since the analysis concerning the zeros is very complex, we merely discuss

z1 (u0, u1, p) and u1 = 0, and by (4.2) we have

z1 (u0, 0, p) = (−u0)
− p−1

2

√
π

2p + 2

Γ
(

1
p + 1

)

Γ
(

p + 3
2p + 2

) .

Using Maple we get the graphs of z1 (u0, 0, p)

Fig. 8. Graph of z1 (u0, 0, p) , u0 < 0.
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Fig. 9. Graph of z1 (u0,0, p) , u0 > 0.

Fig. 10. Graph of z1 for some −u0 > 1.

Fig. 11. Graph of z1 for some −u0 ≤ 1.
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From the above pictures one can easily find that:

• z1 (u0, 0, p) decreases in −u0 for fixed p.

• for fixed u0 with −u0 > 1, z1 (u0, 0, p) decreases in p.

• for fixed u0 with −u0 ≤ 1, z1 (u0, 0, p) increases in p.

5. STABILITY AND INSTABILITY

We now consider the applications of the theorems above to the stability theory

for the problem

(∗)

{
u′′ (t) = u (t)p ,

u (0) = ε1, u
′ (0) = ε2.

We say the problem (∗) is stable under condition F, if any nontrivial global solution
u ∈ C2 (R+) of (∗) under the condition F satisfies

‖u‖C2 → 0 for |ε1| + |ε2| → 0.

According to the theorems 4-9 we have the following result.

Cor 11. The problem (∗) is stable under Eu (0) = 0, ε1ε2 < 0 and unstable
under the following one of the followings

(i) Eu (0) < 0,

(ii) Eu (0) = 0 < ε1ε2,

(iii) Eu (0) > 0, ε2
2 +

1
p + 1

εp+1
1 > 0,

(iv) Eu (0) > 0, ε1 = 0, ε2 > 0,

(v) Eu (0) > 0 > ε2 and p is odd.

Theorems 4 through 9 may be summarized in the following tables

Life − span of a := T ∗, T ∗
i := T ∗

i (u0, u1, p) , i = 1, 2, · · ·6,

zj (u0, u1, p) := zj , j = 1, 2; t0 := t0 (u0, u1, p) ,

Energy = E (0) , Ê (0) := a′ (0)2 − 4a (0)E (0) ,

Blow − up rate for a := α1, Blow − up constant for a := K1,

Blow − up rate for a′ := α2, Blow − up constant for a′ := K2,

Blow − up rate for a′′ := α3, Blow − up constant for a′′ := K3.
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E (0) E (0) < 0 E (0) = 0

T ∗ (i) a′ (0) ≥ 0, T ∗ ≤ T ∗
1

(ii) a′ (0) < 0, T ∗ ≤ T ∗
2

(i) a′ (0) > 0, T ∗ ≤ T ∗
3 .

(ii) a′ (0) < 0, T ∗ = ∞.
(iii) a′ (0) = 0, T ∗ = ∞, u ≡ 0.

α1, K1
4

p−1 , K1 (p) 4
p−1 , K1 (p)

α2, K2
p+3
p−1 , K2 (p) p+3

p−1 , K2 (p)
α3, K3

2p+2
p−1 , K3 (p) 2p+2

p−1 , K3 (p)

E (0)>0 Ê (0)<0, a′ (0)≤0 Ê (0)<0, a′ (0)>0 Ê (0) = 0, u1 <0,

p is even

T ∗ T ∗ ≤ z1 + T ∗
5 T ∗ ≤ z2 + T ∗

6 T ∗ ≤ 2t0 + T ∗
5

Zero z = z1 z = z2 z = 2t0

E (0)>0, Ê (0) Ê (0)>0 Ê (0)=0, u1>0 Ê (0)=0, u1<0, p is odd

T ∗ T ∗ ≤ T ∗
4 T ∗ ≤ T ∗

5 T ∗ ≤ T ∗
6

α1, K1
4

p−1 , K1 (p) 4
p−1 , K1 (p) 4

p−1 , K1 (p)
α2, K2

p+3
p−1 , K2 (p) p+3

p−1 , K2 (p) p+3
p−1 , K2 (p)

α3, K3
2p+2
p−1 , K3 (p) 2p+2

p−1 , K3 (p) 2p+2
p−1 , K3 (p)
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2. M. R. Li, Estimates for the life-span of solutions for semilinear wave equations.

Proceedings of the Workshop on Differential Equations V. National Tsing-Hua Uni.

Hsinchu, Taiwan, Jan. 10-11, 1997,.

Departments of Mathematical Sciences,

Chengchi University,

Taipei 107,

Taiwan, R.O.C.


