TAIWANESE JOURNAL OF MATHEMATICS Vol. 8, No. 4, pp. 739-745, December 2004 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON GENERALIZED k-DIAMETER OF k-REGULAR k-CONNECTED GRAPHS

Xinmin Hou and Tianming Wang

Abstract. In this paper, motivated by the study of the wide diameter and the Rabin number of graphs, we define the generalized k-diameter of k-connected graphs, and show that every k-regular k-connected graph on n vertices has the generalized k-diameter at most n/2 and this upper bound cannot be improved when n = 4k - 6 + i(2k - 4).

1. INTRODUCTION

Let G = G(V, E) be a simple connected graph on n vertices with $\kappa(G) = k$ and S, T be any pair of disjoint subsets of V(G) such that |S| = |T| = k. Then there are k vertex disjoint paths connecting S and T by Menger's Theorem [1]. Let $P_k(S,T)$ be a family of k vertex disjoint paths joining S and T, i.e.

$$P_k(S,T) = \{P_1, P_2, \cdots, P_k\}, |P_1| \le |P_2| \le \cdots \le |P_k|.$$

The generalized k-wide distance (or simply generalized k-distance), written as $gd_k(S,T)$, between S and T is the minimum $|P_k|$ among all $P_k(S,T)$, and the generalized k-wide diameter (or simply generalized k-diameter), denoted by $gd_k(G)$, of G is defined as the maximum generalized k-wide distance $gd_k(S,T)$ over all pairs S,T of disjoint subsets of V(G) with $|S| = |T| = k = \kappa(G)$, i.e.

$$gd_k(S,T) = \min_{P_k(S,T)} |P_k|,$$

and

$$gd_k(G) = \max\{gd_k(S,T): S, T \in V(G) \text{ and } |S| = |T| = k, S \cap T = \phi\}$$

Received April 3, 2002; accepted May 29, 2003.

Communicated by Gerard J. Chang.

Key words and phrases: Diameter, Generalized diameter.

²⁰⁰⁰ Mathematics Subject Classification: 05C40, 68R10.

^{*}Corresponding author. E-mail: xmhou@ustc.edu.cn

The definition of the generalized wide diameter of graph G is mainly motivated from the definitions of the wide diameter and the Rabin number of graphs, two parameters had been studied widely by various researchers (for example, see $[2] \sim [8]$).

In this paper, we show that every k-regular k-connected graph on n vertices has generalized k-diameter at most n/2 and this upper bound is tight when n = 4k - 6 + i(2k - 4).

2. MAIN RESULTS

Let

 $F(n,k) = \max\{gd_k(G) : G \text{ is } k \text{-regular } k \text{-connected graph with } n \text{ vertices } \}.$

The similar function f(n, k) about k-diameter $d_k(G)$ defined in [5] has been discussed in [5] and [3]. Clearly, F(n, 2) = n - 3, and $F(n, k) \le n - 2k + 1$. The following proposition provides the value of F(n, k) for large k.

Proposition 2.1. If either kn is even and $k \ge n/4 + 10/4 \ge 5$ or $n = 4k - 8 \ge 12$, then F(n, k) = n - 2k + 1.

Proof. Note that for a cycle of length $n \ge 4$ we have $gd_2(C_n) = n - 3$. Take graph G as $H_1 \cdot C_{n-2k+4} \cdot H_2$, where H_i (i = 1, 2) is a graph on k-2 vertices, i.e. G is a graph with vertex set $\{u_1, u_2, \dots, u_{k-2}, v_1, v_2, \dots, v_{n-2k+4}, w_1, w_2, \dots, w_{k-2}\}$ such that subset $\{v_1, v_2, \dots, v_{n-2k+4}\}$ spans C_{n-2k+4} , subgraph induced by $\{u_1, u_2, \dots, v_{n-2k+4}\}$ \dots, u_{k-2} is isomorphic to H_1 and u_i is adjacent to $v_1, v_2, \dots, v_{n-3k+7}$, subgraph induced by $\{w_1, w_2, \dots, w_{k-2}\}$ is isomorphic to H_2 and w_i is adjacent to $v_{n-3k+8}, v_{n-3k+9}, \cdots, v_{n-2k+4}$, and u_i is adjacent to w_i , respectively, for $i = v_{n-3k+8}$ $1, 2, \dots, k-2$. One can easily see that if H_1 is k-1-(n-3k+7)=4k - n - 8 connected and H_2 is 2-connected then G is k-connected and the generalized k-distance between vertex set $\{u_1, u_2, \dots, u_{k-2}, v_1, v_2\}$ and vertex set $\{w_1, w_2, \dots, w_{k-2}, v_{n-2k+3}, v_{n-2k+4}\}$ is equal to n-2k+1. Thus, in order to get k-regular k-connected graph G with $gd_k(G) = n - 2k + 1$, it is enough to take as H_1 a graph with no edges when n = 4k - 8, and any *l*-regular *l*-connected graph with k-2 vertices when $l = 4k - n - 8 \ge 2$, and take as H_2 a 2-regular 2-connected graph on k-2 vertices (note that, since kn is even, so is $l \cdot (k-2)$) and since 2(k-2) is even graphs H_1 and H_2 always exist).

The following theorem shows that even for small k, F(n, k) is bounded by n/2.

Theorem 2.2. If kn is even and $k \ge 3$ then $F(n, k) \le n/2$.

740

Proof. Let G be a k-regular k-connected graph on $n \ge 2k$ vertices and S, T be two disjoint k-subsets of V(G) such that $gd_k(S,T) = gd_k(G)$ and

$$P_k(S,T) = \{P_1, P_2, \cdots, P_k\}, \quad |P_1| \le |P_2| \le \cdots \le |P_k| = gd_k(G)$$

be such a family of k vertex disjoint paths between S and T that for every other family

$$P'_k(S,T) = \{P'_1, P'_2, \cdots, P'_k\}, \quad |P'_1| \le |P'_2| \le \cdots \le |P'_k| = gd_k(G),$$

we have $\sum_{i=1}^{k} |P'_i| \ge \sum_{i=1}^{k} |P_i|$. Moreover, let A denotes the subset of all vertices of G which belong to none of the paths P_1, P_2, \dots, P_k . G has n vertices, so

(1)
$$\sum_{i=1}^{k} (|P_i|+1) + |A| = \sum_{i=1}^{k} |P_i| + k + |A| = n.$$

We estimate from below the number of edges in G. The number of edges which belong to paths from $P_k(S,T)$ is equal to $\sum_{i=1}^k |P_i|$. Furthermore, no two vertices which belong to path P_k are joined by an edge which does not belong to path P_k (otherwise P_k would be replaced by a shorter path, contradicting the choice of $P_k(S,T)$), so there exist precisely $(k-2)(|P_k|-1)+2(k-1)=(k-2)|P_k|+k$ edges incident to vertices from path P_k which are not contained in it. We shall show that there exist at least |A| edges which are neither contained in one of the paths from $P_k(S,T)$ nor incident to vertices of P_k .

Let *H* be a component of a subgraph induced in *G* by set *A*, and let |H| be the number of vertices of *H*. We shall prove that at least |H| edges of *G* are incident to vertices from *H* and not incident to vertices from P_k . If *H* contains a cycle it contains at least |H| edges so it is enough to consider the case when *H* is a tree.

Case 1. k = 3

Note that H is adjacent to at most |H| + 2 vertices of path $P_k = v_0v_1 \cdots v_{|P_k|}$, say $v_{l+1}, v_{l+2}, \cdots, v_{l+|H|+2}$, where $v_0 \in S$ and $v_{|P_k|} \in T$. Indeed, otherwise one could find vertices v_i and v_j with $j - i \ge |H| + 2$, both adjacent to H, and replace P_k by a shorter path using vertices of H instead of $v_{i+1}v_{i+2} \cdots v_{j-1}$. Furthermore, at least one of the vertices $v_{l+2}, v_{l+3}, \cdots, v_{l+|H|+1}$ must have a neighbor outside H since otherwise graph G could be disconnected by deleting vertices v_{l+1} and $v_{l+|H|+2}$. We note that both vertices v_{l+1} and $v_{l+|H|+2}$ can be adjacent to only one vertex of H. Indeed, otherwise one could find vertices x and y with distance less than |H| - 1 in H adjacent to v_{l+1} and $v_{l+|H|+2}$, respectively , and replace P_k by a shorter path using vertices of the shortest path from x to y in H instead of $v_{l+2}v_{l+3} \cdots v_{l+|H|+1}$. Thus, P_k sends to H at most |H| + 2 - 1 = |H| + 1 edges, so at least

$$3|H| - (|H| - 1) - (|H| + 1) = |H|$$

edges incident to H are not incident to vertices from P_k .

Case 2. k = 4 and H is a path

Similarly as in the previous case, H must be adjacent to at most |H| + 2vertices of path $P_k = v_0v_1 \cdots v_{|P_k|}$, say $v_{l+1}v_{l+2} \cdots v_{l+|H|+2}$, where at least two of the vertices $v_{l+2}, v_{l+3}, \cdots, v_{l+|H|+1}$ have neighbors outside H. Furthermore, it is not hard to see that both vertices v_{l+1} and $v_{l+|H|+2}$ can be adjacent to only one vertex of the path H, namely to one of its ends. Hence, the number of edges between P_k and H is bounded above by 2 + 2|H| - 2, so at least

$$4|H| - 2|H| - (|H| - 1) = |H| + 1$$

edges incident to H are not incident to vertices from P_k .

Case 3. k = 4 and H is not a path

Since now the diameter of H is less than |H| - 1, it is adjacent only to at most |H| + 1 vertices of path P_k , from which at least two have neighbors outside H. Thus, similarly as in the previous two cases, the number of edges incident to H but not to P_k is bounded below by

$$4|H| - 2(|H| + 1) + 2 - (|H| - 1) = |H| + 1.$$

Case 4. $k \ge 5$

Note that no vertex from H is adjacent to more than three vertices from P_k since otherwise path P_k could be replaced by a shorter one. Hence, G contains at least

$$k|H| - 3|H| - (|H| - 1) \ge |H| + 1.$$

edges incident to vertices from H not incident to vertices from P_k .

Thus we have shown that there are at least |A| edges in G which are neither contained in some k paths nor incident to vertices from P_k , so

(2)
$$\sum_{i=1}^{k} |P_i| + (k-2)|P_k| + k + |A| \le nk/2.$$

Now subtracting (1) from (2) and dividing by k - 2 gives n/2 as the upper bound for $|P_k|$.

Remark. Note that from the proof it follows that, when k > 5, $gd_k(S,T) = n/2$ only if all vertices of G lies on some path from $P_k(S,T)$ and all edges of G either belong to a path from $P_k(S,T)$ or are incident to some vertices from P_k .

The above bound for F(n, k) cannot be improved in general case. In fact, the equality $F(n, k) = \lfloor n/2 \rfloor$ holds for infinitely many pairs k and n.

742

Proposition 2.3. Let n = 2k - 3 + i(k - 2), where $3 \le k \le n$, $i = 1, 2, \dots$, and i > 1 if k = 3, then F(2n, k) = n.

Proof. We shall construct a k-regular k-connected graph G(2n, k) with 2n = 4k - 6 + i(2k - 4) vertices for which $gd_k(G(2n, k)) = n$. The set of vertices of G(2n, k) contains vertices v_j , $j = 0, 1, \dots, n$ and w_l^m , where $l = 1, 2 \dots, k - 2$ and $m = 0, 1, \dots, i, i + 1$. The set of edges of G(2n, k) consists of the following pairs of vertices:

- (a) $\{v_j, v_{j+1}\}$ for $j = 0, 1, \dots, n-1$,
- (b) $\{v_0, w_1^0\}, \{w_1^0, w_{k-2}^{i+1}\}, \text{ and } \{v_n, w_{k-2}^{i+1}\},\$
- (c) $\{v_0, w_l^0\}$ for $l = 2, \dots, k-2$, and $\{v_0, w_1^1\}$,
- (d) $\{v_n, w_l^{i+1}\}$ for $l = 1, 2, \dots, k-3$ and $\{v_n, w_{k-2}^i\},$
- (e) $\{w_l^m, w_l^{m+1}\}$ for $l = 2, 3, \dots, k-3, m = 0, 1, \dots, i$,
- (f) $\{w_1^m, w_1^{m+1}\}$ for $m = 1, 2, \cdots, i$,
- (g) $\{w_{k-2}^m, w_{k-2}^{m+1}\}$ for $m = 0, 1, \cdots, i-1$,
- (h) $\{w_l^m, v_{m(k-2)+s}\}$ for $l = 1, 2, \dots, k-2, m = 0, 1, \dots, i, i+1$ and $s = 1, 2, \dots, k-2$.

Graph G(14, 4) is given in Fig. 1.

Let $S = \{w_l^0 | l = 1, 2, \dots, k-2\} \cup \{w_1^1, v_0\}$ and $T = \{w_l^{i+1} | l = 1, 2, \dots, k-2\} \cup \{w_{k-2}^i, v_n\}$. One can easily check that G(2n, k) is k-regular k-connected and the only family of k vertex disjoint paths between S and T consists of paths $w_1^0 w_{k-2}^{i+1}$, $v_0 v_1 \cdots v_n$, $w_1^1 w_1^2 \cdots w_1^{i+1}$, $w_{k-2}^0 \cdots w_{k-2}^i$ and k-4 paths $w_l^0 w_l^1 \cdots w_l^{i+1}$, $l = 2, \dots, k$ -

Fig. 1. G (14, 4)

One might expect that equality $F(n,k) = \lfloor n/2 \rfloor$ holds for every n and k such that nk is even and $3 \le k \le \lfloor n/2 \rfloor$. The next result shows that it is not true.

Proposition 2.4. If $n \ge 18$ and $n/3 + 3 \le k \le n/2$ then F(2n, k) < n.

Proof. Due to the observation we made after the proof of Theorem 2.2, the equality F(2n,k) = n can hold only if for some disjoint vertex sets S, T, a family of paths $P_k(S,T)$ contains all vertices of the graph and each edge of the graph which dose not belong to paths from $P_k(S,T)$ is incident to P_k . Suppose that for the two disjoint vertex sets S, T with |S| = |T| = k of a k-regular kconnected graph on 2n vertices we have $gd_k(S,T) = n$. Then, G contains n-1vertices outside path $P_k = v_0 v_1 v_2 \cdots v_{n-1} v_n$, where $v_0 \in S, v_n \in T$. So, since $n/3 + 3 \le k \le n/2, P_{k-1} = w_0 w_1 w_2 \cdots w_l$ for some $2 \le l \le n/3 - 4$. Vertex w_0 has $k-1 \ge n/3+2$ neighbors lying on P_k , and w_1 has $k-2 \ge n/3+1$ neighbors lying on P_k , and $k-1 \ge n/3+2$ neighbors lying on P_k for vertex w_l , so w_0 is adjacent to some vertex v_i with $i \ge n/3 + 1$ and w_l is adjacent to some vertex v_i with $j \leq 2n/3 - 1$, then vertex w_1 is adjacent to some vertex v_m with m < n/3 + 1 or m > 2n/3 - 1. Thus, paths P_{k-1} and P_k could be replaced by $P'_{k-1} = v_0 v_1 v_2 \cdots v_m w_1 w_2 \cdots w_l$ and $P'_k = w_0 v_i v_{i+1} \cdots v_{n-1} v_n$ of lengths $|P'_{k-1}| = m + 1 + l - 1 = m + l < n/3 + 1 + n/3 - 4 = 2n/3 - 3 < n$ and $|P'_k| = 1 + n - i = n - i + 1 \le 2n/3 < n$ if m < n/3 + 1, or $P''_{k-1} = v_0 v_1 \cdots v_j w_l$ and $P_k'' = w_0 w_1 v_m v_{m+1} \cdots v_n$ of lengths $|P_{k-1}''| = j+1 \leq 2n/3 < n$ and $|P_k''| = 2 + n - m < n/3 + 3 < n$ if m > 2n/3 - 1, so $gd_k(S, T) < n$, contradicts to $gd_k(S,T) = n$.

ACKNOWLEDGMENTS

We thank the referee for many useful suggestions.

References

- 1. F. Harary, Graph theory, Addison-Wesley Publishing Company, Inc, 1969, 47-52.
- 2. X. Hou and T. Wang, On generalized wide diameter of graphs, *Taiwanese Journal* of *Mathematics*, **7** (2003), 339-345.
- 3. X. Hou and T. Wang, An Algorithm to construct *k*-regular *k*-connected graphs with maximum *k*-diameter, *Graphs and Combinatorics*, **19** (2003), 111-119.
- Frank D. Hsu, On container width and length in graphs, groups, and networks, IEICE Transactions On Fundamentals of Electronics, *Communications and Computer Sciences*, Vol. E77-A, No. 4, (1994), 668-680.

- 5. D. F. Hsu and T. Luczak, Note on the *k*-diameter of *k*-regular *k*-connected graphs, *Discrete Mathematics*, **133** (1994), 291-296.
- 6. S-C. Liaw and G. J. Chang, Rabin numbers of butterfly networks, *Discrete Mathematics* **196** (1999), 219-227.
- 7. S-C. Liaw and G. J. Chang, Generalized diameters and Rabin numbers of networks, *Journal of Combinatorial Optimization* **4** (1999), 371-384.
- 8. S-C. Liaw, G. J. Chang, F. Cao and D. F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networs, *Annals of Combinatorics* **2** (1998), 165-172.

Xinmin Hou Department of Mathematics, University of Science and Technology of China, Hefei 230026, and Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China E-mail: xmhou@ustc.edu.cn

Tianming Wang Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China E-mail: wangtm@dlut.edu.cn