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ON GENERALIZED k-DIAMETER OF k-REGULAR k-CONNECTED
GRAPHS

Xinmin Hou and Tianming Wang

Abstract. In this paper, motivated by the study of the wide diameter and the
Rabin number of graphs, we define the generalized k-diameter of k-connected
graphs, and show that every k-regular k-connected graph on n vertices has the
generalized k-diameter at most n/2 and this upper bound cannot be improved
when n = 4k − 6 + i(2k − 4).

1. INTRODUCTION

Let G = G(V, E) be a simple connected graph on n vertices with κ(G) = k
and S, T be any pair of disjoint subsets of V (G) such that |S| = |T | = k. Then
there are k vertex disjoint paths connecting S and T by Menger’s Theorem [1]. Let
Pk(S, T ) be a family of k vertex disjoint paths joining S and T , i.e.

Pk(S, T ) = {P1, P2, · · · , Pk}, |P1| ≤ |P2| ≤ · · · ≤ |Pk|.
The generalized k-wide distance (or simply generalized k-distance), written as
gdk(S, T ), between S and T is the minimum |Pk| among all Pk(S, T ), and the gen-
eralized k-wide diameter (or simply generalized k-diameter), denoted by gdk(G), of
G is defined as the maximum generalized k-wide distance gdk(S, T ) over all pairs
S, T of disjoint subsets of V (G) with |S| = |T | = k = κ(G), i.e.

gdk(S, T ) = min
Pk(S,T )

|Pk|,

and

gdk(G) = max{gdk(S, T ) : S, T ∈ V (G) and |S| = |T| = k, S∩ T = φ}.
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The definition of the generalized wide diameter of graph G is mainly moti-
vated from the definitions of the wide diameter and the Rabin number of graphs,
two parameters had been studied widely by various researchers (for example, see
[2]∼[8]).

In this paper, we show that every k-regular k-connected graph on n vertices
has generalized k-diameter at most n/2 and this upper bound is tight when n =
4k − 6 + i(2k − 4).

2. MAIN RESULTS

Let

F (n, k) = max{gdk(G) : G is k-regular k-connected graph with n vertices }.

The similar function f(n, k) about k-diameter dk(G) defined in [5] has been dis-
cussed in [5] and[3]. Clearly, F (n, 2) = n − 3, and F (n, k) ≤ n − 2k + 1. The
following proposition provides the value of F (n, k) for large k.

Proposition 2.1. If either kn is even and k ≥ n/4 + 10/4 ≥ 5 or n =
4k − 8 ≥ 12, then F (n, k) = n − 2k + 1.

Proof. Note that for a cycle of length n ≥ 4 we have gd2(Cn) = n − 3. Take
graph G as H1 ·Cn−2k+4 ·H2, where Hi (i = 1, 2) is a graph on k−2 vertices, i.e. G
is a graph with vertex set {u1, u2, · · · , uk−2, v1, v2, · · · , vn−2k+4, w1, w2, · · · , wk−2}
such that subset {v1, v2, · · · , vn−2k+4} spans Cn−2k+4, subgraph induced by {u1, u2,
· · · , uk−2} is isomorphic to H1 and ui is adjacent to v1, v2, · · · , vn−3k+7, sub-
graph induced by {w1, w2, · · · , wk−2} is isomorphic to H2 and wi is adjacent to
vn−3k+8, vn−3k+9, · · · , vn−2k+4, and ui is adjacent to wi, respectively, for i =
1, 2, · · · , k − 2. One can easily see that if H1 is k − 1 − (n − 3k + 7) =
4k − n − 8 connected and H2 is 2-connected then G is k-connected and the
generalized k-distance between vertex set {u1, u2, · · · , uk−2, v1, v2} and vertex set
{w1, w2, · · · , wk−2, vn−2k+3, vn−2k+4} is equal to n − 2k + 1. Thus, in order to
get k-regular k-connected graph G with gdk(G) = n − 2k + 1, it is enough to
take as H1 a graph with no edges when n = 4k − 8, and any l-regular l-connected
graph with k − 2 vertices when l = 4k − n − 8 ≥ 2, and take as H2 a 2-regular
2-connected graph on k − 2 vertices (note that, since kn is even, so is l · (k − 2)
and since 2(k − 2) is even graphs H1 and H2 always exist).

The following theorem shows that even for small k, F (n, k) is bounded by n/2.

Theorem 2.2. If kn is even and k ≥ 3 then F (n, k) ≤ n/2.
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Proof. Let G be a k-regular k-connected graph on n ≥ 2k vertices and S, T be
two disjoint k-subsets of V (G) such that gdk(S, T ) = gdk(G) and

Pk(S, T ) = {P1, P2, · · · , Pk}, |P1| ≤ |P2| ≤ · · · ≤ |Pk| = gdk(G)

be such a family of k vertex disjoint paths between S and T that for every other
family

P ′
k(S, T ) = {P ′

1, P
′
2, · · · , P ′

k}, |P ′
1| ≤ |P ′

2| ≤ · · · ≤ |P ′
k| = gdk(G),

we have
∑k

i=1 |P ′
i | ≥

∑k
i=1 |Pi|. Moreover, let A denotes the subset of all vertices

of G which belong to none of the paths P1, P2, · · · , Pk. G has n vertices, so

(1)
k∑

i=1

(|Pi|+ 1) + |A| =
k∑

i=1

|Pi| + k + |A| = n.

We estimate from below the number of edges in G. The number of edges which
belong to paths from Pk(S, T ) is equal to

∑k
i=1 |Pi|. Furthermore, no two vertices

which belong to path Pk are joined by an edge which does not belong to path
Pk (otherwise Pk would be replaced by a shorter path, contradicting the choice of
Pk(S, T )), so there exist precisely (k − 2)(|Pk| − 1) + 2(k − 1) = (k − 2)|Pk|+ k

edges incident to vertices from path Pk which are not contained in it. We shall
show that there exist at least |A| edges which are neither contained in one of the
paths from Pk(S, T ) nor incident to vertices of Pk.

Let H be a component of a subgraph induced in G by set A, and let |H | be the
number of vertices of H . We shall prove that at least |H | edges of G are incident
to vertices from H and not incident to vertices from Pk. If H contains a cycle it
contains at least |H | edges so it is enough to consider the case when H is a tree.

Case 1. k = 3

Note that H is adjacent to at most |H |+ 2 vertices of path Pk = v0v1 · · ·v|Pk|,
say vl+1, vl+2, · · · , vl+|H |+2, where v0 ∈ S and v|Pk| ∈ T . Indeed, otherwise one
could find vertices vi and vj with j − i ≥ |H |+ 2, both adjacent to H , and replace
Pk by a shorter path using vertices of H instead of vi+1vi+2 · · ·vj−1. Furthermore,
at least one of the vertices vl+2, vl+3, · · · , vl+|H |+1 must have a neighbor outside
H since otherwise graph G could be disconnected by deleting vertices vl+1 and
vl+|H |+2. We note that both vertices vl+1 and vl+|H |+2 can be adjacent to only one
vertex of H . Indeed, otherwise one could find vertices x and y with distance less
than |H | − 1 in H adjacent to vl+1 and vl+|H |+2, respectively , and replace Pk

by a shorter path using vertices of the shortest path from x to y in H instead of
vl+2vl+3 · · ·vl+|H |+1. Thus, Pk sends to H at most |H |+ 2 − 1 = |H |+ 1 edges,
so at least

3|H | − (|H | − 1)− (|H |+ 1) = |H |
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edges incident to H are not incident to vertices from Pk.

Case 2. k = 4 and H is a path

Similarly as in the previous case, H must be adjacent to at most |H | + 2
vertices of path Pk = v0v1 · · ·v|Pk|, say vl+1vl+2 · · ·vl+|H |+2, where at least two
of the vertices vl+2, vl+3, · · · , vl+|H |+1 have neighbors outside H . Furthermore,
it is not hard to see that both vertices vl+1 and vl+|H |+2 can be adjacent to only
one vertex of the path H , namely to one of its ends. Hence, the number of edges
between Pk and H is bounded above by 2 + 2|H | − 2, so at least

4|H | − 2|H | − (|H | − 1) = |H |+ 1

edges incident to H are not incident to vertices from Pk.

Case 3. k = 4 and H is not a path

Since now the diameter of H is less than |H | − 1, it is adjacent only to at most
|H | + 1 vertices of path Pk , from which at least two have neighbors outside H .
Thus, similarly as in the previous two cases, the number of edges incident to H but
not to Pk is bounded below by

4|H | − 2(|H |+ 1) + 2 − (|H | − 1) = |H |+ 1.

Case 4. k ≥ 5

Note that no vertex from H is adjacent to more than three vertices from Pk

since otherwise path Pk could be replaced by a shorter one. Hence, G contains at
least

k|H | − 3|H | − (|H | − 1) ≥ |H |+ 1.

edges incident to vertices from H not incident to vertices from Pk.
Thus we have shown that there are at least |A| edges in G which are neither

contained in some k paths nor incident to vertices from Pk, so

(2)
k∑

i=1

|Pi|+ (k − 2)|Pk| + k + |A| ≤ nk/2.

Now subtracting (1) from (2) and dividing by k − 2 gives n/2 as the upper
bound for |Pk|.

Remark. Note that from the proof it follows that, when k > 5, gdk(S, T ) =
n/2 only if all vertices of G lies on some path from Pk(S, T ) and all edges of G
either belong to a path from Pk(S, T ) or are incident to some vertices from Pk.

The above bound for F (n, k) cannot be improved in general case. In fact, the
equality F (n, k) = �n/2� holds for infinitely many pairs k and n.
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Proposition 2.3. Let n = 2k− 3 + i(k− 2), where 3 ≤ k ≤ n, i = 1, 2, · · · ,

and i > 1 if k = 3, then F (2n, k) = n.

Proof. We shall construct a k-regular k-connected graph G(2n, k) with 2n =
4k − 6 + i(2k − 4) vertices for which gdk(G(2n, k)) = n. The set of vertices of
G(2n, k) contains vertices vj , j = 0, 1, · · · , n and wm

l , where l = 1, 2 · · · , k − 2
and m = 0, 1, · · · , i, i + 1. The set of edges of G(2n, k) consists of the following
pairs of vertices:

(a) {vj, vj+1} for j = 0, 1, · · · , n − 1,

(b) {v0, w
0
1}, {w0

1, w
i+1
k−2}, and {vn, wi+1

k−2},

(c) {v0, w
0
l } for l = 2, · · · , k − 2, and {v0, w

1
1},

(d) {vn, wi+1
l } for l = 1, 2, · · · , k − 3 and {vn, wi

k−2},

(e) {wm
l , wm+1

l } for l = 2, 3, · · · , k − 3, m = 0, 1, · · · , i,

(f) {wm
1 , wm+1

1 } for m = 1, 2, · · · , i,

(g) {wm
k−2, w

m+1
k−2 } for m = 0, 1, · · · , i− 1,

(h) {wm
l , vm(k−2)+s} for l = 1, 2, · · · , k − 2, m = 0, 1, · · · , i, i + 1 and s =

1, 2, · · · , k − 2.

Graph G(14, 4) is given in Fig. 1 .
Let S = {w0

l | l = 1, 2, · · · , k−2}∪{w1
1, v0} and T = {wi+1

l | l = 1, 2, · · · , k−
2}∪{wi

k−2, vn}. One can easily check that G(2n, k) is k-regular k-connected and the
only family of k vertex disjoint paths between S and T consists of paths w0

1w
i+1
k−2,

v0v1 · · ·vn, w1
1w

2
1 · · ·wi+1

1 , w0
k−2 · · ·wi

k−2 and k − 4 paths w0
l w

1
l · · ·wi+1

l , l =
2, · · · , k − 3.

Fig. 1. G (14, 4)



744 Xinmin Hou and Tianming Wang

One might expect that equality F (n, k) = �n/2� holds for every n and k such
that nk is even and 3 ≤ k ≤ �n/2�. The next result shows that it is not true.

Proposition 2.4. If n ≥ 18 and n/3 + 3 ≤ k ≤ n/2 then F (2n, k) < n.

Proof. Due to the observation we made after the proof of Theorem 2.2, the
equality F (2n, k) = n can hold only if for some disjoint vertex sets S, T , a
family of paths Pk(S, T ) contains all vertices of the graph and each edge of the
graph which dose not belong to paths from Pk(S, T ) is incident to Pk . Suppose
that for the two disjoint vertex sets S, T with |S| = |T | = k of a k-regular k-
connected graph on 2n vertices we have gdk(S, T ) = n. Then, G contains n − 1
vertices outside path Pk = v0v1v2 · · ·vn−1vn, where v0 ∈ S, vn ∈ T . So, since
n/3 + 3 ≤ k ≤ n/2, Pk−1 = w0w1w2 · · ·wl for some 2 ≤ l ≤ n/3 − 4. Vertex
w0 has k − 1 ≥ n/3 + 2 neighbors lying on Pk, and w1 has k − 2 ≥ n/3 + 1
neighbors lying on Pk , and k − 1 ≥ n/3 + 2 neighbors lying on Pk for vertex
wl, so w0 is adjacent to some vertex vi with i ≥ n/3 + 1 and wl is adjacent to
some vertex vj with j ≤ 2n/3 − 1, then vertex w1 is adjacent to some vertex
vm with m < n/3 + 1 or m > 2n/3 − 1. Thus, paths Pk−1 and Pk could be
replaced by P ′

k−1 = v0v1v2 · · ·vmw1w2 · · ·wl and P ′
k = w0vivi+1 · · ·vn−1vn of

lengths |P ′
k−1| = m+1+ l−1 = m+ l < n/3+1+n/3−4 = 2n/3−3 < n and

|P ′
k| = 1+n− i = n− i+1 ≤ 2n/3 < n if m < n/3+1, or P ′′

k−1 = v0v1 · · ·vjwl

and P ′′
k = w0w1vmvm+1 · · ·vn of lengths |P ′′

k−1| = j + 1 ≤ 2n/3 < n and
|P ′′

k | = 2 + n−m < n/3 + 3 < n if m > 2n/3− 1, so gdk(S, T ) < n, contradicts
to gdk(S, T ) = n.
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