TAIWANESE JOURNAL OF MATHEMATICS Vol. 8, No. 4, pp. 739-745, December 2004 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON GENERALIZED k**-DIAMETER OF** k**-REGULAR** k**-CONNECTED GRAPHS**

Xinmin Hou and Tianming Wang

Abstract. In this paper, motivated by the study of the wide diameter and the Rabin number of graphs, we define the generalized k -diameter of k -connected graphs, and show that every k -regular k -connected graph on n vertices has the generalized k-diameter at most $n/2$ and this upper bound cannot be improved when $n = 4k - 6 + i(2k - 4)$.

1. INTRODUCTION

Let $G = G(V, E)$ be a simple connected graph on n vertices with $\kappa(G) = k$ and S, T be any pair of disjoint subsets of $V(G)$ such that $|S| = |T| = k$. Then there are k vertex disjoint paths connecting S and T by Menger's Theorem [1]. Let $P_k(S,T)$ be a family of k vertex disjoint paths joining S and T, i.e.

$$
P_k(S,T) = \{P_1, P_2, \cdots, P_k\}, \quad |P_1| \le |P_2| \le \cdots \le |P_k|.
$$

The generalized k -wide distance (or simply generalized k -distance), written as $gd_k(S,T)$, between S and T is the minimum $|P_k|$ among all $P_k(S,T)$, and the generalized k-wide diameter (or simply generalized k-diameter), denoted by $gd_k(G)$, of G is defined as the maximum generalized k-wide distance $qd_k(S,T)$ over all pairs S, T of disjoint subsets of $V(G)$ with $|S| = |T| = k = \kappa(G)$, i.e.

$$
gd_k(S,T) = \min_{P_k(S,T)} |P_k|,
$$

and

$$
gd_k(G) = \max\{gd_k(S,T): S, T \in V(G) \text{ and } |S| = |T| = k, S \cap T = \phi\}.
$$

Received April 3, 2002; accepted May 29, 2003.

Communicated by Gerard J. Chang.

Key words and phrases: Diameter, Generalized diameter.

²⁰⁰⁰ *Mathematics Subject Classification*: 05C40, 68R10.

^{*}Corresponding author. E-mail: xmhou@ustc.edu.cn

The definition of the generalized wide diameter of graph G is mainly motivated from the definitions of the wide diameter and the Rabin number of graphs, two parameters had been studied widely by various researchers (for example, see [2]∼[8]).

In this paper, we show that every k -regular k -connected graph on n vertices has generalized k-diameter at most $n/2$ and this upper bound is tight when $n =$ $4k-6+i(2k-4).$

2. MAIN RESULTS

Let

 $F(n, k) = \max\{gd_k(G) : G$ is k-regular k-connected graph with n vertices }.

The similar function $f(n, k)$ about k-diameter $d_k(G)$ defined in [5] has been discussed in [5] and [3]. Clearly, $F(n, 2) = n - 3$, and $F(n, k) \leq n - 2k + 1$. The following proposition provides the value of $F(n, k)$ for large k.

Proposition 2.1. *If either kn is even and* $k \ge n/4 + 10/4 \ge 5$ *or* $n =$ $4k - 8 > 12$, then $F(n, k) = n - 2k + 1$.

Proof. Note that for a cycle of length $n \geq 4$ we have $qd_2(C_n) = n - 3$. Take graph G as $H_1 \nvert C_{n-2k+4} \nvert H_2$, where H_i ($i = 1, 2$) is a graph on $k-2$ vertices, i.e. G is a graph with vertex set $\{u_1, u_2, \cdots, u_{k-2}, v_1, v_2, \cdots, v_{n-2k+4}, w_1, w_2, \cdots, w_{k-2}\}$ such that subset $\{v_1, v_2, \cdots, v_{n-2k+4}\}$ spans C_{n-2k+4} , subgraph induced by $\{u_1, u_2,$ \cdots , u_{k-2} } is isomorphic to H_1 and u_i is adjacent to $v_1, v_2, \cdots, v_{n-3k+7}$, subgraph induced by $\{w_1, w_2, \cdots, w_{k-2}\}$ is isomorphic to H_2 and w_i is adjacent to $v_{n-3k+8}, v_{n-3k+9}, \cdots, v_{n-2k+4}$, and u_i is adjacent to w_i , respectively, for $i =$ $1, 2, \dots, k - 2$. One can easily see that if H_1 is $k - 1 - (n - 3k + 7) =$ $4k - n - 8$ connected and H_2 is 2-connected then G is k-connected and the generalized k-distance between vertex set $\{u_1, u_2, \cdots, u_{k-2}, v_1, v_2\}$ and vertex set $\{w_1, w_2, \dots, w_{k-2}, v_{n-2k+3}, v_{n-2k+4}\}$ is equal to $n-2k+1$. Thus, in order to get k-regular k-connected graph G with $gd_k(G) = n - 2k + 1$, it is enough to take as H_1 a graph with no edges when $n = 4k - 8$, and any l-regular l-connected graph with $k - 2$ vertices when $l = 4k - n - 8 \ge 2$, and take as H_2 a 2-regular 2-connected graph on $k - 2$ vertices (note that, since kn is even, so is $l \cdot (k - 2)$) and since $2(k-2)$ is even graphs H_1 and H_2 always exist). \blacksquare

The following theorem shows that even for small k, $F(n, k)$ is bounded by $n/2$.

Theorem 2.2. *If* kn *is even and* $k \geq 3$ *then* $F(n, k) \leq n/2$.

Proof. Let G be a k-regular k-connected graph on $n \geq 2k$ vertices and S, T be two disjoint k-subsets of $V(G)$ such that $gd_k(S,T) = gd_k(G)$ and

$$
P_k(S, T) = \{P_1, P_2, \cdots, P_k\}, \quad |P_1| \le |P_2| \le \cdots \le |P_k| = gd_k(G)
$$

be such a family of k vertex disjoint paths between S and T that for every other family

$$
P'_{k}(S,T) = \{P'_{1}, P'_{2}, \cdots, P'_{k}\}, \quad |P'_{1}| \leq |P'_{2}| \leq \cdots \leq |P'_{k}| = gd_{k}(G),
$$

we have $\sum_{i=1}^{k} |P'_i| \ge \sum_{i=1}^{k} |P_i|$. Moreover, let A denotes the subset of all vertices of G which belong to none of the paths P_1, P_2, \cdots, P_k . G has n vertices, so

(1)
$$
\sum_{i=1}^{k} (|P_i| + 1) + |A| = \sum_{i=1}^{k} |P_i| + k + |A| = n.
$$

We estimate from below the number of edges in G . The number of edges which belong to paths from $P_k(S, T)$ is equal to $\sum_{i=1}^k |P_i|$. Furthermore, no two vertices which belong to path P_k are joined by an edge which does not belong to path P_k (otherwise P_k would be replaced by a shorter path, contradicting the choice of $P_k(S,T)$), so there exist precisely $(k-2)(|P_k| - 1) + 2(k-1) = (k-2)|P_k| + k$ edges incident to vertices from path P_k which are not contained in it. We shall show that there exist at least $|A|$ edges which are neither contained in one of the paths from $P_k(S, T)$ nor incident to vertices of P_k .

Let H be a component of a subgraph induced in G by set A, and let |H| be the number of vertices of H. We shall prove that at least $|H|$ edges of G are incident to vertices from H and not incident to vertices from P_k . If H contains a cycle it contains at least $|H|$ edges so it is enough to consider the case when H is a tree.

Case 1. $k = 3$

Note that H is adjacent to at most $|H| + 2$ vertices of path $P_k = v_0v_1 \cdots v_{|P_k|}$, say $v_{l+1}, v_{l+2}, \cdots, v_{l+|H|+2}$, where $v_0 \in S$ and $v_{|P_k|} \in T$. Indeed, otherwise one could find vertices v_i and v_j with $j - i \geq |H| + 2$, both adjacent to H, and replace P_k by a shorter path using vertices of H instead of $v_{i+1}v_{i+2}\cdots v_{i-1}$. Furthermore, at least one of the vertices $v_{l+2}, v_{l+3}, \cdots, v_{l+|H|+1}$ must have a neighbor outside H since otherwise graph G could be disconnected by deleting vertices v_{l+1} and $v_{l+|H|+2}$. We note that both vertices v_{l+1} and $v_{l+|H|+2}$ can be adjacent to only one vertex of H . Indeed, otherwise one could find vertices x and y with distance less than $|H| - 1$ in H adjacent to v_{l+1} and $v_{l+|H|+2}$, respectively, and replace P_k by a shorter path using vertices of the shortest path from x to y in H instead of $v_{l+2}v_{l+3}\cdots v_{l+|H|+1}$. Thus, P_k sends to H at most $|H|+2-1=|H|+1$ edges, so at least

$$
3|H| - (|H| - 1) - (|H| + 1) = |H|
$$

edges incident to H are not incident to vertices from P_k .

Case 2. $k = 4$ and H is a path

Similarly as in the previous case, H must be adjacent to at most $|H| + 2$ vertices of path $P_k = v_0v_1 \cdots v_{|P_k|}$, say $v_{l+1}v_{l+2} \cdots v_{l+|H|+2}$, where at least two of the vertices $v_{l+2}, v_{l+3}, \cdots, v_{l+|H|+1}$ have neighbors outside H. Furthermore, it is not hard to see that both vertices v_{l+1} and $v_{l+|H|+2}$ can be adjacent to only one vertex of the path H , namely to one of its ends. Hence, the number of edges between P_k and H is bounded above by $2+2|H|-2$, so at least

$$
4|H| - 2|H| - (|H| - 1) = |H| + 1
$$

edges incident to H are not incident to vertices from P_k .

Case 3. $k = 4$ and H is not a path

Since now the diameter of H is less than $|H| - 1$, it is adjacent only to at most $|H| + 1$ vertices of path P_k , from which at least two have neighbors outside H. Thus, similarly as in the previous two cases, the number of edges incident to H but not to P_k is bounded below by

$$
4|H| - 2(|H| + 1) + 2 - (|H| - 1) = |H| + 1.
$$

Case 4. $k > 5$

Note that no vertex from H is adjacent to more than three vertices from P_k since otherwise path P_k could be replaced by a shorter one. Hence, G contains at least

$$
k|H| - 3|H| - (|H| - 1) \ge |H| + 1.
$$

edges incident to vertices from H not incident to vertices from P_k .

Thus we have shown that there are at least $|A|$ edges in G which are neither contained in some k paths nor incident to vertices from P_k , so

(2)
$$
\sum_{i=1}^{k} |P_i| + (k-2)|P_k| + k + |A| \leq nk/2.
$$

Now subtracting (1) from (2) and dividing by $k - 2$ gives $n/2$ as the upper bound for $|P_k|$.

Remark. Note that from the proof it follows that, when $k > 5$, $qd_k(S,T) =$ $n/2$ only if all vertices of G lies on some path from $P_k(S,T)$ and all edges of G either belong to a path from $P_k(S,T)$ or are incident to some vertices from P_k .

The above bound for $F(n, k)$ cannot be improved in general case. In fact, the equality $F(n, k) = |n/2|$ holds for infinitely many pairs k and n.

Proposition 2.3. *Let* $n = 2k - 3 + i(k - 2)$, *where* $3 \le k \le n$, $i = 1, 2, \cdots$, *and* $i > 1$ *if* $k = 3$ *, then* $F(2n, k) = n$ *.*

Proof. We shall construct a k-regular k-connected graph $G(2n, k)$ with $2n =$ $4k-6+i(2k-4)$ vertices for which $gd_k(G(2n,k))=n$. The set of vertices of $G(2n, k)$ contains vertices v_j , $j = 0, 1, \dots, n$ and w_l^m , where $l = 1, 2 \dots, k - 2$ and $m = 0, 1, \dots, i, i + 1$. The set of edges of $G(2n, k)$ consists of the following pairs of vertices:

- (a) $\{v_i, v_{i+1}\}\$ for $j = 0, 1, \dots, n-1$,
- (b) $\{v_0, w_1^0\}$, $\{w_1^0, w_{k-2}^{i+1}\}$, and $\{v_n, w_{k-2}^{i+1}\}$,
- (c) $\{v_0, w_l^0\}$ for $l = 2, \dots, k 2$, and $\{v_0, w_1^1\}$,
- (d) $\{v_n, w_i^{i+1}\}$ for $l = 1, 2, \dots, k-3$ and $\{v_n, w_{k-2}^i\}$,
- (e) $\{w_l^m, w_l^{m+1}\}$ for $l = 2, 3, \cdots, k-3, m = 0, 1, \cdots, i$,
- (f) $\{w_1^m, w_1^{m+1}\}$ for $m = 1, 2, \dots, i$,
- (g) $\{w_{k-2}^m, w_{k-2}^{m+1}\}$ for $m = 0, 1, \dots, i-1$,
- (h) $\{w_l^m, v_{m(k-2)+s}\}\$ for $l = 1, 2, \cdots, k-2, m = 0, 1, \cdots, i, i+1$ and $s =$ $1, 2, \cdots, k-2.$

Graph $G(14, 4)$ is given in Fig. 1.

Let $S = \{w_l^0 | l = 1, 2, \cdots, k-2\} \cup \{w_1^1, v_0\}$ and $T = \{w_l^{i+1} | l = 1, 2, \cdots, k-1\}$ 2}∪{ w_{k-2}^i, v_n }. One can easily check that $G(2n, k)$ is k-regular k-connected and the only family of k vertex disjoint paths between S and T consists of paths $w_1^0 w_{k-2}^{i+1}$, $v_0v_1 \cdots v_n$, $w_1^1w_1^2 \cdots w_1^{i+1}$, $w_{k-2}^0 \cdots w_{k-2}^i$ and $k-4$ paths $w_l^0w_l^1 \cdots w_l^{i+1}$, $l=$ $2, \cdots, k$ –

Fig. 1. G (14, 4)

One might expect that equality $F(n, k) = |n/2|$ holds for every n and k such that nk is even and $3 \leq k \leq \lfloor n/2 \rfloor$. The next result shows that it is not true.

Proposition 2.4. *If* $n \ge 18$ *and* $n/3 + 3 \le k \le n/2$ *then* $F(2n, k) < n$.

Proof. Due to the observation we made after the proof of Theorem 2.2, the equality $F(2n, k) = n$ can hold only if for some disjoint vertex sets S, T, a family of paths $P_k(S,T)$ contains all vertices of the graph and each edge of the graph which dose not belong to paths from $P_k(S,T)$ is incident to P_k . Suppose that for the two disjoint vertex sets S, T with $|S| = |T| = k$ of a k-regular kconnected graph on 2n vertices we have $gd_k(S,T) = n$. Then, G contains $n-1$ vertices outside path $P_k = v_0v_1v_2\cdots v_{n-1}v_n$, where $v_0 \in S$, $v_n \in T$. So, since $n/3+3 \le k \le n/2$, $P_{k-1} = w_0w_1w_2 \cdots w_l$ for some $2 \le l \le n/3-4$. Vertex *w*₀ has $k - 1 \ge n/3 + 2$ neighbors lying on P_k , and w_1 has $k - 2 \ge n/3 + 1$ neighbors lying on P_k , and $k - 1 \ge n/3 + 2$ neighbors lying on P_k for vertex w_l , so w_0 is adjacent to some vertex v_i with $i \geq n/3+1$ and w_l is adjacent to some vertex v_j with $j \leq 2n/3 - 1$, then vertex w_1 is adjacent to some vertex v_m with $m < n/3 + 1$ or $m > 2n/3 - 1$. Thus, paths P_{k-1} and P_k could be $\text{replaced by } P'_{k-1} = v_0 v_1 v_2 \cdots v_m w_1 w_2 \cdots w_l \text{ and } P'_k = w_0 v_i v_{i+1} \cdots v_{n-1} v_n \text{ of } P'_{k-1}$ lengths $|P'_{k-1}| = m+1+l-1 = m+l < n/3+1+n/3-4 = 2n/3-3 < n$ and $|P'_k| = 1 + n - i = n - i + 1 \leq 2n/3 < n$ if $m < n/3 + 1$, or $P''_{k-1} = v_0v_1 \cdots v_jw_l$ and $P_k'' = w_0 w_1 v_m v_{m+1} \cdots v_n$ of lengths $|P_{k-1}''| = j + 1 \leq 2n/3 < n$ and $|P_k''| = 2 + n - m < n/3 + 3 < n$ if $m > 2n/3 - 1$, so $gd_k(S,T) < n$, contradicts to $gd_k(S,T) = n$.

ACKNOWLEDGMENTS

We thank the referee for many useful suggestions.

REFERENCES

- 1. F. Harary, *Graph theory*, Addison-Wesley Publishing Company, Inc, 1969, 47-52.
- 2. X. Hou and T. Wang, On generalized wide diameter of graphs, *Taiwanese Journal of Mathematics*, **7** (2003), 339-345.
- 3. X. Hou and T. Wang, An Algorithm to construct k -regular k -connected graphs with maximum k-diameter, *Graphs and Combinatorics*, **19** (2003), 111-119.
- 4. Frank D. Hsu, On container width and length in graphs, groups, and networks, IEICE Transactions On Fundamentals of Electronics, *Communications and Computer Sciences*, Vol. **E77-A**, No. 4, (1994), 668-680.
- 5. D. F. Hsu and T. Luczak, Note on the k -diameter of k -regular k -connected graphs, *Discrete Mathematics*, **133** (1994), 291-296.
- 6. S-C. Liaw and G. J. Chang, Rabin numbers of butterfly networks, *Discrete Mathematics* **196** (1999), 219-227.
- 7. S-C. Liaw and G. J. Chang, Generalized diameters and Rabin numbers of networks, *Journal of Combinatorial Optimization* **4** (1999), 371-384.
- 8. S-C. Liaw, G. J. Chang, F. Cao and D. F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networs, *Annals of Combinatorics* **2** (1998), 165-172.

Xinmin Hou Department of Mathematics, University of Science and Technology of China, Hefei 230026, and Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China E-mail: xmhou@ustc.edu.cn

Tianming Wang Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China E-mail: wangtm@dlut.edu.cn