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ON GENERALIZED k-DIAMETER OF k-REGULAR k-CONNECTED
GRAPHS

Xinmin Hou and Tianming Wang

Abstract. In this paper, motivated by the study of the wide diameter and the
Rabin number of graphs, we define the generalized k-diameter of k-connected
graphs, and show that every k-regular k-connected graph on n vertices has the
generalized k-diameter at most n/2 and this upper bound cannot be improved
when n = 4k — 6 + i(2k — 4).

1. INTRODUCTION

Let G = G(V, E) be a simple connected graph on n vertices with x(G) = k
and S, T be any pair of disjoint subsets of V(G) such that |S| = |T'| = k. Then
there are k vertex disjoint paths connecting S and 7" by Menger’s Theorem [1]. Let
Pi(S,T) be a family of k vertex disjoint paths joining S and 7', i.e.

Py(S,T)={P1,Ps,---, P}, |Pi| <[P <--- <Pl

The generalized k-wide distance (or simply generalized k-distance), written as
gdi(S,T), between S and T is the minimum | P,| among all P, (S, T), and the gen-
eralized k-wide diameter (or simply generalized k-diameter), denoted by gdi(G), of
G is defined as the maximum generalized k-wide distance gd(S,T") over all pairs
S, T of disjoint subsets of V(G) with |S| = |T| = k = k(G), i.e.

dp(S,T) = min |P
gdi(S,T) Pi?é%)‘k‘v

and
9di(G) = max{gdy(S,T): S,T € V(G) and |S| = |T|=k,SNT = ¢}.
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The definition of the generalized wide diameter of graph G is mainly moti-
vated from the definitions of the wide diameter and the Rabin number of graphs,
two parameters had been studied widely by various researchers (for example, see
[2]~[8]).

In this paper, we show that every k-regular k-connected graph on n vertices
has generalized k-diameter at most n/2 and this upper bound is tight when n =
4k — 6 4 i(2k — 4).

2. MAIN REsuLTs
Let
F(n, k) = max{gdi(G) : G is k-regular k-connected graph with n vertices }.

The similar function f(n, k) about k-diameter d(G) defined in [5] has been dis-
cussed in [5] and[3]. Clearly, F((n,2) = n —3, and F(n,k) <n —2k+ 1. The
following proposition provides the value of F(n, k) for large k.

Proposition 2.1. If either kn is even and k > n/4 +10/4 > 5 or n =
4k —8 > 12, then F(n, k) =n — 2k + 1.

Proof. Note that for a cycle of length n > 4 we have gdo(C,,) = n — 3. Take
graph G as Hy-Cy,—op+4-Ha, Where H; (i = 1, 2) is a graph on k—2 vertices, i.e. G
isa graph with vertex set {’U,l, U, *+* y Ugp—2,V1,V2, "+ , Un—2k+4, W1, W2, """, ’wk_g}
such that subset {vy, va, - - - , Up—2k14} SPaNs Cy,—ok+4, Subgraph induced by {uy, us,
-+ ,up—o} is isomorphic to H; and w; is adjacent to vy, v, -+, vp_3k+7, SUD-
graph induced by {w;,ws, -, wi_o} is isomorphic to Hs and w; is adjacent to
Un—3k+8, Un—3k+9, * * * , Un—2k+4, and wu; is adjacent to w;, respectively, for i =
1,2,---,k — 2. One can easily see that if H; is k —1—-(n—-3k+7) =
4k — n — 8 connected and H, is 2-connected then G is k-connected and the
generalized k-distance between vertex set {uy, ug, - - -, ug—2,v1, v2} and vertex set
{wi,wa, -+, Wr—2, Vn—2k+3, Un—2k+a} 1S €qual to n — 2k + 1. Thus, in order to
get k-regular k-connected graph G with gdip(G) = n — 2k + 1, it is enough to
take as H; a graph with no edges when n = 4k — 8, and any [-regular [-connected
graph with & — 2 vertices when [ = 4k — n — 8 > 2, and take as H a 2-regular
2-connected graph on k — 2 vertices (note that, since kn is even, so is [ - (k — 2)
and since 2(k — 2) is even graphs H; and H» always exist). ]

The following theorem shows that even for small &, F'(n, k) is bounded by n/2.

Theorem 2.2. If kn is even and k > 3 then F(n, k) < n/2.
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Proof. Let G be a k-regular k-connected graph on n > 2k vertices and S, T' be
two disjoint k-subsets of V(G) such that gd(S,T) = gdix(G) and

Py(S,T)={P1, Po,- -+, B}, |Pi| <|Po| < < |Py| = gdi(G)

be such a family of & vertex disjoint paths between S and T' that for every other
family

we have Zle |P!| > Zle | P;|. Moreover, let A denotes the subset of all vertices

of G which belong to none of the paths P, P, - - -, Pi.. G has n vertices, so
k k
(1) Y (Bl+ 1)+ A=) [Pl +k+ A =n
i=1 i=1

We estimate from below the number of edges in G. The number of edges which
belong to paths from Py (S, T) is equal to Zle | P;|. Furthermore, no two vertices
which belong to path P are joined by an edge which does not belong to path
Py, (otherwise P, would be replaced by a shorter path, contradicting the choice of
Pi(S,T)), so there exist precisely (k —2)(|P;| — 1)+ 2(k—1) = (k—2)|Py| + k
edges incident to vertices from path P, which are not contained in it. We shall
show that there exist at least | A| edges which are neither contained in one of the
paths from Pj(S,T') nor incident to vertices of Fj.

Let H be a component of a subgraph induced in G by set A, and let |H| be the
number of vertices of H. We shall prove that at least |H | edges of G are incident
to vertices from H and not incident to vertices from P.. If H contains a cycle it
contains at least | /| edges so it is enough to consider the case when H is a tree.

Casel. k=3

Note that H is adjacent to at most | H| + 2 vertices of path P = vov1 - - -v|p,|,
SAY U1, Vig2, 5 Uiy H|42, Where vg € S and vjp,| € T. Indeed, otherwise one
could find vertices v; and v; with j —¢ > |H |+ 2, both adjacent to H, and replace
Py, by a shorter path using vertices of H instead of v;1v;12 - --vj—1. Furthermore,
at least one of the vertices v;y2, V143, - -, V4 41 MUst have a neighbor outside
H since otherwise graph G could be disconnected by deleting vertices v;; and
V4| H|+2- e note that both vertices v, and v, |42 Can be adjacent to only one
vertex of H. Indeed, otherwise one could find vertices = and y with distance less
than [H| — 1 in H adjacent to v;,1 and vy p|12, respectively , and replace Py
by a shorter path using vertices of the shortest path from « to y in H instead of
Vi42UI43 - Uit H|+1- ThUS, Py sends to H at most |H|+2 —1 = |H|+ 1 edges,
So at least

31H|~ (|H| 1)~ (|H|+1) = |H|
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edges incident to H are not incident to vertices from Px.
Case 2. k=4 and H is a path

Similarly as in the previous case, H must be adjacent to at most |H| + 2
vertices of path Py = vovy -+ -v|p,|, S&Y V4142 - - - Uy H|+2, Where at least two
of the vertices vyy2, V143, -+, V4 41 have neighbors outside H. Furthermore,
it is not hard to see that both vertices v;,1 and v,y 5|42 Can be adjacent to only
one vertex of the path H, namely to one of its ends. Hence, the number of edges
between Py, and H is bounded above by 2 + 2| H| — 2, so at least

A[H| = 2[H| - (|H[-1) = [H[+1
edges incident to H are not incident to vertices from Pg.

Case 3. k =4 and H is not a path

Since now the diameter of H is less than |H| — 1, it is adjacent only to at most
|H|+ 1 vertices of path P, from which at least two have neighbors outside H.
Thus, similarly as in the previous two cases, the number of edges incident to H but
not to Py is bounded below by

4H|-2(|H|+1)+2—-(|H|—-1)=|H|+ 1.

Cased. k>5

Note that no vertex from H is adjacent to more than three vertices from F;
since otherwise path Pj. could be replaced by a shorter one. Hence, G contains at
least

kH|=3H| = (lH|-1) = |[H|+1.

edges incident to vertices from H not incident to vertices from Px.
Thus we have shown that there are at least |A| edges in G which are neither
contained in some & paths nor incident to vertices from Py, so

k
2) D B+ (k= 2)| Py +k + |A] < nk/2.
i=1

Now subtracting (1) from (2) and dividing by k& — 2 gives n/2 as the upper
bound for |Py|. ]

Remark. Note that from the proof it follows that, when k& > 5, gdi(S,T) =
n/2 only if all vertices of G lies on some path from B;,(S,T') and all edges of G
either belong to a path from Py (S, T') or are incident to some vertices from Fj.

The above bound for F'(n, k) cannot be improved in general case. In fact, the
equality F'(n, k) = [n/2] holds for infinitely many pairs k£ and n.
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Proposition 2.3. Letn =2k —3+i(k—2),where3<k<n, i=1,2,---,
and ¢ > 1 if kK = 3, then F(2n,k) = n.

Proof. We shall construct a k-regular k-connected graph G(2n, k) with 2n =
4k — 6 + i(2k — 4) vertices for which gdi(G(2n, k)) = n. The set of vertices of
G(2n, k) contains vertices v;, j =0,1,---,n and w;", where | = 1,2--- k-2
and m =0,1,--- 4,9+ 1. The set of edges of G(2n, k) consists of the following
pairs of vertices:

(a) {Uj,’l)j_H} for 7=0,1,---,n—1,

(b) {'UO,'U)?}, {w(l)vw;ctIQ}' and {vnvwztlg )

(©) {vo,wP} fori=2,--- k-2 and {vy, wi},

(d) {vn,wa} fori=1,2,---,k—3and {Un,wz_Z},
@ {wr,wfori=2,3,--- k-3, m=0,1,---,4,
) {wy, wt) form=1,2,--- 1,

) {wZ”_Z,wZL_'El} form=0,1,---,1—1,

(h) {wi", vpk—2y4sy for I = 1,2,--- bk —2,m = 0,1,---,4,i+ 1 and s =
1,2, k—2.

Graph G(14,4) is given in Fig. 1. A
LetS = {w)|l=1,2, -, k—2}U{wi,vo}and T = {w] |1 =1,2, -  k—
2}U{wi _,,v,}. One can easily check that G(2n, k) is k-regular k-connected and the

only family of & vertex disjoint paths between S and T consists of paths w{w",,
VoV - -+ Up, wiw? - -wzﬁl, w2_2 .- -w};_Z and k — 4 paths wlowl1 .- -wf“, | =

2, k-

0
wy Wy

Uy

Fig. 1. G (14, 4)
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One might expect that equality F'(n, k) = |n/2] holds for every n and k such
that nk is even and 3 < k < |n/2]. The next result shows that it is not true.

Proposition 2.4. If n > 18 and n/3+ 3 < k < n/2 then F(2n, k) < n.

Proof. Due to the observation we made after the proof of Theorem 2.2, the
equality F'(2n,k) = n can hold only if for some disjoint vertex sets S, T', a
family of paths P, (S, T') contains all vertices of the graph and each edge of the
graph which dose not belong to paths from P, (S, T) is incident to Py. Suppose
that for the two disjoint vertex sets S, T' with |S| = |T'| = k of a k-regular k-
connected graph on 2n vertices we have gdi(S,T) = n. Then, G contains n — 1
vertices outside path P, = vgvivg - - -vp_1vy,, Where vg € S,v, € T. So, since
n/3+3 <k <n/2 P, = wowiws---w; for some 2 <[ < n/3 — 4. Vertex
wo has k — 1 > n/3 + 2 neighbors lying on P, and wy has k —2 > n/3 + 1
neighbors lying on B, and kK — 1 > n/3 + 2 neighbors lying on P, for vertex
wi, SO wy is adjacent to some vertex v; with ¢« > n/3 + 1 and w; is adjacent to
some vertex v; with j < 2n/3 — 1, then vertex w; is adjacent to some vertex
U With m < n/3+ 1 0or m > 2n/3 — 1. Thus, paths P,_; and P} could be
replaced by P, ; = wovivg - - - vpwiwsg - - -wy and Py, = wou;viq1 - - - Up—1Uy OF
lengths |P]_|=m+1+l-1=m+Il<n/3+1+n/3-4=2n/3-3 <nand
|Pll=1+n—i=n—i+1<2n/3<nifm<n/3+1,0rF | =uwvv;---vjw
and P = wowivmUm41 - - v, Of lengths [P/ || = j+1 < 2n/3 < n and
|P/|=2+n—-—m <n/3+3 <nifm>2n/3-1,5s0 gdy(S,T) < n, contradicts
to gdi(S,T) = n. ]
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