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POSITIVE PERIODIC SOLUTIONS OF COUPLED DELAY
DIFFERENTIAL SYSTEMS DEPENDING ON TWO PARAMETERS

Guang Zhang and Sui Sun Cheng

Abstract. A coupled functional differential systems depending on two param-
eters is considered. It is shown that there are three mutually exclusive and
exhaustive subsets Θ1, Γ and Θ2 of the parameter space such that there exist
at least two positive periodic solutions associated with pairs in Θ1, at least
one positive periodic solution associated with Γ and none associated with Θ2.

1. INTRODUCTION

Coupled differential systems arise in a number of biological, ecological, eco-
nomical and other models which describe interactions. In particular, predator and
prey differential systems are good examples.

In this article, we are concerned with the existence and nonexistence of positive
periodic solutions for a class of first order functional differential systems of the
form

(1)

{
x′ (t) = −a (t)x (t) + λk (t) f (x (t − τ1 (t)) , y (t − σ1 (t))) ,

y′(t) = −b(t)y(t) + µh(t)g (x (t − τ2 (t)) , y (t − σ2 (t))) ,

where a = a(t), b = b (t) , k = k (t) , h = h(t) τ1 = τ1 (t) , τ2 = τ2 (t) , σ1 = σ1 (t)
and σ2 = σ2(t) are continuous ω-periodic functions. To avoid trivial cases, we
will assume that the period ω is a positive number. The functions f = f(u, v),
g = g (u, v), k = k (t) as well as h = h(t) are positive continuous functions, and
the functions a(t) and b(t) are continuous functions such that

∫ ω
0 a (t) dt > 0 and
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∫ ω
0 b (t) dt > 0. All functions, here and in the sequel, are defined on R or R2. The

numbers λ, µ will be assumed to be nonnegative and treated as parameters.
Note that when λ = 0, the first equation in (1) reduces to

x′ (t) = −a (t) x (t) ,

which is well known in Malthusian population models. Note also that when λ =
µ = 0, our system reduces to a pair of decoupled equations. For this reason, the
case λ = µ = 0 will be avoided in our subsequent discussions. Therefore we may
regard our system as a two-species interactive population model depending on (λ, µ)
in the set {(x, y)|x, y ≥ 0} \{(0, 0)}.

Similar systems or equations have been studied by a number of authors, see
for examples [1-21] and the references therein. In this paper, however, we will
prove that there exists a continuous curve Γ spliting {(x, y)|x, y ≥ 0} \ {(0, 0)}
into disjoint subsets Θ1, Γ and Θ2 such that the system (1) has at least two, at
least one, or no positive ω-periodic solutions according to whether (λ, µ) is in Θ1,
Γ, or Θ2, respectively. Such results are new and derived by means of the method
of upper and lower solutions as well as the degree theory. Furthermore, since the
curve Γ is defined by the shooting method, it can be computed numerically.

For any (a1, b1) and (a2, b2) in R2, we will write (a1, b1) ≥ (a2, b2) if a1 ≥ a2

and b1 ≥ b2. If either a1 > a2 and b1 ≥ b2 or a1 ≥ a2 and b1 > b2, we will
write (a1, b1) > (a2, b2). A vector function (x (t) , y (t)) defined on R is said to be
positive if (x (t) , y (t)) ≥ (0, 0) for all t ∈ R and (x (t0) , y (t0)) > (0, 0) for some
t0 ∈ R. Finally, the interval [0,∞) will also be denoted by R+.

2. PRELIMINARY CONSIDERATIONS

By a solution of (1) associated with the pair (α, β), we mean a vector function
of the form (x(t), y(t)) , where t ∈ R, such that x = x(t) and y = y(t) are
continuously differentiable everywhere and satisfy (1) for λ = α and µ = β.
Assume that (x (t) , y (t)) is a ω-periodic solution of (1), then


[
x(t) exp

(∫ t

0

a(s)ds

)]′
= λ exp

(∫ t

0

a(s)ds

)
k(t)f (x (t − τ1 (t)) , y (t − σ1 (t))) ,

[
y(t) exp

(∫ t

0

b(s)ds

)]′
= µ exp

(∫ t

0

b(s)ds

)
h(t)g (x (t − τ2 (t)) , y (t − σ2 (t))) .

After integrating the above equations from t to t + ω, we obtain

(2)




x(t) = λ

∫ t+ω

t
K(t, s)k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds,

y(t) = µ

∫ t+ω

t
H(t, s)h(s)g (x (s − τ2 (s)) , y (s − σ2 (2))) ds,



Coupled Differential Systems 641

where

K(t, s) =
exp

(∫ s
t a(u)du

)
exp

(∫ ω
0 a(u)du

)− 1

and

H(t, s) =
exp

(∫ s
t b(u)du

)
exp

(∫ ω
0 b(u)du

)− 1

for t ≤ s ≤ t + ω. Note that the denominators in K(t, s) and H(t, s) are not zero
since we have assumed that

∫ ω
0 a (t) dt > 0 and

∫ ω
0 b (t) dt > 0.

It is not difficult to check that any ω-periodic vector function (x (t) , y (t)) that
satisfies (2) is also a ω-periodic solution of (1). Thus, system (1) has a ω-periodic
solution (x (t) , y (t)) if, and only if (x (t) , y (t)) is a ω-periodic solution of (2).
Therefore, we may transform our existence problem into a fixed point problem. To
this end, we first note that

N ≡ min
0≤t,s≤ω

K(t, s) ≤ K(t, s) ≤ max
0≤t,s≤ω

K(t, s) ≡ M, t ≤ s ≤ t + ω,

1 ≥ K(t, s)
max0≤t,s≤ω K(t, s)

≥ min0≤t,s≤ω K(t, s)
max0≤t,s≤ω K(t, s)

=
N

M
,

N ′ ≡ min
0≤t,s≤ω

H(t, s) ≤ H(t, s) ≤ max
0≤t,s≤ω

H(t, s) ≡ M ′, t ≤ s ≤ t + ω,

and

1 ≥ H(t, s)
max0≤t,s≤ω H(t, s)

≥ min0≤t,s≤ω H(t, s)
max0≤t,s≤ω H(t, s)

=
N ′

M ′ , t ≤ s ≤ t + ω.

Now let X be the set of all real ω-periodic continuous functions defined on R
which is endowed with the usual linear structure as well as the norm

‖y‖ = sup
t∈[0,ω]

|y(t)| .

Then X2 is also a Banach space with the norm ‖(u, v)‖ = ‖u‖+‖v‖. Furthermore,
let Φ and Ω be defined respectively by

Φ =
{
(u, v) ∈ X2 : u(t), v(t) ≥ 0, t ∈ R

}
and

Ω = {(u, v) ∈ Φ : u (t) + v (t) ≥ α∗ ‖(u, v)‖ , t ∈ R} ,

where
α∗ = min

{
N/M, N ′/M ′} .
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Then Φ and Ω are cones in X2.
Define, for each (x, y) ∈ X2,

Tλ,µ (x, y) (t) = (Aλ (x, y) (t) , Bµ (x, y) (t)) ,

where

Aλ (x, y) (t) = λ

∫ t+ω

t
K(t, s)k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds,

and

Bµ (x, y) (t) = µ

∫ t+ω

t
H(t, s)h(s)g (x (s − τ2 (s)) , y (s − σ2 (2))) ds.

By standard arguments, it is not difficult to see that Tλ,µ is completely continuous.
Furthermore, for (x, y) ∈ Φ,

Aλ (x, y) (t) = λ

∫ t+ω

t
K(t, s)k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds

≤ λM

∫ t+ω

t
k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds

= λM

∫ ω

0
k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds,

so that
1
M

‖Aλ(x, y)‖ ≤ λ

∫ ω

0

k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds

and

Aλ (x, y) (t) = λ

∫ t+ω

t

K(t, s)k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds

≥ λN

∫ t+ω

t
k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds

= λN

∫ ω

0
k(s)f (x (s − τ1 (s)) , y (s − σ1 (s))) ds

≥ α∗ ‖Aλ (x, y)‖ .

Similarly, we have
Bµ (x, y) (t) ≥ α∗ ‖Bµ (x, y)‖ .

That is, Tλ,µΦ is contained in Ω.
Let us say that a real function F is nondecreasing on R2

+ = [0,∞) × [0,∞)
if F (u1, v1) ≤ F (u2, v2) for (u1, v1) ≤ (u2, v2) . We will need the following two
assumptions.
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(H1) f (u, v) and g (u, v) are nondecreasing and f (0, 0) > 0 and g (0, 0) > 0.

(H2) limu,v→∞
f (u, v)
u + v

= ∞ and limu,v→∞
g (u, v)
u + v

= ∞.

Lemma 1. Suppose (H2) holds. For any compact subset D of R 2
+\ {(0, 0)},

there exists a constant bD > 0 such that any positive ω-periodic solution (u, v) of
(1) associated with (λ, µ) ∈ D will satisfy ‖(u, v)‖ < bD.

Proof. Suppose to the contrary that there is a sequence {(un, vn)}∞n=1 of positive
ω-periodic solutions of (1) associated with (λn, µn) such that (λn, µn) ∈ D for all
n and limn→∞ ‖(un, vn)‖ = ∞. Note that (un, vn) satisfies equation (2) so that
(un, vn) ∈ Ω. That is,

un (t) + vn (t) ≥ α∗ ‖(un, vn)‖
for n ≥ 1. Now assume λn > 0 and µn ≥ 0 for sufficiently large n. Then in view
of (H2), we may choose Rf > 0, η and n0 ≥ 1 such that f (x, y) ≥ η (x + y) for
all nonnegative x, y which satisfy x + y ≥ Rf , un0 + vn0 ≥ Rf , and

α∗ηNλn0

∫ ω

0
k (s) ds > 1.

Thus, we have

‖un0‖ ≥ un0 (t) = λn0

∫ t+ω

t
K (t, s) k (s) f (un0 (s − τ1 (s)) , vn0 (s − σ1 (s))) ds

≥ α∗ηNλn0

∫ ω

0
k (s) (‖un0‖ + ‖vn0‖) ds > ‖un0‖ .

This is a contradiction. The case where λn ≥ 0 and µn > 0 for sufficiently large n

can similarly be proved by using g∞ = ∞. The proof is complete.

Lemma 2. Suppose (H1) holds. If (1) has a positive ω-periodic solution
associated with

(
λ, µ

)
> (0, 0) , then for any (λ, µ) ∈ R2\ {(0, 0)} that satisfies

(λ, µ) ≤ (
λ, µ

)
, equation (1) also has a positive ω -periodic solution associated

with (λ, µ) .

Proof. Let (u, v) be a positive ω-periodic solution of (1) associated with
(
λ, µ

)
.

In view of (2) and (H1), we have

u(t) = λ

∫ t+ω

t
K(t, s)k(s)f(u(s − τ1(s)), v (s − σ1 (s)))ds

≥ λ

∫ t+ω

t
K(t, s)k(s)f(u(s − τ1(s)), v (s − σ1 (s)))ds
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and
v(t) ≥ µ

∫ t+ω

t

H(t, s)h(s)g(u(s − τ2(s)), v (s − σ2 (s)))ds.

Let (u0 (t) , v0 (t)) = (u (t) , v (t)),

(3) (un+1 (t) , vn+1 (t)) = Tλ,µ (un, vn) (t) , n = 0, 1, 2, ....

Clearly, we have

(u0 (t) , v0 (t)) ≥ (u1 (t) , v1 (t)) ≥ ... ≥ (un (t) , vn (t)) ≥ (0, 0) .

Let (u (t) , v (t)) = limn→∞ (un (t) , vn (t)). In view of the Lebsegue dominated
convergence theorem, we see from (3) that (u (t) , v (t)) is a nonnegative ω-periodic
solution of (1). Since (u, v) > (0, 0) and (0, 0) is not a solution of (1) associated
with (λ, µ), we have (u, v) > (0, 0). The proof is complete.

Lemma 3. Suppose (H1) holds. Then (1) has a positive ω-periodic solution
associated with some (λ∗, µ∗) satisfying λ∗, µ∗ > 0.

Proof. Let

α (t) =
∫ t+ω

t
K (t, s) k (s) ds,

β (t) =
∫ t+ω

t
H (t, s)h (s) ds,

and
Mf = max

0≤t≤ω
f (α (t − τ1 (t)) , β (t − σ1 (t))) ,

Mg = max
0≤t≤ω

g (α (t − τ2 (t)) , β (t − σ2 (t))) .

Then clearly Mf , Mg > 0. Let (λ∗, µ∗) = (1/Mf , 1/Mg). We have

α (t) =
∫ t+ω

t

K (t, s) k (s) ds

≥ λ∗
∫ t+ω

t

K (t, s) k (s) f (α (s − τ1 (s)) , β (s − σ1 (s))) ds,

and

β (t) =
∫ t+ω

t
H (t, s) h (s) ds

≥ µ∗
∫ t+ω

t
H (t, s) h (s) g (α (s − τ2 (s)) , β (s − σ2 (s))) ds.
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Let us define a sequence {(un, vn)}∞n=0 of vector functions by (u0 (t) , v0 (t)) =
(α (t) , β (t)), and

(4) (un+1 (t) , vn+1 (t)) = Tλ,µ (un, vn) (t) , n = 0, 1, 2, ....

Clearly, we have

(u0 (t) , v0 (t)) ≥ (u1 (t) , v1 (t)) ≥ ... ≥ (un (t) , vn (t)) ≥ (0, 0) .

Let (u (t) , v (t)) = limn→∞ (un (t) , vn (t)). In view of the Lebsegue dominated
convergence theorem, we see from (4) that (u (t) , v (t)) is a nonnegative ω-periodic
solution of (1). Since (α, β) > (0, 0) and (0, 0) is not a solution of (1) associated
with (λ∗, µ∗) , we have (u, v) > (0, 0). The proof is complete.

Let Π be the set of (λ, µ) ∈ R2
+\ {(0, 0)} such that (1) has a positive ω-periodic

solution associated with (λ, µ) . Then by Lemma 3, Π contains the solution of (1)
associated with (λ∗, µ∗). Therefore, by Lemma 2, it contains the subset

(5) Π∗ = {(λ, µ)| (λ, µ) > (0, 0), λ ≤ λ∗, µ ≤ µ∗} .

We may show further that Π is bounded above under the conditions (H1) and
(H2).

Lemma 4. Suppose (H1) and (H2) hold. Then Π is bounded above.

Proof. Suppose to the contrary that there is a sequence {(un, vn)} of positive
ω-periodic solutions of (1) associated with {(λn, µn)} such that limn→∞ λn = ∞
or limn→∞ µn = ∞. If limn→∞ λn = ∞, then either there exists a subsequence{(

unj , vnj

)}
such that

∥∥(
unj , vnj

)∥∥ → +∞ as j → ∞ or there is M > 0 such
that ‖(un, vn)‖ ≤ M for all n. Note that (un, vn) ∈ Ω, thus

un (t) + vn (t) ≥ α∗ ‖(un, vn)‖ .

By (H2), we may choose Rf > 0 such that f (x, y) ≥ η1 (|x| + |y|) for all |x|+|y| ≥
Rf and some η1 > 0. In view of (H1), there exists η2 > 0 such that f (0, 0) ≥
η2M . Let η = min{η1, η2}. On the other hand, there exists a sequence {tn} ⊂
[0, ω] such that u′

n (tn) = 0 and un (tn) = maxt∈[0,ω] un (t) by the periodicity and
differentiability of {un (t)}. Thus, we have

a (tn) ‖un‖ = a (tn) u (tn) = λnk (tn) f (un (tn − τ1 (tn)) , vn (tn − σ1 (tn)))

≥ λnηα∗k (tn) ‖(un, vn)‖ ≥ λnηα∗k (tn) ‖un‖ .

But this is a contradiction since the continuous function a (t) / (ηα∗k (t)) is bounded.
If limn→∞ µn = ∞, we can get a contradiction in a similar manner. The proof is
complete.
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We also need the following lemmas for arguments involving the topological
degree. One may refer to Guo and Lakshmikantham [22] for proofs and further
discussion of the topological degree.

Lemma 5. Let X be a Banach space with cone K. Let Ω be a bounded and
open subset in X . Let 0 ∈ Ω and T : K ∩ Ω → K be condensing. Suppose that
Tx 
= νx for all x ∈ K ∩ ∂Ω and all ν ≥ 1. Then i (T, K ∩ Ω, K) = 1.

Lemma 6. Let X be a Banach space and K a cone in X . For r > 0, define
Kr = {x ∈ K : ‖x‖ < r}. Assume that T : K r → K is a compact map such that
Tx 
= x for x ∈ ∂Kr. If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Kr, then i (T, Kr, K) = 0.

3. MAIN THEOREMS

For each θ ∈ [0, π/2], consider the half ray

Lθ =
{
(λ, µ) ∈ R2

+\{(0, 0)}| (λ, µ) = t(sin θ, cos θ), t > 0
}

.

Near one end of this ray are points which belong to Π∗ defined by (5) and near
the other end are points outside Π (in view of Lemma 4), that is, the set {t >
0| t(sin θ, cos θ) ∈ Π} is nonempty and bounded. Thus we are led to define

t∗θ = sup {t > 0| t(sin θ, cos θ) ∈ Π} ,

and
(λ∗

θ, µ
∗
θ) = t∗θ(sin θ, cos θ)

for each θ ∈ [0, π/2].
We first assert that for each θ ∈ [0, π/2], (λ∗

θ, µ
∗
θ) ∈ Π. Indeed, let {(λn, µn)}∞n=1

be a sequence which satisfies λn < λn+1, µn < µn+1 for n ≥ 1 and converges to
(λ∗

θ, µ
∗
θ). For each n, let (un, vn) be a positive ω-periodic solution of (1) associated

with (λn, µn). In view of Lemma 1, we know that the set {(un, vn)} is uniformly
bounded in X 2. Thus, the sequence {(un, vn)} has a subsequence converging to
(u, v) ∈ X2. Then we can easily show, by the Lebesgue dominated convergence
theorem, that (u, v) is a positive ω-periodic solution of (1) at (λ∗

θ, µ
∗
θ).

Let the function ρ : [0, π/2] → (0,∞) be defined by

ρ(θ) =
{
(λ∗

θ)
2 + (µ∗

θ)
2
}1/2 = t∗θ.

We assert that ρ is continuous. Indeed, without loss of generality, let us assume
φ ∈ (0, π/2) and let B be an open neighborhood containing (λ∗

φ, µ∗
φ) and contained

in the interior of R2
+. For any half ray Lθ that passes through B, it is (geometrically)
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clear that there will be some point (λ̃, µ̃) in Lθ such that (λ̃, µ̃) ≤ (λ∗
φ, µ∗

φ). In view
of Lemma 2, there will be a positive ω-periodic solution (ũ, ṽ) of (1) associated
with (λ̃, µ̃). If we pick the neighborhood B such that in polar coordinates it is of
the form

{(r, θ)| ρ(φ)− ε < r < ρ(φ) + ε, φ − δ < θ < φ + δ} ,

where ε, δ are sufficiently small positive numbers, then we see that ρ(θ) > ρ(φ)−ε.

By symmetric arguments, we may also show that ρ(θ) < ρ(φ)+ε. These arguments
show that when θ and φ are sufficiently close, so is ρ(θ) and ρ(φ).

We summarize the above considerations as follows: Under the conditions (H1)
and (H2), there exists a continuous curve Γ (defined by ρ) joining some point
(ρ(0), 0) on the positive λ-axis and some point (0, ρ(π/2)) on the positive µ-axis
and separating R2

+\ {(0, 0)} into two disjoint subsets Θ1 and Θ2 such that (0, 0)
is a boundary point of Θ1 and (1) has at least one positive ω-periodic solution for
(λ, µ) ∈ Θ1 ∪ Γ and no positive ω-periodic solution for (λ, µ) ∈ Θ2.

We intend to show that there are at least one more solution for each (λ, µ) in Θ1.

To this end, we suppose that condition (H1) holds and suppose (1) has a positive ω-
periodic solution (u, v) associated with

(
λ, µ

)
> (0, 0). Then equation (1) also has

a positive ω-periodic solution (u, v) < (u, v) associated with (λ, µ) ∈ R2\ {(0, 0)}
and (λ, µ) <

(
λ, µ

)
. Let (u∗, v∗) be a positive ω-periodic solution of (1) associated

with (λ∗, µ∗) ∈ Γ. Then for (λ, µ) < (λ∗, µ∗) and (λ, µ) ∈ R2\ {(0, 0)} , by the
uniform continuity of f and g on a compact set, there exists ε0 > 0 such that

f (u∗ (s− τ1 (s)) + ε, v∗ (s− σ1 (s)) + ε) − f (u∗ (s − τ1 (s)) , v∗ (s− σ1 (s)))

<
f (0, 0) (λ∗ − λ)

λ
,

and

g (u∗ (s− τ2 (s)) + ε, v∗ (s− σ2 (s)) + ε) − g (u∗ (s − τ2 (s)) , v∗ (s − σ2 (s)))

<
g (0, 0) (λ∗ − λ)

λ

for s ∈ R and 0 < ε ≤ ε0. Thus, we have

λ

∫ t+ω

t
K(t, s)k(s)f (u∗ (s − τ1 (s)) + ε, v∗ (s − σ1 (s)) + ε) ds

−λ∗
∫ t+ω

t
K(t, s)k(s)f (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s))) ds

= λ

∫ t+ω

t
K(t, s)k(s) [f (u∗ (s − τ1 (s)) + ε, v∗ (s − σ1 (s)) + ε)
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−f (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s)))] ds

− (λ∗ − λ)
∫ t+ω

t
K(t, s)k(s)f (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s))) ds

< f (0, 0) (λ∗ − λ)
∫ t+ω

t
K(t, s)k(s)ds

− (λ∗ − λ)
∫ t+ω

t
K(t, s)k(s)f (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s))) ds

= (λ∗ − λ)
∫ t+ω

t
K(t, s)k(s) [f (0, 0)− f (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s)))] ds ≤ 0

and

λ

∫ t+ω

t
K(t, s)k(s)f (u∗ (s − τ1 (s)) + ε, v∗ (s − σ1 (s)) + ε) ds

≤ λ∗
∫ t+ω

t
K(t, s)k(s)f (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s))) ds

= u∗ (t) < u∗ (t) + ε.

Similarly, we have

µ

∫ t+ω

t

H(t, s)h(s)g (u∗ (s − τ1 (s)) + ε, v∗ (s − σ1 (s)) + ε) ds

≤ µ∗
∫ t+ω

t
H(t, s)h(s)g (u∗ (s − τ1 (s)) , v∗ (s − σ1 (s))) ds

= v∗ (t) < v∗ (t) + ε.

Let
u∗

ε (t) = u∗ (t) + ε, v∗ε (t) = v∗ (t) + ε

and

Ψ =
{
(u, v) ∈ X2 : −ε < u (t) < u∗

ε (t) ,−ε < v (t) < v∗ε (t) , t ∈ R
}

.

Then Ψ is bounded and open in X, 0 ∈ Ψ and T : Ω∩Ψ → Ω is condensing (since
it is completely continuous). Let (u, v) ∈ Ω ∩ ∂Ψ. Then there exists t0 such that
eitheru(t0)=u∗

ε (t0) orv (t0)=v∗ε (t0). Suppose that u (t0)=u∗
ε (t0). Then by (H1),

Aλ (u, v) (t0) = λ

∫ t0+ω

t0

K(t0, s)k (s) f(u (s − τ1 (s)) , v (s − σ1 (s)))ds

≤ λ

∫ t0+ω

t0

K(t0, s)k (s) f(u∗
ε (s − τ1 (s)) , v∗ε (s − σ1 (s)))ds

< u∗
ε (t0) = u (t0) ≤ νu (t0)
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for all ν ≥ 1. Similarly, for the case v (t0) = v∗ε (t0), we can get Bµ (u, v) (t0) <

νv (t0) for all ν ≥ 1. Thus Tλ,µ (u, v) 
= ν (u, v) for (u, v) ∈ Ω ∩ ∂Ψ and ν ≥ 1.
In view of Lemma 5, we have i (F, Ω ∩ Ψ, Ω) = 1.

By (H2), we may choose Rf > 0 such that f (u, v) ≥ η (u, v) for all u+v ≥ Rf ,
where η satisfies

αηNλ

∫ ω

0
k (s) ds > 1.

Let R = max {bD, Rf/σ, ‖(u∗
ε, v

∗
ε)‖}, where bD is given in Lemma 1 with D

a closed rectangle in R2
+\ {(0, 0)} containing (λ, µ). Let ΩR = {(u, v) ∈ Ω :

‖(u, v)‖ < R}. Then in view of Lemma 1, (u, v) 
= Tλ,µ (u, v) for (u, v) ∈ ∂ΩR.
Furthermore, if (u, v) ∈ ∂ΩR, then u (t) + v (t) ≥ α ‖(u, v)‖ ≥ Rf . Thus, we
have

Aλ (u, v) (t) = λ

∫ t+ω

t
K (t, s) k (s) f (u (s − τ1 (s)) , v (s − σ1 (s))) ds

≥ αηNλ

∫ ω

0
k (s) ‖(u, v)‖ ds > ‖(u, v)‖ .

Therefore ‖Tλ,µ (u, v)‖ ≥ ‖Aλ (u, v)‖ > ‖(u, v)‖ and Lemma 6 then implies
i (Tλ,µ, ΩR, Ω) = 0. Consequently by the additivity of the topological degree,

0 = i (Tλ,µ, ΩR, Ω) = i (Tλ,µ, Ω ∩ Ψ, Ω) + i
(
Tλ,µ, ΩR\Ω ∩ Ψ, Ω

)
.

Since i (Tλ,µ, Ω ∩ Ψ, Ω) = 1, i
(
Tλ,µ, ΩR\Ω ∩ Ψ, Ω

)
= −1 and Tλ,µ has a fixed

point on Ω ∩ Ψ and another on ΩR\Ω ∩ Ψ. Thus, we have the following result.

Theorem 1. Under the conditions (H1) and (H2), there exists a continuous
curve Γ joining some point on the positive λ-axis and some point on the positive µ-
axis and separating {(λ, µ)| λ, µ ≥ 0} \ {(0, 0)} into two disjoint subsets Θ 1 (which
is bounded) and Θ2 (which is unbounded) such that (1) has at least two positive
ω-periodic solutions for (λ, µ) ∈ Θ1, at least one positive ω-periodic solution for
(λ, µ) ∈ Γ, and no positive ω-periodic solution for (λ, µ) ∈ Θ 2.

4. REMARKS

First of all, note that the curve Γ is defined by the shooting method. Therefore,
numerically it can be computed. Furthermore, since the qualitative behavior of the
solution sets changes as Γ is crossed, it can be regarded as a ‘bifurcation curve’.

Next, the conditions in Theorem 1 are not vacuous. As an example, consider
the system

(6)

{
x′ (t) + a (t)x (t) = λk (t) {x(t − τ1(t)) + y (t − σ1 (t)) + 1}γ ,

y′ (t) + b (t) y (t) = µh (t) {x(t − τ2(t)) + y (t − σ2 (t)) + 1}δ ,
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where a, b, k, h, τ1, τ2, σ1 and σ2 satisfy the same assumptions stated above, and
γ, δ > 1. Then all conditions of Theorem 1 are satisfied.

As another example, consider the system

(7)




x′ (t) = −a (t) x (t) + λk (t)
{

(x(t − τ1(t)) + y (t − σ1 (t)))2 + ε
}

,

y′ (t) = −b (t) y (t) + µh (t)
{

(x(t − τ2(t)) + y (t − σ2 (t)))2 + ε
}

,

where a, b, k, h, τ1, τ2, σ1 and σ2 satisfy the same assumptions stated above, and ε

is a positive constant. Clearly, all conditions of Theorem 1 is satisfied. Thus, there
exists a continuous curve Γ separating R2

+\ {(0, 0)} into two disjoint subsets Θ1

and Θ2 such that (7) has at least two positive ω-periodic solution for (λ, µ) ∈ Θ1,
at least one positive ω-periodic solution for (λ, µ) ∈ Γ, and no positive ω-periodic
solution for (λ, µ) ∈ Θ2 respectively.

Next, we remark that similar discussions can be carried out for systems of the
form

(8)

{
x′ (t) = ±a (t) x (t) ∓ λk (t) f (x (t − τ1 (t)) , y (t − σ1 (t))) ,

y′(t) = ±b(t)y(t)∓ µh(t)g (x (t − τ2 (t)) , y (t − σ2 (t))) ,

where a, b, k, h, f, g, τ1, τ2, σ1, σ2 are the same functions defined in the introduction,
and even to systems such as{

x′ (t) = ±a (t)x (t) ∓ λk (t) f (x (t − l1 (x (t) , y (t))) , y (t − l2 (x (t) , y (t)))) ,

y′(t) = ±b(t)y(t) ∓ µh(t)g (x (t − m1 (x (t) , y (t))) , y (t − m2 (x (t) , y (t)))) .

Theorem 2. Suppose (H1) and (H2) hold. There exists a continuous curve
Γ joining some point on the positive λ-axis and some point on the positive µ-axis
and separating {(λ, µ)| λ, µ ≥ 0} \ {(0, 0)} into two disjoint subsets Θ 1 (which
is bounded) and Θ2 (which is unbounded) such that (8) has at least two positive
ω-periodic solutions for (λ, µ) ∈ Θ1, at least one positive ω-periodic solution for
(λ, µ) ∈ Γ, and no positive ω-periodic solution for (λ, µ) ∈ Θ 2 respectively.

As our final remark, note that when f = f(x, y) is odd with respect to x and
to y, and g = g(x, y) is odd with respect to x and to y, then letting x (t) = −u (t)
and y (t) = −v (t) in (1), we have{

u′ (t) = −a (t) u (t) + λk (t) f (u (t − τ1 (t)) , v (t − σ1 (t))) ,

v′(t) = −b(t)v(t) + µh(t)g (u (t − τ2 (t)) , v (t − σ2 (t))) ,

which is the original system. This shows that when (x, y) is a positive periodic
solution of (1), then (−x,−y) is a ‘negative’ periodic solution of (1). There are
other possibilities such as f = f(x, y) is odd with respect to x but even with
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respect to y, or g = g(x, y) is even with respect to x and odd with respect to y.

The principle, however, remains the same.
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