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A POWER SERIES IN SMALL ENERGY FOR THE PERIOD OF THE
LOTKA-VOLTERRA SYSTEM

Shagi-Di Shih and Shue-Sum Chow

Abstract. The classical Lotka-Volterra system of two first-order nonlinear
differential equations was investigated by Lotka [25] on chemical reactions,
Lotka [26] on rhythmical reactions in physiology, Lotka [27] on parasitology,
Volterra [46] on fishing activity in the upper Adriatic Sea, and Kozyreff [23]
and Erneux and Kozyreff [10] on laser dynamics in the vicinity of the Hopf
bifurcation. A functional relation between two dependent variables has been
known to describe its periodic behavior in the phase plane. We first solve
this equation explicitly for one dependent variable in terms of the other, and
then obtain two integral representations of the period having a singularity of
the square root type at each endpoint of the integration. Our notations are
based on Lambert’s W functions, which are two inverse functions of x →
x exp(x) restricted to (−∞,−1] and [−1,∞), respectively. A power series
of the period is constructed in small energy for arbitrary number of terms
by virtue of expansions of Lambert’s W functions near the branch point x =
− exp(−1). Our result settles the discrepancy of various approximate results in
the literature, and are further compared with numerical results of computing
the period by applying the Gauss-Tschebyscheff integration rule of the first
kind.

1. INTRODUCTION

This paper considers periodic solutions of the Lotka-Volterra equation (1.2). A
power series of the period is given for small energy. The series settles the discrepancy
between other approximate results, and is shown to have excellent agreement with
numerical calculations of the period for larger values of the energy.
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For two competing species model

(1.1) u′(t) = u f(u, v), v′(t) = v g(u, v);

Alfred J. Lotka [27] and Vito Volterra [46] studied independently the predator prey
model

(1.2) u′(t) = u(t){a− b v(t)}, v′(t) = v(t){c u(t)− d};
where u(t) is the prey population, v(t) that of the predator at time t, and a, b, c, d
are positive constants, see also Rubinow [36] and Murray [29]. Lotka [25] derived
this system for the chemical reactions which exhibit periodic behavior in the chem-
ical concentrations, see also Murray [28]. Lotka [26], moreover, used this system
for rhythmical reactions such as heartbeat in physiology. The system (1.2) is a
classical but nontrivial problem. Periodic solutions of some Lotka-Volterra systems
are further investigated by Davis [7], Grasman and Veling [17], Frame [14], Lauw-
erier [24], Dutt [8], Hsu [20], Rothe [33], Waldvogel [48], [49], and Vasil’eva and
Belyanin [44]. Non-periodic solutions of some Lotka-Volterra systems are studied
by Abdelkader [1], Varma [43], Willson [50], Burnside [4], Murty and Rao [30],
and Olek [32]. Several approximate solutions of the Lotka-Volterra equations with
oscillatory behavior were reviewed in detail by Grasman [16].

From the viewpoint of population dynamics, the system (1.2) has been gener-
alized in a number of different ways to model real-world oscillatory phenomena,
for example, from the unbounded growth to the bounded growth, from two species
to three or more species, from the autonomous system of differential equations to
the non-autonomous system of differential equations, from the system of first-order
ordinary differential equations to the system of parabolic differential equations, from
differential equations to differential-difference or integro-differential equations, or
a combination of the above. Two examples are given now. On the hypothesis of
heredity of duration T0, Volterra [45], [47] replaced the two differential equations
(1.2) by two integro-differential equations (1.1) with

f(u, v) = a−bv−
∫ t

t−T0

K1(t−s)v(s) ds, g(u, v) = cu−d+
∫ t

t−T0

K2(t−s)u(s) ds;

where a, b, c, d are positive constants, see also Davis [7]. A more realistic two-
species model than the Lotka-Volterra model (1.2) investigated by Holling [19] and
Tanner [41] is the system (1.1) with

f(u, v) = r
{
1 − u

K

}
− kv

u+D
, g(u, v) = s

{
1 − h

v

u

}
,

for positive constants r, K, k, D, s, h, see also Murray [29], Hsu and Hwang [21],
Gasull, Kooij, and Torregrosa [15], and Hsu and Hwang [22], [51].
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From the viewpoint of nonlinear chemical dynamics, Lotka [25] devised a hy-
pothetical set of chemical reactions

R+X
k1−→ 2X,

X + Y
k2−→ 2Y,

Y
k3−→ P,

where the reactant R is maintained constant. The law of mass action then yields
the rate equations

(1.3) x′(t) = k1rx− k2xy, y′(t) = k2xy − k3y;

where x(t), y(t) are the concentrations of intermediatesX and Y , respectively, and
r is the concentration of R. The system (1.3) is of the type (1.2), and generates
sustained temporal oscillations during the net overall reaction R → P . Since then,
temporal and spatial oscillations in chemical systems exhibiting limit cycle behav-
ior have been investigated extensively. Some well-known chemical systems include
Bray reaction, the Belousov-Zhabotinsky reaction, the Brusselator, and the Orego-
nator, etc. For more information, see Tyson [42], Nicolis and Prigogine [31], Field
and Burger [12], Gray and Scott [18], Scott [38], Schneider and Münster [37], and
Epstein and Pojman [9].

In laser dynamics with passively Q-switched microchip lasers, three rate equa-
tions in the vicinity of the Hopf bifurcation become

(1.4)
v′(t) = (1 + v)w+ ε(1 + v)[a1v − v′(t)]

w′(t) = −v(a0 −w) + {ε(1 + v)[a1v − v′(t)]− (a0 + 1)v}.
The dominant term of this system (1.4) for the parameter 0 < ε� 1 is of the form
(1.2), see Kozyreff [23, p. 15] and Erneux and Kozyreff [10] for more information.
In fact, the shape of a periodic orbit of (1.2) in the phase plane is approximated in
four segments in Section 2.5 of Kozyreff [23]. On the other hand, equation (3.1)
provides exact expressions of both upper branch and lower branch of such periodic
orbit.

The system (1.2) has only one critical point (singular point, or equilibrium point)
(d/c, a/b) in the first quadrant of the uv-plane. From the associated Jacobian matrix

J(u, v) =


 a− bv −bu

cv cu− d


 ,

the linearized system of (1.2) at the critical point (d/c, a/b) is

(1.5) u′(t) = −bd
c
{v(t)− a

b
}, v′(t) =

ac

b
{u(t)− d

c
};
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whose coefficient matrix has eigenpairs

(i
√
ad, (1,−i c

b

√
a

d
)T ), (−i

√
ad, (1, i

c

b

√
a

d
)T ).

The critical point (d/c, a/b) is then a center for the linearized system (1.5). More-
over, the linearized problem subject to the initial conditions u(0) = u0 > 0, v(0) =
v0 > 0 has the solution

u =
d

c
+ (u0 − d

c
) cos(t

√
ad) − b

c

√
d

a
(v0 − a

b
) sin(t

√
ad) =

d

c
+ r cos(t

√
ad+ t∗)

v =
a

b
+
c

b

√
a

d

{
(u0 − d

c
) sin(t

√
ad) +

b

c

√
d

a
(v0 − a

b
) cos(t

√
ad)

}

=
a

b
+ r

c

b

√
a

d
sin(t

√
ad+ t∗);

for some t∗ satisfying

sin(t∗) =
v0 − a/b

r

b

c

√
d

a
, cos(t∗) =

u0 − d/c

r
, r =

√
(u0 − d

c
)2 + (v0 − a

b
)2
b2d

ac2
.

Hence the trajectory of the linearized problem is an ellipse with the period 2π/
√
ad

in the uv-plane. This linear theory, which appeared in both Lotka [25] and Volterra
[46], may not predict what happens in the nonlinear system (1.2), but it is closely
related to Frame [14] and Waldvogel [48], [49] in some sense. In fact, the period
for the nonlinear system (1.2) will be shown to depend on the initial data. This
is similar to a simple pendulum of length L, whose equation of motion (3.6) is
linearized for small amplitude to be the equation Lθ ′′(t) + gθ = 0 with the period
2π

√
L/g, where g is the gravitational acceleration constant.

On the other hand, combining two equations of the system (1.2) yields the
separable differential equation

(1.6)
dv

du
=
v{cu− d}
u{a− bv} .

An elementary integration gives a functional relation between u and v

(1.7) a log(v)− bv − cu+ d log(u) +H = 0,

where the notation log denotes the natural logarithmic function and H is the constant
of integration. Defining F (u, v) = cu + bv − d log(u) − a log(v), we then have
(1.7) as

(1.8) F (u, v) = H.
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Thus the system (1.2) is conservative by virtue of the fact that F (u, v) is a constant
as a function of time with H = F (u0, v0) on the trajectory passing through the
initial data u(0) = u0 > 0, v(0) = v0 > 0. An elementary technique in calculus
further shows that

H ≥ a+ d− a log(
a

b
) − d log(

d

c
),

and the minimum value takes place at u = d/c, v = a/b. In the notion of
Hamiltonian systems, we write H = a + d− a log(a/b)− d log(d/c) + E in (1.8)
to obtain

(1.9) cu− d− d log(
c

d
u) + bv − a− a log(

b

a
v) = E,

with the energy E ≥ 0, and E = 0 at u = d/c, v = a/b. The system (1.2) has been
known to give a one parameter family of periodic solutions (1.9) having (d/c, a/b)
as the center point.

The equation (1.7) was obtained from (1.2) in Lotka [25]. Many qualitative
properties of the system (1.2) have been obtained from (1.7) since then. We provide
a brief survey. Lotka [25] obtained the period of the periodic orbit determined by
(1.2) to be about

(1.10) Tl =
2π√
ad

by linearizing the equation (1.7) at u = d/c, v = a/b. Volterra [46] separated two
variables u, v in (1.8) and then defined each side of the resultant equation to be a
new auxiliary variable in his construction of an integral formulation for the period,
from which an approximation

(1.11) Tv =
2π√
ad

was followed by approximating the integrand. Frame [14] reduced (1.9) to an
equation of the ellipse in a new coordinate system, gave explicit expressions in
convergent trigonometric series for the populations of two interacting species, and
then derived the following approximation to the exact period

(1.12)

Tf =
2π√
ad

+
π(a + d)
6(ad)3/2

E +
π(a+ d)2

288(ad)5/2
E2

− π(a + d)
155520(ad)7/2

(139a2 − 154ad+ 139d2)E3

− π(a+ d)2

29859840(ad)9/2
(571a2 − 586ad+ 571d2)E4

− π(a+d)
62705664000(ad)11/2

×(829a4+19156a3d−9426a2d2+19156ad3+829d4)E5

+ . . .
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via a lengthy computation, see Equation (4.24), p. 79, of Frame [14]. Dutt [8]
used the Hamilton-Jacobi canonical formulation of classical mechanics to obtain
nonlinear correction

(1.13) Td =
2π√
ad

+
π(a+ d)
6(ad)3/2

E +
π(a+ d)2

72(ad)5/2
E2 + . . . ,

see Equation (24), p. 464, of Dutt [8]. Waldvogel [48], [49] employed a suitable
transformation to convert the equation (1.9) into an equation of the circle, from which
an integral for the period was obtained. Waldvogel [48] gave the approximation to
the period

(1.14)
Tw =

2π√
ad

+
π(a+ d)
6(ad)3/2

E +
π(a+ d)2

288(ad)5/2
E2

− π(a+ d)
155520(ad)7/2

(139a2 + 278ad− 432 + 139d2)E3 + . . . ,

see Equation (26), p. 1268, of Waldvogel [48]. Based on the theory of Hamiltonian
systems and the Laplace transform, Rothe [33], [34] got an integral form for the
period, and then gave the following approximation to the period

(1.15)

Tr =
2π√
ad

+
π(a+ d)
6(ad)3/2

E +
π(a+ d)2

288(ad)5/2
E2

− π(a+ d)
155520(ad)7/2

(139a2 − 154ad+ 139d2)E3

− π(a+ d)2

29859840(ad)9/2
(571a2 − 586ad+ 571d2)E4 + . . . ,

see Equation (23), p. 133, of Rothe [33], and Equation (24), p. 399, of Rothe [34].
Lauwerier [24], Waldvogel [48] and Rothe [34] obtained approximate formulas

of the period when the energy E is large. In particular, Lauwerier [24] made the
observation that the limiting form of the closed orbit for large E is a triangle.
Waldvogel [48] employed a suitable transformation to convert the equation (1.9)
into an equation of the circle, from which an integral for the period was obtained
by means of inverse Laplace asymptotics, see also [16, pp. 83-86]. Based on the
theory of Hamiltonian systems and the Laplace transform, Rothe [34] got an integral
form for the period, and then obtained asymptotics of the period for large E , see
also [35].

In this paper, our result (4.1) settles the discrepancy of various approximate
results (1.10), (1.11), (1.12), (1.13), (1.14), (1.15) in the literature. It is further
shown that our power series has an excellent agreement with numerical results of
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computing an integral of the period by applying the Gauss-Tschebyscheff integration
rule of the first kind. To obtain such result, we first solve (1.9) explicitly for
one variable in terms of the other, from which two integral representations of the
period are obtained. The basic notations we employ are Lambert’s W functions,
which are two inverse functions W (0, x), W (−1, x) of x exp(x) restricted to the
intervals [−1, 0), (−∞,−1], respectively. By comparing methods of Volterra [46],
Frame [14], Hsu [20], Waldvogel [48], [49], and Rothe [33], [34], our method of
getting integral expressions (3.3), (3.8) for the exact period can be considered to be
elementary but elegant. It was shown in Shih [40] that our integral representations
(3.3), (3.8) are equivalent to integrals obtained by Volterra [46], Hsu [20], Waldvogel
[48], [49], and Rothe [33], [34]. Next, a power series of arbitrary number of terms
in small energy is constructed for the period by using expansions of Lambert’s
functions W (−k, x) at the branch point x = − exp(−1).

In what follows, two inverse functions of x exp(x) restricted to (−∞,−1],
[−1,∞), respectively, are discussed in Section 2 along with some basic properties.
We solve the functional relation (1.9) explicitly for one dependent variable in terms
of the other, and then give two integral representations of the period in Section
3. We conclude in Section 4 by providing a power series of the period in small
energy, which is compared with some approximations to the period (3.8) computed
numerically with the use of the Gauss-Tschebyscheff integration rule of the first
kind.

2. INVERSE FUNCTIONS OF x exp(x)

In order to solve (1.9) explicitly for v in terms of u, one is required to define two
auxiliary functions. First of all, the function x exp(x) has the positive derivative
(x + 1) exp(x) if x > −1. Define the inverse function of x exp(x) restricted on
the interval [−1,∞) to be W (0, x), which is a strictly increasing function mapping
from [− exp(−1),∞) to [−1,∞) so that the equivalence relation

x exp(x) = y ⇐⇒ W (0, y) = x

holds for x ∈ [−1,∞), y ∈ [− exp(−1),∞). Similarly, we define the inverse
function of x exp(x) restricted on the interval (−∞,−1] to be W (−1, x), which
is a strictly decreasing function mapping from [− exp(−1), 0) to (−∞,−1] so that
the equivalence relation

x exp(x) = y ⇐⇒ W (−1, y) = x

holds for x ∈ (−∞,−1], y ∈ [− exp(−1), 0). It then follows that

(2.1) W (0, x exp(x)) = x, x ≥ −1;
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(2.2) W (−1, x exp(x)) = x, x ≤ −1;

(2.3) W (0, x) exp(W (0, x)) = x, x ≥ − exp(−1);

(2.4) ]W (−1, x) exp(W (−1, x)) = x, − exp(−1) ≤ x < 0.

For the nature of this study, both W (0, x) and W (−1, x) will be employed only for
x ∈ [− exp(−1), 0).

Differentiating (2.3), (2.4) with respect to x gives

(2.5) W ′(0, x) =
exp(−W (0, x))

1 +W (0, x)
=

W (0, x)
x{1 +W (0, x)},

(2.6) W ′(−1, x) =
exp(−W (−1, x))

1 +W (−1, x)
=

W (−1, x)
x{1 +W (−1, x)};

for x 
= − exp(−1).
We conclude this section by providing some remarks on Lambert’s W functions.

In 1779, Euler obtained a series expansion for the solution of the trinomial equation
xα − xβ = (α − β)vxα+β in the limiting case as α → β, which was proposed in
1758 by Lambert. In this case, the equation becomes log(x) = vxβ, which has the
solution x = exp(−W (0,−βv)/β).

In the study of linear differential-difference equations with constant coefficients,
one is required to solve some transcendental equations related to W (−k, x) func-
tions. As an illustration, Theorem 3.4 of Bellman and Cooke [3] is given below.
The equation a0u

′(t) + b0u(t) + b1u(t− ω) = 0 is satisfied by
∑
pr(t) exp(srt),

where {sr} is any sequence of zeros of a0s + b0 + b1 exp(−ωs), pr(t) is a poly-
nomial of degree less than the multiplicity of sr, and the sum is either finite or is
infinite with suitable conditions to ensure convergence. For example, the equation
u′(t) = u(t− 1) has a solution of the form u(t) = exp(st) with s = W (0, 1).

Fritsch, Shafer, and Crowly [13] provided an algorithm of computing W (0, x)
for x > 0. Shih [39] used W (0, x) with x > 0 to describe a slowly moving shock
of Burgers’ equation in the quarter plane. These inverse functions are also used in
constructing the limit cycle of relaxation oscillations of the van der Pol differential
equation in the phase plane. A good reference of these functions is Corless, Gonnet,
Hare, Jeffrey, and Knuth [5].

The functions W (−k, x) are denoted by LambertW (−k, x) in the computer
algebra system Maple 7, and ProductLog[−k, x] in Mathematica, version 4.1, re-
spectively. Unfortunately, both of them produce erroneous asymptotic behavior for
W (−1, x) near x = − exp(−1).
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2.1. Aymptotics of W (−k, x) at the Branch Point x = − exp(−1)

In this investigation, we are interested in the singular behavior of each function
W (−k, x) at the branch point x = − exp(−1). The classical Lagrange inversion
formula of complex function theory isn’t applicable to the construction of a power
series of W (−k, x) at x = − exp(−1), see for example Fabijonas and Olver [11],
because the first derivative of the function x exp(x) equals zero at x = −1.

First of all, for x = −1, we have

x exp(x+ 1) =
∞∑

j=0

j − 1
j!

(x+ 1)j,

from which it follows that

x exp(1) = W (−k, x) exp(W (−k, x) + 1) =
∞∑

j=0

j − 1
j!

{W (−k, x) + 1}j.

Thus we obtain the following asymptotic behavior of W (−k, x) as x ↓ − exp(−1):

(2.7) W (−k, x) =




−1 +w − 1
3
w2 +

11
72
w3 − 43

540
w4 + . . . , k = 0;

−1 −w − 1
3
w2 − 11

72
w3 − 43

540
w4 − . . . , k = 1;

where w =
√

2 exp(1){x+ exp(−1)}. In other words, we have

(2.8)
1

1 +W (−k, x) =




1
w

+
1
3
− 1

24
w +

2
135

w2 − . . . , k = 0;

−1
w

+
1
3

+
1
24
w +

2
135

w2 + . . . , k = 1;

as x ↓ − exp(−1).
Next, instead of deriving a general expression for (2.8)

(2.9)
1

1 +W (0, x)
=

∞∑
k=0

αkw
k−1, as x ↓ − exp(−1);

we proceed the following procedure in order to construct a power series of the period
(4.2). Let

(2.10) ψ(σ) =
σ

1 +W (0,− exp(−1 − 1
2σ

2))
.
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Then, by using (2.5), ψ(σ) satisfies the differential equation

(2.11) σψ′(σ) = ψ(σ) + σψ(σ)2 − ψ(σ)3.

Substituting the series

(2.12) ψ(σ) =
∞∑

k=0

ψkσ
k

into (2.11) and equating the like powers of σ give the recursive relation

(2.13) ψj =
1

j + 2

{
j−1∑
k=0

ψkψj−k−1 − ψ0

j−1∑
k=1

ψkψj−k −
j−1∑
i=1

[
ψj−i

i∑
k=0

ψkψi−k

]}
,

for j ≥ 2, along with ψ0 = 1, ψ1 = 1/3 obtained from (2.8). Similarly, the function

ψ̂(σ) =
σ

1 +W (−1,− exp(−1 − 1
2σ

2))

has the series expansion ψ̂(σ) =
∑∞

k=0 ψ̂kσ
k where the coefficients ψ̂k satisfy

(2.13) for j ≥ 2, along with ψ̂0 = −1, ψ̂1 = 1/3 obtained from (2.8). It can be
shown by induction that ψ̂j = (−1)j+1ψj for j ≥ 0. As an illustration, applying
(2.13) recursively gives the following numerical values of ψj

ψ2 =
1
12
, ψ3 =

2
135

, ψ4 =
1

864
, ψ5 =

−1
2835

, ψ6 =
−139

777600
.

Thus combining (2.10) and (2.12) gives

(2.14)
1

1 +W (0,− exp(−1 − s))
=

∞∑
k=0

2(k−1)/2ψks
(k−1)/2, as s ↓ 0.

Similarly, we have

(2.15)
1

1 +W (−1,− exp(−1− s))
=

∞∑
k=0

2(k−1)/2ψ̂ks
(k−1)/2, as s ↓ 0.

It then follows from (2.14) and (2.15) that

(2.16) Φ(s) =
∞∑

j=0

2j+1/2ψ2js
j−1/2, as s ↓ 0;

with

(2.17) Φ(s) =
1

1 +W (0,− exp(−1 − s))
− 1

1 +W (−1,− exp(−1 − s))
.
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3. TWO INTEGRAL FORMULATIONS FOR THE PERIOD

First of all, we solve (1.9) for v in terms of u by using Lambert’s functions.

Theorem 3.1. Equation (1.9) is solved explicitly for v in terms of u to give

(3.1) v = gk(u) gk(u) = −a
b
W (−k,−(

c

d
u)−d/a exp(

c

a
u− 1 − d

a
− E

a
)),

for k = 0,1, and u ∈ [umin,umax], where

(3.2) umin = −d
c
W (0,− exp(−1− E

d
)), umax = −d

c
W (−1,− exp(−1 − E

d
)).

Next, the function v = g0(u) ∈ (0, a/b] gives the lower branch of the periodic orbit
travelling from the point (umin, a/b) to the point (umax, a/b) in the counterclockwise
direction; while the function v = g1(u) ∈ [a/b,∞) describes the upper branch
travelling from the point (umax, a/b) to the point (umin, a/b) in the counterclockwise
direction. Consequently, the trajectory determined by (1.2) subject to the initial
conditions

u(0) = u0 > 0, v(0) = v0 > 0

is closed and stays in the first quadrant of the phase plane. Furthermore, v(t)
oscillates between the minimum value g 0(d/c) and the maximum value g1(d/c).

Proof. Rewrite (1.9) as

c

a
u− 1 − d

a
− E

a
=
d

a
log(

c

d
u)− b

a
v + log(

b

a
v),

or

− b
a
v exp(− b

a
v) = −(

c

d
u)−d/a exp(

c

a
u− 1 − d

a
− E

a
),

which lies in the interval [− exp(−1), 0) for positive v. Solving this equation for v
gives g0(u) and g1(u) defined by (3.1) with 0 < g0(u) ≤ a/b ≤ g1(u) <∞. Next,
we determine the range of u. From

−(
c

d
u)−d/a exp(

c

a
u − 1 − d

a
− E

a
) ∈ [− exp(−1), 0),

we get the inequality

log(
c

d
u) − c

d
u ≥ −1 − E

d
,

or
− c
d
u exp(− c

d
u) ≤ − exp(−1 − E

d
),
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which is solved to give umin and umax defined by (3.2). The travelling direction
in the closed orbit is clearly shown by (1.2) to be in the counterclockwise direc-
tion. The function g0(u), which is strictly decreasing in the interval (umin, d/c) and
strictly increasing in the interval (d/c, umax), has its minimum value at u = d/c.
On the other hand, the function g1(u), which is strictly increasing in the interval
(umin, d/c) and strictly decreasing in the interval (d/c, umax), has its maximum
value at u = d/c.

Now we are ready to obtain integral representations of the period.

Theorem 3.2. The closed trajectory determined by (1.9) has the period

(3.3) T =
∫ umax

umin

{
1

u{a− b g0(u)} +
−1

u{a− b g1(u)}
}
du,

where the functions g0(u), g1(u) are given by (3.1); and two endpoints umin, umax

of the integral are defined by (3.2). Furthermore, each term in the integrand of
(3.3) has a singularity of the square root type at u = umin and u = umax.

Proof. Substituting (3.1) into the first equation of (1.2) gives

u′(t) = u{a− b gk(u)},

or
dt =

du

u{a− b gk(u)}
for k = 0, 1. Then travelling along the lower branch described by v = g0(u) from
the point (umin, a/b), with t = t|Pw , to the point (umax, a/b), with t = t|Pe , in the
counterclockwise direction yields

(3.4) t|Pe − t|Pw =
∫ umax

umin

du

u{a− b g0(u)} ;

while travelling along the upper branch described by v = g1(u) from the point
(umax, a/b), with t = t|Pe , to the point (umin, a/b), with t = t|Pw , in the counter-
clockwise direction yields

(3.5) t|Pw − t|Pe =
∫ umin

umax

du

u{a− b g1(u)} .

It is easy to see from gk(u) = a/b at u = umax and u = umin for k = 0, 1 that each
integrand in (3.4), (3.5) is singular at each endpoint of the integration. Each integral
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has a weak singularity of the square root type at each endpoint of the integration as
suggested by (2.8). For example, as u ↓ umin, we have

1
a− b g0(u)

= a−1

{
1 +W (0,−(

c

d
u)−d/a exp(

c

a
u− 1− d

a
− E

a
))

}−1

= a−1

{
1
w

+
1
3
− w

24
+

2w2

135
+ O(w3)

}
,

with

w =
√

2 exp(1)

√
−(

c

d
u)−d/a exp(

c

a
u− 1 − d

a
− E

a
) + exp(−1)

=
√

2 exp(1)×
√
−(

c

d
u)−d/a exp(

c

a
u− 1 − d

a
− E

a
) + (

c

d
umin)−d/a exp(

c

a
umin − 1− d

a
− E

a
)

=

√
2 exp(−d+ E

a
)
√

(
c

d
umin)−d/a exp(

c

a
umin) − (

c

d
u)−d/a exp(

c

a
u)

=

√
2(u− umin)

d/umin − c

a
+ O((u− umin)2).

Thus the period of a complete cycle is determined by the sum of these two conver-
gent improper integrals or (3.3).

The period depends on the energy E , and thus on initial data u0, v0. This is
different from the linearized problem (1.5).

Both Volterra [46] and Hsu [20] used different methods to derive two integrals
for the period, which are equivalent to the form (3.3).

The phenomenon of having a weak singularity in the integral for the period takes
place even in the linear problems. For instance, consider the linearized problem
(1.5), which gives

dv

du
=
ac2(u− d/c)
b2d(a/b− v)

.

Integrating this separable differential equation yields

ac2(u− d

c
)2 + b2d(v − a

b
)2 = E

for some constant of integration E ≥ 0. Solving for v in terms of u gives rise to

v =
a

b
± 1
b
√
d

√
E − ac2(u− d

c
)2,
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which represents the upper (with +) and lower (with −) branches of the ellipse
by traveling in the counterclockwise direction for u ∈ [d/c − √

E/(ac2), d/c +√
E/(ac2)]. Thus, from the first equation of (1.5), we have

dt =
c du

bd(a/b− v)
,

which is integrated to give the period of a complete cycle of ellipse

T =
c√
d

∫ d
c
+
√

E/(ac2)

d
c
−
√

E/(ac2)

du√
E − ac2(u− d/c)2

+
c√
d

∫ d
c
−
√

E/(ac2)

d
c
+
√

E/(ac2)

du

−√
E − ac2(u− d/c)2

=
2c√
d

∫ d
c
+
√

E/(ac2)

d
c
−
√

E/(ac2)

du√
E − ac2(u− d/c)2

.

Note that the integrand of the above integral is singular at both endpoints of the
integration. An elementary integration technique gives T = 2π/

√
ad, which is

the period obtained by Lotka [25] and Volterra [46] for a trajectory of (1.9) in a
neighborhood of the critical point (d/c, a/b).

A well-known example of nonlinear problems is the mechanical vibration. If the
weight of the rod is negligible, the hinge is frictionless, and there is no air resistance,
then Newton’s second law for rotation and the torque due to the gravitational force
give the equation of motion of a simple pendulum of length L

(3.6) Lθ′′(t) + g sin(θ) = 0,

where g is the gravitational acceleration constant, and θ is the angle the pendulum
makes with the downward vertical. Integration gives

L[θ′(t)]2 = 2g [cos(θ) − cos(a)],

where the amplitude a ∈ (0, π/2) is defined as the value of θ where θ ′(t) = 0. This
gives the period of a complete cycle

(3.7) T = 2

√
L

2g

∫ a

−a

dθ√
cos(θ) − cos(a)

.

Again this integral depends on the initial displacement a, and is an improper integral
with a square root singularity at two endpoints of integration.
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Next, with a splitting of the integration interval and a simple substitution, one
can reduce the integral of the period (3.3) to an alternative form, which is the same
as the one appearing in Rothe [33], [34] obtained by using the Laplace transform
and theory of Hamiltonian systems.

Theorem 3.3. The period of the closed trajectory determined by (1.9) can be
expressed as

(3.8) T =
1
ad

∫ E

0
Φ(
s

d
)Φ(

E − s

a
) ds,

where the function Φ(s) is defined by (2.17).

Proof. A splitting of the integration interval in (3.3) yields

T =
∫ d/c

umin

{
1

u{a− b g0(u)} +
−1

u{a− b g1(u)}
}
du

+
∫ umax

d/c

{
1

u{a− b g0(u)} +
−1

u{a− b g1(u)}
}
du.

By using (2.3), (2.4), (2.5), and (2.6), the substitution

(3.9) u(s) = −d
c
W (0,− exp(−1 − s

d
))

gives ∫ d/c

umin

1
u{a− b g0(u)} du =

1
ad

∫ E

0

φ3(s) ds,

∫ d/c

umin

−1
u{a− b g1(u)} du =

1
ad

∫ E

0
φ2(s) ds;

and the substitution

(3.10) u(s) = −d
c
W (−1,− exp(−1 − s

d
))

gives ∫ umax

d/c

1
u{a− b g0(u)} du =

1
ad

∫ E

0
φ4(s) ds,

∫ umax

d/c

−1
u{a− b g1(u)} du =

1
ad

∫ E

0
φ1(s) ds,
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where φ1(s), φ2(s), φ3(s), φ4(s) are defined by

φ1(σ) =
{1 +W (−1,− exp(−1 − σ/d))}−1

1 +W (−1,− exp(σ/a− 1 − E/a))
,

φ2(σ) = − {1 +W (0,− exp(−1 − σ/d))}−1

1 +W (−1,− exp(σ/a− 1 −E/a))
,

φ3(σ) =
{1 +W (0,− exp(−1 − σ/d))}−1

1 +W (0,− exp(σ/a− 1 −E/a))
,

φ4(σ) =
{1 +W (−1,− exp(−1− σ/d))}−1

1 +W (0,− exp(σ/a− 1 − E/a))
,

respectively. It then follows that

(3.11) T =
1
ad

∫ E

0
{φ1(s) + φ2(s) + φ3(s) + φ4(s)} ds,

which gives (3.8).

Waldvogel [48], [49] used a suitable transformation to convert the equation (1.9)
into an equation of the circle, and then obtains an integral over [0, 2π] for the period,
which is equivalent to the form (3.8).

4. POWER SERIES AND NUMERICAL INTEGRATION OF THE PERIOD

Theorem 4.1. The period defined by (3.8) has a power series

(4.1) T =
2π√
ad

∞∑
k=0

tk
k!
Ek, as E ↓ 0;

where the coefficients tk are of the form

tk =
k∑

j=0

ψ2jψ2k−2j

ak−jdj

(2j)!(2k− 2j)!
2kj!(k− j)!

,

with ψj defined recursively by (2.13) for j ≥ 2 along with ψ 0 = 1, ψ1 = 1/3.

Proof. To obtain a power series of the period T for small energy, a change of
variable in (3.8) is used to give

(4.2) T =
E

ad

∫ 1

0
Φ(E

σ

d
)Φ(E

1− σ

a
) dσ.
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Note that, by using (2.9), we obtain

Φ(s) =
∞∑

k=0

ak[1 − exp(−s)]k−1/2

=
√

2√
1 − exp(−s) −

√
2

12

√
1− exp(−s) − 23

√
2

864
[1− exp(−s)]3/2 + . . . ,

which, in turn, reduces (4.2) to

T =
E

ad

∞∑
k=0

∞∑
j=0

ak−jaj

∫ 1

0
[1− exp(−E s

d
)]k−j−1/2[1 − exp(−E 1 − s

a
)]j−1/2 ds.

Such an approximate result seems not to be in the desired form. Instead, substituting
(2.16) into (4.2) gives

(4.3)

T =
E

ad

∫ 1

0

∞∑
k=0

2k+1/2ψ2k(E
σ

d
)k−1/2

∞∑
j=0

2j+1/2ψ2j(E
1 − σ

a
)j−1/2 dσ

=
E

ad

∫ 1

0

∞∑
k=0

k∑
j=0

2k+1ψ2jψ2k−2j
Ek−1

ak−j−1/2dj−1/2
σj−1/2(1 − σ)k−j−1/2dσ

=
∞∑

k=0

2k+1
k∑

j=0

ψ2jψ2k−2j
Ek

ak−j+1/2dj+1/2
B(j +

1
2
, k− j +

1
2
),

where B is the Beta function defined by the Euler integral of the second kind

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt, x > 0, y > 0;

which satisfies the properties

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

, B(x, y) = B(y, x), B(
1
2
,
1
2
) = π, B(

1
2
,
3
2
) =

π

2
.

Here Γ is the Gamma (factorial) function defined by the Euler integral of the first
kind

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0;

which has the properties

Γ(
1
2
) =

√
π, Γ(n+ 1) = n!, Γ(n+

1
2
) =

√
π2−n1 · 3 · 5 · 7 · · · (2n− 1);

for a positive integer n. For more information on these functions, see Abramowitz
and Stegun [2] (p. 255 and p. 258). It then follows that

(4.4) B(j +
1
2
, k− j +

1
2
) =

π(2j)!(2k− 2j)!
22kk!j!(k− j)!

.
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Thus we have obtained the desired result by substituting (4.4) into (4.3).

For illustration, we provide a few numerical values of tk

t0 = 1, t1 =
a+ d

12ad
, t2 =

(a+ d)2

288(ad)2
,

t3 = − a+ d

51840(ad)3
(139a2 − 154ad+ 139d2),

t4 = − (a+ d)2

2488320(ad)4
(571a2 − 586ad+ 571d2),

t5 =
a+ d

209018880(ad)5

×(163879a4 − 167876a3d+ 165930a2d2 − 167876ad3 + 163879d4).

For a comparison with some known results of approximating the period in the
literature, let

(4.5) Tj =
2π√
ad

j∑
k=0

tk
k!
Ek.

Then, from (1.10) and (1.11), both Lotka [25] and Volterra [46] obtained T0 even
though the integral representation of the period derived by Volterra is equivalent to
(3.3). The approximate result (1.12) constructed by Frame [14] is identical to T4

with an error term of the order O(E5). The asymptotic formula (1.13) obtained by
Dutt [8] is T1 with an error term of the order O(E2). The approximation (1.14)
given by Waldvogel [48] is T2 with an error term of the order O(E3) and it was
obtained from an integral form of the period, that is equivalent to (3.8). The explicit
expansion (1.15) stated in Roth [33], [34] is identical to T 4 and it was based on the
integral (3.8).

For the rest of this section, the Gauss-Tschebyscheff integration rule of the first
kind is illustrated to be an effective numerical method for computing the integral
representation (3.8) of the period.

By using (2.16), the integral (3.8) possesses a weak singularity of the square
root type at each endpoint of the integration, which is computed numerically by the
Gauss-Tschebyscheff integration rule of the first kind. For more on this numerical
quadrature, see for example Davis and Rabinowitz [6]. To proceed further, the
integral (3.8) is converted to the form

(4.6) T =
∫ 1

−1

f(x)√
1− x2

dx,
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with

f(x) =
E

2ad
Φ(

E

2d
(1 + x))Φ(

E

2a
(1− x))

√
1− x2.

A numerical approximation to T by using the Gauss-Tschebyscheff integration rule
of the first kind is

(4.7) Tsgt =
π

n

n∑
i=1

f(xi) with xi = cos(
(2i− 1)π

2n
);

for i = 1, . . . , n, as well as the error term

T − Tsgt =
π

22n−1(2n)!
f (2n)(ξ) for some ξ ∈ (−1, 1).

Computational results Tsgt of the period (4.7) given in Table 1 show an excellent
agreement with numerical results Tnum of Grasman and Veling [17], which consid-
ered the system (1.2) with a = b = 1, c = d = 2, u(0) = u0 and v(0) = 1. Numer-
ical approximations Tnum were based on the numerical results of integrating system
(1.2) using Zonneveld’s Runge-Kutta scheme RK4na, which yield the same results
to the required accuracy as a method using the implicit formula (1.8). The polyno-
mial approximations Tj defined by (4.5) show excellent results even for the energy
E > 2.8. Note that the values of the energy with u0 = 1, u0 = 0.25, u0 = 0.1
are E = −1 + 2 log(2) ≈ 0.386294361, E = −3/2 + 2 log(4) ≈ 1.272588722,
E = −9/5 + 2 log(10) ≈ 2.805170186, respectively. The power series (4.1) has a
radius of convergence |E| < 2πmin(a, d) given by [34].

Table 1. Different approximations of the period

Period u0 = 0.50 u0 = 0.25 u0 = 0.10
E = 0.386294361 E = 1.272588722 E = 2.805170186

T0 4.442882938 4.442882938 4.442882938
T1 4.657415516 5.149628278 6.000763283
T2 4.660005289 5.177734408 6.137329517
T3 4.659885795 5.173462174 6.091571362
T4 4.659884227 5.173277457 6.087210314
T5 4.659884480 5.173375610 6.092318424
Tsgt 4.659884577 5.173375716 6.091989069
Tnum 4.6599 5.1734 6.0920
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