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ON THE PÓLYA-SCHIFFER CONVEXITY THEOREM AND ITS
APPLICATIONS FOR EIGENVALUES OF VIBRATING STRINGS

Min-Jei Huang

Abstract. We consider eigenvalue problems for the vibrating string

u′′(x) + λρ(x)u(x) = 0, u(0) = u(a) = 0

where the density ρ(x) is a positive continuous function on [0, a]. Let λn(t)
be the nth eigenvalue of the string with ρ = ρ(x, t). A classical convexity
theorem of Pólya and Schiffer states that for any k ≥ 1, the sum

∑k
n=1

1
λn(t) is

a convex function of t if ρ(x, t) is convex with respect to t. In this paper, we
shall give a different approach to this result based on variational analysis. The
ideas used also lead to applications in the case of symmetric densities and in
the case of concave densities.

1. INTRODUCTION

If a string has a density given by a positive continuous function ρ(x) defined
on the interval [0, a] and is fixed at its end points under unit tension, then the
natural frequencies of vibration of the string are determined by the eigenvalues of
the boundary value problem

u′′(x) + λρ(x)u(x) = 0, u(0) = u(a) = 0.(1)

Let L2
ρ([0, a]) denote the Hilbert space which consists of those complex-valued

measurable functions f such that∫ a

0
|f(x)|2 ρ(x) dx < ∞.

The inner-product in L2
ρ([0, a]) is defined by
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〈f, g〉 =
∫ a

0

f(x)g(x)ρ(x) dx.

As is well-known, the eigenvalues of (1) form a strictly increasing sequence of
positive numbers which depend on the density ρ(x). We denote them accordingly
by

0 < λ1[ρ] < λ2[ρ] < λ3[ρ] < · · · .

Also, the corresponding normalized eigenfunctions u1(x), u2(x), u3(x), · · · can
be chosen so as to be real-valued and to form a complete orthonormal basis for
L2

ρ ([0, a]).
Suppose that ρ(·, t) is a one-parameter family of densities, and let λn(t) be the

nth eigenvalue of (1) with ρ = ρ(x, t). It is a classical result that for any k ≥ 1, the
sum

∑k
n=1

1
λn(t) is a convex function of t if ρ(x, t) is convex with respect to t (Pólya

and Schiffer [4]). This convexity result was established in [4] by using Poincaré’s
theorem and the method of transplanting extremal functions. In the present paper,
we shall give a different approach to this result based on variational analysis. The
ideas used also lead to applications in the case of symmetric densities and in the
case of concave densities.

In order to apply the idea of perturbation theory to eigenvalues, we assume that
∂ρ
∂t (x, t) exists. Then there is a simple formula for the derivative of λn(t):

d

dt
λn(t) = −λn(t)

∫ a

0

∂ρ

∂t
(x, t)u2

n(x, t) dx,(2)

where un(x, t) is the normalized eigenfunction corresponding to the eigenvalue
λn(t) (see Huang [1] or Keller [3]). The derivatives of higher order can be derived
if we increase the differentiability conditions on ρ(x, t). Here we note the following
basic formula that we need.

Theorem 1. (the second-order perturbation formula)

d2

dt2
λn(t) = 2λn(t)

[∫ a

0

∂ρ

∂t
(x, t)u2

n(x, t) dx

]2

− λn(t)
∫ a

0

∂2ρ

∂t2
(x, t)u2

n(x, t) dx

+ 2λ2
n(t)

∑
j �=n

1
λn(t)− λj(t)

[∫ a

0

∂ρ

∂t
(x, t)un(x, t)uj(x, t) dx

]2

.

Proof. See the Appendix in Section 3.
As a consequence of Theorem 1, we obtain the following convexity result.
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Theorem 2. If ∂2ρ
∂t2

(x, t) ≥ 0, then, for any k ≥ 1,

d2

dt2

[
k∑

n=1

1
λn(t)

]
≥ 0.

Proof. Since ∂2ρ
∂t2

(x, t) ≥ 0, we have from Theorem 1 that

λ′′
n(t) ≤ 2λn(t)A2

n,n(t) + 2λ2
n(t)

∑
j �=n

1
λn(t) − λj(t)

A2
n,j(t)

where An,j(t) =
∫ a
0

∂ρ
∂t (x, t)un(x, t)uj(x, t) dx. So,

λ′′
n(t) − 2λn(t)A2

n,n(t)
2λ2

n(t)
≤

∑
j �=n

1
λn(t) − λj(t)

A2
n,j(t).

It follows that [
k∑

n=1

1
λn(t)

]′′
=

k∑
n=1

2 [λ′
n(t)]2 − λn(t)λ′′

n(t)
λ3

n(t)

=
k∑

n=1

2λn(t)A2
n,n(t) − λ′′

n(t)
λ2

n(t)

≥
k∑

n=1

∑
j �=n

−2
λn(t) − λj(t)

A2
n,j(t)

=
k∑

n=1

∞∑
j=k+1

−2
λn(t) − λj(t)

A2
n,j(t)

≥ 0

(3)

where we have used (2) in the second step and the fact that An,j(t) = Aj,n(t) in
the fourth step.

2. APPLICATIONS

Let ρ(x) be a density on [0, a]. We define the density ρs(x) by

ρs(x) =
1
2

[ρ(x) + ρ(a − x)] , 0 ≤ x ≤ a.

It is clear that ρs(x) is symmetric about x = a/2 and∫ a

0
ρs(x) dx =

∫ a

0
ρ(x) dx.
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To compare the eigenvalues λn[ρ] with λn[ρs], let us put c = max
x∈[0,a]

ρ(a−x)
ρ(x) . Then

1
c ρ(x) ≤ ρ(a− x) ≤ cρ(x) so that

c + 1
2c

ρ(x) ≤ ρs(x) ≤ c + 1
2

ρ(x).

It follows that

2c

c + 1
λn[ρ] = λn

[
c + 1
2c

ρ

]
≥ λn[ρs] ≥ λn

[
c + 1

2
ρ

]
=

2
c + 1

λn[ρ].

From this we obtain, in particular, that for any k ≥ 1,

c + 1
2

k∑
n=1

1
λn[ρ]

≥
k∑

n=1

1
λn[ρs]

.

An improvement on this inequality is given in the next theorem.

Theorem 3. For any k ≥ 1,

k∑
n=1

1
λn[ρ]

≥
k∑

n=1

1
λn[ρs]

,(4)

where the equality holds only when ρ = ρs; i.e., only when ρ is symmetric about
x = a/2.

Proof. We consider the one-parameter family of densities: ρ(x, t) = tρ(x) +
(1−t)ρs(x), where 0 ≤ t ≤ 1. Fix k and let Λ(t) =

∑k
n=1

1
λn(t)

. Since ∂2ρ
∂t2

(x, t) =
0, we have by Theorem 2 that Λ′′(t) ≥ 0. This implies that Λ(t) − Λ(0) ≥ Λ ′(0)t
for 0 ≤ t ≤ 1. In particular, taking t = 1, we get

k∑
n=1

1
λn[ρ]

−
k∑

n=1

1
λn[ρs]

= Λ(1)− Λ(0) ≥ Λ′(0).(5)

Next, by (2), we have[
1

λn(t)

]′∣∣∣∣
t=0

=
−λ′

n(0)
λ2

n(0)
=

1
λn(0)

∫ a

0
[ρ(x)− ρs(x)]u2

n(x, 0) dx.

Since the density ρs(x) is symmetric about x = a/2, the corresponding normalized
eigenfunctions un(x, 0) satisfy u2

n(a−x, 0) = u2
n(x, 0) for all n = 1, 2, · · · . On the

other hand, the function ρ(x) − ρs(x) is antisymmetric about x = a/2. It follows
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that
[

1
λn(t)

]′∣∣∣∣
t=0

= 0, and hence that Λ′(0) = 0. This together with (5) proves the

desired inequality.
Finally, if the equality holds in (4), then Λ(1) = Λ(0). Since Λ′′(t) ≥ 0

and Λ′(0) = 0, this implies that Λ(t) is constant for 0 ≤ t ≤ 1, and so Λ ′′(t) = 0.
On using (3) and taking t = 0, we find that

An,j(0) =
∫ a

0
[ρ(x)− ρs(x)]un(x, 0)uj(x, 0) dx = 0

for 1 ≤ n ≤ k and j ≥ k + 1. Thus, for 1 ≤ n ≤ k, we have

ρ(x)− ρs(x)
ρs(x)

un(x, 0) =
∞∑

j=1

{∫ a

0

ρ(x)− ρs(x)
ρs(x)

un(x, 0)uj(x, 0)ρs(x) dx

}
uj(x, 0)

=
∞∑

j=1

An,j(0)uj(x, 0)

=
k∑

j=1

An,j(0)uj(x, 0).

This shows that for each x ∈ (0, a), ρ(x)−ρs(x)
ρs(x) is an eigenvalue of the k×k matrix[

An,j (0)
]
1≤n,j≤k

. Since ρ−ρs

ρs
is a continuous function on [0, a], it follows that ρ−ρs

ρs

must be constant. Hence ρ = ρs, because ρ(a
2) = ρs(a

2). This completes the proof
of the theorem.

For the constant density ρ(x) = 1, the eigenvalues and eigenfunctions are well-
known. We have

λn[1] = n2π2/a2, n = 1, 2, · · · ;

and the corresponding normalized eigenfunctions can, for example, be taken as

un(x) =
√

2/a sin(nπx/a), n = 1, 2, · · · .

Lemma 4. (Huang [2]) If f : [0, a] → R is a concave function, then∫ a

0

f(x) sin2
(nπx

a

)
dx ≥ 1

2

∫ a

0

f(x) dx

for n = 1, 2, · · · .
With this lemma, we can now prove the following result for concave densities.

Theorem 5. If ρ(x) is a concave density on [0, a], then, for any k ≥ 1,
k∑

n=1

1
λn[ρ]

≥
(

1
a

∫ a

0

ρ(x) dx

) k∑
n=1

1
λn[1]

.(6)
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Moreover, the equality holds if and only if ρ is constant.

Proof. To compare the eigenvalues λn[ρ] with λn[1], we consider the one-
parameter family of densities: ρ(x, t) = tρ(x) + (1− t) · 1, where 0 ≤ t ≤ 1. Then
∂ρ
∂t (x, t) = ρ(x)− 1 and ∂2ρ

∂t2
(x, t) = 0. As in the proof of Theorem 3, we fix k and

let Λ(t) =
∑k

n=1
1

λn(t) . It then follows from Theorem 2 and (2) that
k∑

n=1

1
λn[ρ]

−
k∑

n=1

1
λn[1]

= Λ(1)− Λ(0)

≥ Λ′(0)

=
k∑

n=1

1
λn[1]

∫ a

0

∂ρ

∂t
(x, 0)u2

n (x, 0) dx

=
k∑

n=1

1
λn[1]

{
2
a

∫ a

0
ρ(x) sin2 (nπx/a) dx − 1

}
(7)

where un(x, 0) =
√

2/a sin(nπx/a), n = 1, 2, · · · , are the normalized eigenfunc-
tions corresponding to the constant density ρ(x, 0) = 1. Hence

k∑
n=1

1
λn[ρ]

≥ 2
a

k∑
n=1

1
λn[1]

∫ a

0
ρ(x) sin2 (nπx/a) dx

≥
(

1
a

∫ a

0
ρ(x) dx

) k∑
n=1

1
λn[1]

(8)

on using Lemma 4. This proves (6).
Finally, we examine the case of equality. Since ρ is concave, so is ρs. Hence,

by Theorem 3 and (8), we have
k∑

n=1

1
λn[ρ]

≥
k∑

n=1

1
λn[ρs]

≥ 2
a

k∑
n=1

1
λn[1]

∫ a

0
ρs(x) sin2 (nπx/a) dx

≥
(

1
a

∫ a

0
ρs(x) dx

) k∑
n=1

1
λn[1]

=
(

1
a

∫ a

0
ρ(x) dx

) k∑
n=1

1
λn[1]

.

Thus, by Theorem 3 and Lemma 4, equality holds in (6) only when ρ = ρs and

2
∫ a

0
ρs(x) sin2

(nπx

a

)
dx =

∫ a

0
ρs(x) dx
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for all n = 1, 2, · · · , k. To see that these conditions imply that ρ is constant, we
take n = 1 and note that both ρs and sin2 (πx/a) are symmetric about x = a/2
and are monotone increasing on [0, a/2]. It follows that

2
∫ a

0

ρs(x) sin2
(πx

a

)
dx ≥ 2

a

∫ a

0

ρs(x) dx

∫ a

0

sin2
(πx

a

)
dx =

∫ a

0

ρs(x) dx.

Moreover, the equality holds here only when ρs is constant. This together with the
condition ρ = ρs completes the proof of the theorem.

The above comparison techniques also work in the case ρ(x, t) = ρ(x)t.

Theorem 6. Let ρ(x) be a density on [0, a] such that log ρ(x) is concave.
Then, for any k ≥ 1,

k∑
n=1

1
λn[ρ]

≥
(

1 +
1
a

∫ a

0
log ρ(x) dx

) k∑
n=1

1
λn[1]

.

Proof. The proof is similar to that of Theorem 5. Here we take ρ(x, t) = ρ(x)t.
Then ∂ρ

∂t (x, t) = ρ(x)t log ρ(x) and ∂2ρ
∂t2

(x, t) = ρ(x)t [log ρ(x)]2 ≥ 0. Correspond-
ing to (7), we obtain

k∑
n=1

1
λn[ρ]

−
k∑

n=1

1
λn[1]

≥
k∑

n=1

1
λn[1]

∫ a

0

∂ρ

∂t
(x, 0)u2

n (x, 0) dx

=
2
a

k∑
n=1

1
λn[1]

∫ a

0
[log ρ(x)] sin2 (nπx/a) dx.

Since log ρ(x) is concave, the theorem now follows from this and Lemma 4.

3. APPENDIX

In this appendix, we give an elementary proof of Theorem 1.
By the formula (2), we have

−λ′
n(t)

λn(t)
=

∫ a

0

∂ρ

∂t
(x, t)u2

n(x, t) dx.(9)

Differentiating (9) with respect to t gives∫ a

0

∂2ρ

∂t2
(x, t)u2

n(x, t) dx + 2
∫ a

0

∂ρ

∂t
(x, t)un(x, t)

∂un

∂t
(x, t) dx

=
[λ′

n(t)]2 − λn(t)λ′′
n(t)

λ2
n(t)

=
[∫ a

0

∂ρ

∂t
(x, t)u2

n(x, t) dx

]2

− λ′′
n(t)

λn(t)
.
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So, it suffices to show that

2
∫ a

0

∂ρ

∂t
(x, t)un(x, t)

∂un

∂t
(x, t) dx

= −
[∫ a

0

∂ρ

∂t
(x, t)u2

n(x, t) dx

]2

−
∑
j �=n

2λn(t)
λn(t) − λj(t)

[∫ a

0

∂ρ

∂t
(x, t)un(x, t)uj(x, t) dx

]2

.

(10)

Since {uj(·, t)}∞j=1 forms a complete orthonormal basis for L2
ρ(·,t) ([0, a]), we can

write

∂un

∂t
(x, t) =

∞∑
j=1

{∫ a

0

∂un

∂t
(x, t)uj(x, t)ρ(x, t) dx

}
uj(x, t).(11)

The normalization condition
∫ a
0 u2

n(x, t) ρ(x, t)dx = 1 implies that
∫ a

0

∂un

∂t
(x, t)un(x, t)ρ(x, t) dx = −1

2

∫ a

0
u2

n(x, t)
∂ρ

∂t
(x, t) dx.(12)

Now differentiating the equation

u′′
n(x, t) + λn(t)ρ(x, t)un(x, t) = 0

with respect to t gives

∂u′′
n

∂t
(x, t) + λn(t)

[
ρ(x, t)

∂un

∂t
(x, t) +

∂ρ

∂t
(x, t)un(x, t)

]
= −λ′

n(t)ρ(x, t)un(x, t).
(13)

Multiplying (13) by uj(x, t), j �= n, and then integrating over [0, a], we obtain
∫ a

0

∂u′′
n

∂t
(x, t)uj(x, t) dx + λn(t) ·

∫ a

0

[
ρ(x, t)

∂un

∂t
(x, t) +

∂ρ

∂t
(x, t)un(x, t)

]
uj(x, t) dx

= −λ′
n(t)

∫ a

0
ρ(x, t)un(x, t)uj(x, t) dx

= 0.

(14)
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Using integration by parts twice and the boundary conditions un(0, t) = un(a, t) =
0, we find that∫ a

0

∂u′′
n

∂t
(x, t)uj(x, t) dx =

∫ a

0

∂un

∂t
(x, t)u′′

j (x, t) dx

= −λj(t)
∫ a

0
ρ(x, t)

∂un

∂t
(x, t)uj(x, t) dx.

This together with (14) gives, for j �= n,∫ a

0

∂un

∂t
(x, t)uj(x, t)ρ(x, t) dx

=
λn(t)

λj(t) − λn(t)

∫ a

0

∂ρ

∂t
(x, t)un(x, t)uj(x, t) dx.

(15)

It follows from (11), (12) and (15) that

∂un

∂t
(x, t) = −1

2

{∫ a

0

u2
n(x, t)

∂ρ

∂t
(x, t) dx

}
un(x, t)

+
∑
j �=n

λn(t)
λj(t) − λn(t)

{∫ a

0

∂ρ

∂t
(x, t)un(x, t)uj(x, t) dx

}
uj(x, t).

(16)

Substituting (16) into (10), we obtain the desired result. This completes the proof
of Theorem 1.
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