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ON CYCLICITY IN THE SPACE Hp(β)

K. Hedayatian

Abstract. Let {β(n)} be a sequence of positive numbers with β(0) = 1 and
let p > 0. By the space Hp(β), we mean the set of all formal power series∑∞

n=0 f̂(n)zn for which
∑∞

n=0 |f̂(n)|pβ(n)p < ∞. In this paper, we study
cyclic vectors for the forward shift operator and supercyclic vectors for the
backward shift operator on the space Hp(β).

1. INTRODUCTION

Let x be a vector in a Banach space X , and T be an operator on X . The orbit
of x under T is defined by

orb(T, x) = {T nx : n = 0, 1, 2, · · ·}.

We recall that a vector x in a separable Banach space X is cyclic for an operator
T on X if the closed linear span of orb(T, x) is equal to X ; it is supercyclic if
the set of all scalar multiples of the elements of orb(T, x) is dense in X ; also it is
said to be hypercyclic if orb(T, x) is dense in X . An operator T is called a cyclic,
hypercyclic, or supercyclic operator, respectively, if it has a cyclic, hypercyclic,
or supercyclic vector. Nowadays, the study of these vectors for operators is in
progress. For instance, one can see [4, 5, 6, 9, 10, 11, 12]. Suppose that p > 0 and
{β(n)} denotes a sequence of positive numbers such that β(0) = 1. For a sequence
f = {f̂(n)}, we define

||f ||pp =
∞∑

n=0

|f̂(n)|pβ(n)p < ∞.
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Furthermore, we shall use the formal notation f(z) =
∑∞

n=0 f̂(n)zn regardless
whether the series converges for any complex value of z. Throughout this article,
by the space Hp(β) we mean

Hp(β) = {f : f(z) =
∞∑

n=0

f̂(n)zn, ||f ||p < ∞}.

This notation is taken from [14] where p = 2.
From now on, p′ denstes the complex conjugate of p > 1, i.e., 1/p + 1/p′ = 1.

Define the finite measure µ on the set of nonnegative integers N0 by µ(K) =∑
n∈K β(n)p, K ⊆ N0. Since Hp(β) ∼= lp(µ), we conclude that Hp(β) is, indeed,

a Banach space. Moreover, it is known that the dual of lp(µ), is (lp(µ))∗ = lp
′
(µ),

which implies that (H p(β))∗, the dual of Hp(β), is Hp′(γ), where γ = βp/p′.
For more information on the space Hp(β) see [8, 13, 15, 16]. For the sake of
completeness, we first recall the following definition.

Definition 1.1. The operator Mz on Hp(β) given by (Mzf)(ξ) = ξf(ξ) is
called the forward shift; furthermore, the backward shift is the operator B on H p(β)
given by (Bf)(z) = f(z) − f(0)/z.

The conditions for the boundedness of the forward shift and backward shift are
given in the following two elementary lemmas.

Lemma 1.2. If supn β(n + 1)/β(n) < ∞, then the operator Mz is bounded
on Hp(β). Indeed, ||Mz|| = supn β(n + 1)/β(n).

Proof. For f ∈ Hp(β) it is seen that

||zf ||pp =
∞∑

n=0

|(zf)ˆ(n)|pβ(n)p

=
∞∑

n=1

|f̂(n − 1)|pβ(n)p

=
∞∑

n=0

|f̂(n)|pβ(n + 1)p

≤ (sup
n

β(n + 1)
β(n)

)p
∞∑

n=0

|f̂(n)|pβ(n)p

= (sup
n

β(n + 1)
β(n)

)p||f ||pp,

and thus ||Mz|| ≤ supn β(n + 1)/β(n). On the other hand, ||zn+1||p ≤ ||Mz|| ||zn||p
and so β(n + 1) ≤ ||Mz||β(n); hence supn β(n + 1)/β(n) ≤ ||Mz|| and the result
holds.
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Lemma 1.3. If supn≥1 β(n − 1)/β(n) < ∞, then the operator B is bounded
on Hp(β). In fact, ||B|| = supn≥1 β(n − 1)/β(n).

Proof. The proof is similar to the previous lemma and so is omitted.

2. FORWARD SHIFT ON Hp(β)

Assume that β can be chosen so that H p(β) consists of all analytic functions
on the open unit disc D, and the function f in H p(β) is noncyclic if and only
if f has a zero in D. In this case, the set of all noncyclic vectors is an open
subset of Hp(β)\{0}. The reason is that if f ∈ Hp(β)\{0} is noncyclic, then
f(w) = 0 for some w in D. Now, if f is not an interior point of the set of noncyclic
vectors in Hp(β)\{0}, then for each n, one can find a cyclic function fn such that
||f − fn|| < 1/n. Since fn → f as n → +∞ on compact subsets of D, a corollary
to Hurwitz Theorem [3] indicates that there exists a positive integer N so that for
every n > N, fn has a zero in D. This contradicts the cyclicity of fn’s.

Before stating the next two theorems, we first bring a lemma, useful in their
proofs.

Lemma 2.1. If lim inf β(n)1/n = ||Mz|| = 1, then every function in H p(β) is
analytic on the open unit disc D. Furthermore, the convergence in H p(β) implies
the uniform convergence on compact subsets of D.

Proof. Since 1 = ||Mz|| = supn β(n + 1)/β(n), we see that

(2.1) β(n) ≤ β(0) = 1 for all n ≥ 0.

Thus,
1 = lim inf n

√
β(n) ≤ limsup n

√
β(n) ≤ 1,

which implies that n
√

β(n) converges to 1 as n → +∞. Now, if f(z) =
∑∞

n=0 f̂(n)zn

is in H p(β), then

lim sup n

√
|f̂(n)|p = lim sup n

√
|f̂(n)|pβ(n)p ≤ 1.

Therefore, lim sup n

√
|f̂(n)| ≤ 1, which means that the radius of convergence of

f(z) is at least 1. Hence, f(z) is analytic on D.
Furthermore, If f(z) ∈ Hp(β), then

|f(z)| = |
∞∑

n=0

f̂ (n)zn| ≤
( ∞∑

n=0

|f̂(n)|pβ(n)p

)1/p( ∞∑
n=0

|z|np′

β(n)p′

)1/p′

= ||f ||p
( ∞∑

n=0

|z|np′

β(n)p′

)1/p′

.
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The convergence of the series
∑∞

n=0 |z|np′/β(n)p′ for every z with |z| < 1
completes the proof of the second part of the lemma.

Theorem 2.2. Suppose that lim inf β(n)1/n = ||Mz|| = 1. Then a polynomial
m(z) is cyclic for Mz if and only if m(z) has no zero in the open unit disc D.

Proof. Let m(z) be cyclic. There exists a sequence of polynomials {mn}
such that mnm → 1 in Hp(β) and so mn(z)m(z) → 1 for every z ∈ D. It follows
that m(z) has no zero in D.
For the converse, suppose that m(z) is a polynomial with no zero in D. Without
loss of generality, assume that m(z) = (z − α1) · · · (z − αk). Using induction on
k, we are going to show that m(z) is cyclic. Let m(z) = z − α, and define the
isometric isomorphism U from �p onto Hp(β) by

U({aj}) =
∞∑

j=0

aj

β(j)
zj.

Suppose that L is a complex bounded linear functional on Hp(β) such that L(znm(z)) =
0 for n = 0, 1, 2, 3, · · · . Since LU is a bounded linear functional on �p, there exists
a sequence {bj}j in �p′ such that

(2.2) (LU)({aj}) = L


 ∞∑

j=0

aj

β(j)
zj


 =

∞∑
j=0

ajbj.

Fix n, and choose a sequence {aj}∞j=0 so that an = −αβ(n), an+1 = β(n+1), and
aj = 0 for j �= n, n + 1. Then (LU)({aj}) = L(zn+1 − αzn) = L(znm(z)) = 0;
moreover, (2.2) implies that

(LU)({aj}) = β(n + 1)bn+1 − αβ(n)bn.

Thus
β(n + 1)bn+1 − αβ(n)bn = 0, n = 0, 1, 2, · · · ,

and consequently,

|bn+1| =
β(n)

β(n + 1)
|α| |bn|, n = 0, 1, 2, · · · .

It follows that |bn| = β(0)/β(n)|α|n|b0|, for every positive integer n.
If b0 �== 0, knowing the fact that {bn}∞n=0 is in �p′ , the above equality says that

{|α|n/β(n)}∞n=0 is also in �p′ . But it is impossible; because by (2.1), β(n) ≤ 1
for all n and α with |α| ≥ 1. Hence, bn = 0 for all n, which implies that L = 0.
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Using the Hahn–Banach theorem we observe that the polynomial multiples of m(z)
are dense in Hp(β), and so m(z) is cyclic. Now, by the induction hypothesis,
s(z) = (z−α1) · · · (z−αk) is cyclic. Thus, there exists a sequence of polynomials
{sn(z)}∞n=0 such that sns → 1 in Hp(β). Therefore, sn(z)m(z) → z − αk+1,
where m(z) = (z − α1) · · · (z − αk+1). But z − αk+1 is cyclic, and so is m(z).
This completes the proof of the assertion of the theorem.

The natural question which now arises is whether, under the hypotheses of
Theorem 2.2, every function with no zero in the open unit disc is cyclic for Mz; or,
equivalently, is there a noncyclic function in Hp(β) so that it never vanishes on D?

In the rest of this section, we are going to discuss this problem and give some
sufficient conditions for the existence of these kinds of functions.

Theorem 2.3. Let PN be the set of all polynomials with no zeros in the open
unit disc D. Then the closure of PN in Hp(β) contains many functions other than
polynomials which never vanish on D.

Proof. Choosing the sequence {an} so that |an| > 2n+1/β(n) for n > 0 and
a0 = 1, we observe that for every complex number c with |c| = 1,∣∣∣∣∣

n∑
k=1

ck/akβ(k)

∣∣∣∣∣ < 1.

Applying Rouché’s theorem [2] to the analytic functions f(z) = 1 and gn(z) =∑n
k=1 zk/akβ(k), we conclude that hn(z) = 1 + gn(z) ∈ PN .
It is easily seen that the sequence {an} can be chosen so that

∑∞
n=0(1/a

p
n) <

∞. Thus, the function h(z) =
∑∞

n=0(z
n/anβ(n)) is in H p(β) and the sequence

{hn(z)}n converges to h(z) in Hp(β). To show that h(z) does not have any zero
in the open unit disc, let w be any complex number with |w| < 1 and B(w, r) be
the open disc with center w and radius r whose closure lies in D. Considering the
fact that ∣∣∣∣∣

∞∑
n=1

zn

anβ(n)

∣∣∣∣∣ < 1, |z| < 1 ,

and applying Rouché’s theorem to the constant function 1 and the function
∑∞

n=1

(zn/anβ(n)), we see that h(z) never vanishes on B(w, r). Since this holds for
every disc with the closure in D, the result follows.

To obtain the next results, we need to introduce the concept of bounded point
evaluation for the space H p(β). Recall that for a complex number w, the functional
ew defined on polynomials by ew(m(z)) = m(w) is called evaluation at w. A
point w is said to be a bounded point evaluation on H p(β) if the functional ew
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can be extended to a bounded linear functional on Hp(β). In this case, we denote
ew(f) by f(w) for f in Hp(β). Density of polynomials in Hp(β) implies the
equivalency of the above definition to the existence of a constant c > 0 such that
|ew(m(z))| ≤ c||m(z)||p for all polynomials m(z). Since the spaces Hp(β) and
lp(µ) are isometrically isomorphic for a measure µ on nonnegative integers, we
conclude that there is a unique element kw in Hp′(γ) where γ = βp/p′ , such that
for all f ∈ Hp(β) we have

f(w) = ew(f) =
∞∑

n=0

f̂(n)k̂w(n)β(n)p, ||ew|| = ||kw||p′.

The element kw is called the reproducing kernel at the point w.
By taking for f the monomial fn(z) = zn we obtain

k̂w(n) =
wn

β(n)p
.

Hence w is a bounded point evaluation if and only if

||kw||p
′

p′ =
∞∑

n=0

|w|np′

β(n)p′ < ∞.

Theorem 2.4. Suppose that lim inf β(n)1/n = ||Mz|| = 1 and G is an open
disc in D which is tangent to ∂D at 1. If p ≥ 2, and there exists a positive constant
c such that for every w in G,

∞∑
n=0

|w|np′

β(n)p′ ≤ c|
∞∑

n=0

wn

β(n)p′ |p
′
,

then there is a noncyclic function in H p(β) which never vanishes on the open unit
disc D.

Proof. First note that the Hardy space H 2 is, indeed, the space H 2(β) with
β(n) = 1, for all n. Considering this fact along with (2.1), we observe that H2

is a subset of H2(β) for every β satisfying the hypothesis of the theorem. Thus
H∞ ⊆ H2(β). Suppose that f =

∑∞
n=0 f̂(n)zn is in H p(β). Then there exists a

positive integer N such that |f̂(n)|pβ(n)p < 1 for all n ≥ N . Moreover,

|f̂(n)|pβ(n)p ≤ |f̂(n)|2β(n)2

for all n ≥ N , and consequently, H∞ ⊆ H2(β) ⊆ Hp(β).
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Now, define s(z) = exp(z + 1)/(z − 1). Obviously, s is in H∞ and so is in
Hp(β). Furthermore, s never vanishes on D. It remains to show that s is noncyclic.
On the contrary, assume that it is cyclic. So there exists a sequence of polynomials
{pn} such that pns → 1 in Hp(β) as n → +∞.

Now, considering the proof of Lemma 2.1, and applying the ratio test, it is easily
seen that if |w| < 1, then the series

∑∞
n=0 |w|np′/β(n)p′ is convergent; so w is a

bounded point evaluation. In fact, kw(z) =
∑∞

n=0(w
n/β(n)p)zn is the reproducing

kernel for Hp(β) at w. Consequently, if f ∈ Hp(β), then

|f(w)| ≤ ||f ||p||kw||p′ = ||f ||p(
∞∑

n=0

|w|np′

β(n)p′ )
1/p′.

Replacing f(w) by pn(w)s(w), the boundedness of the sequence {pns} implies the
existence of a constant M such that

(2.3) |pn(w)s(w)| ≤ M(
∞∑

n=0

|w|np′

β(n)p′ )
1/p′.

For δ > 0, let Cδ be the circle with center δ/(1 + δ) and radius 1/(1 + δ) which
is tangent to ∂D at 1. Choose δ so large that if w ∈ Cδ and w �= 1 then w ∈ G. If
w �= 1 ranges over the circle Cδ, then |s(w)| = e−δ; thus by (2.3)

|pn(w)s(w)| = e−δ|pn(w)|

≤ M(
∞∑

j=0

|w|jp′
β(j)p′ )

1/p′

≤ Mc
1
p′ |

∞∑
j=0

wj

β(j)p′ |.

On the other hand,

1 < (
∞∑

n=0

|w|np′

β(n)p′ )
1/p′ ≤ c

1
p′ |

∞∑
n=0

wn

β(n)p′ |, w ∈ G.

This implies that

|pn(w)(
∞∑

j=0

wj

β(j)p′ )
−1| ≤ c

1
p′ Meδ, n = 1, 2, 3, · · · .

Let Gδ consist of all points inside the circle Cδ , and define

fn(w) =




pn(w)(
∞∑

j=0

wj

β(j)p′ )
−1 if w ∈ Gδ\{1} ,

0 if w = 1 .
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It is apparent that fn is analytic on Gδ and continuous on Gδ, and so

sup
w∈Gδ

|fn(w)| ≤ c
1
p′ Meδ, n = 1, 2, 3, · · · .

Since pn(w) converges to 1/s(w) for every w in the open unit disc, we have

1 ≤ c
1
p′ Meδ|s(w)| |

∞∑
j=0

wj

β(j)p′ |, w ∈ Gδ. (2.4)

Now, let w range over the set Gδ ∩ [0, 1). Putting h(w) = (wj/ β(j)p′) exp((w +
1)/(w − 1)), a straightforward computation shows that

sup
w∈[0,1)

h(w) = h(
j + 1 −√

2j + 1
j

) ≤ 1
β(j)p′ e

2j
1−√

2j+1
+1

.

Using the ratio test and considering the fact that lim j
√

β(j) = 1, it is easily observed
that the series

∑∞
j=0(1/β(j)p′) exp ((2j/(1−√

2j + 1)) + 1) is convergent, and so∑∞
j=0(w

j/β(j)p′) exp ((w + 1)/(w − 1)) converges uniformly on [0,1). Therefore,
by using Lebesgue’s dominated convergence theorem, it follows that

lim
w→1−

s(w)
∞∑

j=0

wj

β(j)p′ =
∞∑

j=0

lim
w→1−

e
w+1
w−1

wj

β(j)p′ = 0,

which contradicts (2.4)

Example 2.5. Let β(n) = 1 for all n > 0, and p = 2. Clearly limβ(n)1/n =
||Mz|| = 1. Put

f(w) =
∞∑

n=0

| wnp′

β(n)p′ | =
∞∑

n=0

|w|2n =
1

1 − |w|2

and

g(w) = |
∞∑

n=0

wn

β(n)p′ |p
′
= |

∞∑
n=0

wn|2 =
1

|1 − w|2

for w ∈ D. Suppose w = x + iy �= 1 ranges over the circle Cδ, with center
δ/(1 + δ) and radius 1/(1 + δ), δ > 0. Then |w|2 = (1− δ + 2xδ)/(1 + δ) and
|1 − w|2/(1− |w|2) = 1/δ; thus f(w) = g(w)/δ. For a fixed δ1 > 0 we see that
f(w) ≤ g(w)/δ1, for all w on Cδ where δ ≥ δ1. Thus the inequality in the theorem
holds for G consisting of all points inside the circle Cδ1 , and c = 1/δ1.
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3. BACKWARD SHIFT ON Hp(β)

In this section, we first present necessary and sufficient conditions for a vector
in Hp(β) to be supercyclic for certain weighted backward shift that we will denote
by B̃. Next, we discuss the hypercyclicity of the operator B.

The operator B̃ is defined on Hp(β) by

B̃(
∞∑

n=0

f̂(n)zn) =
∞∑

n=0

f̂(n + 1)
β(n + 1)2

β(n)2
zn.

Similar to the proof of Lemma 1.2 it can be shown that

||B̃|| = sup
n≥1

(
β(n)

β(n − 1)
)p.

Theorem 3.1. Suppose that β(i + 1)β(i− 1) ≤ β(i)2 ≤ 1 for all i ≥ 1, and
{β(i)/β(i − 1)}∞i=1 ∈ �p. Then f(z) in Hp(β) is supercyclic for B̃ if and only if
f(z) is not a polynomial.

Proof. Fix ε > 0, and let f(z) =
∑∞

i=0 f̂(i)zi be in Hp(β). Choose the
integer k so that

∑∞
i=k β(i)p/β(i− 1)p < ε. Since limi→+∞ |f̂(i)|pβ(i)p = 0

there exists an integer n such that n ≥ k and |f̂(n)|pβ(n)p = max{|f̂(i)|pβ(i)p:
i ≥ k}. Suppose that f(z) is not a polynomial. Then f̂ (n) �= 0. Moreover,

(3.1) | f̂(i)
f̂(n)

|p β(i)p

β(n)p
≤ 1 for i ≥ k.

Now, an easy computation shows that

((B̃)
n
f)(z) =

∞∑
i=0

f̂(i + n)
β(i + n)2

β(i)2
zi,

and so
((B̃)

n
f)(z)

β(n)2f̂(n)
=

∞∑
i=1

f̂(i + n)

f̂(n)

β(i + n)2

β(i)2β(n)2
zi + 1.

Put

hn(z) =
∞∑
i=1

f̂(i + n)
f̂(n)

β(i + n)2

β(i)2β(n)2
zi.

Let Q(i) denote the statement β(i−1)β(n−1) ≤ β(i−2)β(n). Using induction on
i, we show that Q(i) holds for every i ≥ n + 1. Clearly, Q(n + 1) holds. Suppose
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that Q(i) holds. Then

β(i)β(n− 1) ≤ β(i)
β(i − 1)

β(i − 1)β(n − 1) ≤ β(i)
β(i− 1)

β(i− 2)β(n)

≤ β(i − 1)2

β(i − 1)
β(n) (by hypothesis of the theorem)

= β(i − 1)β(n).

Thus Q(i + 1) holds. Similarly, applying induction it can be shown that

β(i − j − 1)β(n − 1 − j) ≤ β(n − j)β(i− j − 2)

for all i ≥ n + 1 and 0 ≤ j ≤ n − 2. Considering these preliminaries all together,
we see that

||hn||pp = ||
∞∑

i=n+1

f̂(i)

f̂(n)

β(i)2

β(i−n)2
1

β(n)2
zi−n||pp

=
∞∑

i=n+1

| f̂(i)
f̂(n)

|p β(i)2p

β(i − n)2p

β(i − n)p

β(n)2p

=
∞∑

i=n+1

| f̂(i)

f̂(n)
|p β(i)p

β(n)p

β(i)p

β(i− n)p

1
β(n)p

≤
∞∑

i=n+1

β(i)p

β(n)pβ(i− n)p
(by (3.1))

=
∞∑

i=n+1

(
β(i)

β(i− 1)
)p(

n−2∏
j=0

β(i− j − 1)β(n− 1 − j)
β(i − j − 2)β(n− j)

)p 1
β(1)p

≤
∞∑

i=n+1

(
β(i)

β(i− 1)
)p 1

β(1)p
<

ε

β(1)p
.

It follows that (B̃)nf/(β(n)2f̂ (n)) converges to 1 in Hp(β). Now, let Mj =
∨∞

i=j{zi} , j ≥ 1, and Pj : Hp(β) → Mj be the mapping defined by Pj(
∑∞

i=0 f̂(i)zi)
=
∑∞

i=j f̂(i)zi. If Bj is the operator defined on Mj by Bjf = PjB̃f , then for a
fixed j ≥ 1,

Bjz
k =

{
0 if k = j,

B̃zk if k > j,

and so there exists a sequence {γn} of scalars such that γnB
n

j f converges to zj as
n → +∞. But (B̃)nf = B

n

j f for a sufficient large n; hence γn(B̃)nf converges
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to zj . Now let
∑m

k=1 cjk
zjk be a finite combination of zj’s, j ≥ 0. So for every

1 ≤ k ≤ m there exists a sequence {γk,n}n such that γk,n(B̃)nf converges to zjk

as n → +∞. Thus (
∑m

k=1 cjk
γk,n)(B̃)nf converges to

∑m
k=1 cjk

zjk . It follows
that f is supercyclic for B̃. To prove the converse, if f(z) is a polynomial then
(B̃)nf = 0 for a sufficient large n; hence f(z) is not supercyclic for B̃.

Example 3.2. Let 0 < β(1) < 1 be fixed and β(i) = β(1)/(i− 1)!, i > 1. If
p = 2 then it is easily seen that all conditions of the theorem are satisfied.

The following theorem can be considered, in some way, as a generalization
of Theorem 3.1 of [10]. It is shown in [7] that when the operator satisfies the
Hypercyclicity Criterion and the essential spectrum meets the unit disc, then it has
an infinite dimensional Banach space of hypercyclic vectors. That a backward shift
satisfies the Hypercyclicity Criterion is shown in [10]. So we give the following
result.

Theorem 3.3. If limn→+∞ β(n) = 0 and lim sup β(n − 1)/β(n) = 1, then
there is an infinite–dimensional Banach space of hypercyclic vectors for the back-
ward shift B on H p(β).

A question which now arises and we study in the rest of this paper is: Which
operators in the commutant of the backward shift B on Hp(β), denoted by {B}′,
are hypercyclic?

Theorem 3.4. If 0 �= A ∈ {B}′ such that A1 = 0, then there is a dense
subset X ⊆ H p(β) and a right inverse R for A(AR = IX , the identity on X) such
that ||Anx|| → 0 for every x ∈ X .

Proof. Let fk(z) = zk for every k ≥ 0. Indeed, the space X is the linear
span of fk, k ≥ 0. To prove that ||Anx|| → 0 for every x ∈ X , it is enough to
show that Ak(fk) = 0 for all k. Assume that this is true for all j < k, and since
BAk−1(fk) = Ak−1B(fk) = Ak−1fk−1 = 0 it follows that Ak−1(fk) = λ for a
constant λ and therefore Ak(fk) = AAk−1(fk) = 0. To prove that there is a right
inverse R for A, let n be the smallest integer such that Afn(0) �= 0 (this n exists
because A �= 0); thus

Afn =
n∑

k=0

Afk(0)Bkfn = Afn(0),

and so Ag0 = 1, where g0 = fn/Afn(0). Suppose that there exists an element gi

in Hp(β) such that Agi = fi for 0 ≤ i ≤ m. Now,

Afn+m+1 =
n+m+1∑

k=0

Afk(0)Bkfn+m+1 =
m+1∑
i=0

Afn+i(0)fm+1−i .
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Thus,

fm+1 =
Afn+m+1

Afn(0)
−

m+1∑
i=1

Afn+i(0)
Afn(0)

fm+1−i

=
Afn+m+1

Afn(0)
−

m+1∑
i=1

Afn+1(0)
Afn(0)

Agm+1−i

= A(
fn+m+1

Afn(0)
−

m+1∑
i=1

Afn+1(0)
Afn(0)

gm+1−i).

Put

(3.2) gm+1 =
fn+m+1

Afn(0)
−

m+1∑
i=1

Afn+i(0)
Afn(0)

gm+1−i.

Hence by induction we conclude that there exists gi ∈ Hp(β) such that Agi = fi

for every i ≥ 0. If Rfi = gi, i ≥ 0, then AR = IX .

Corollary 3.5. If limn→+∞ β(n) = 0 then the operator A = B i is hypercyclic
for every i ≥ 1.

Proof. Let fm and R be as in the proof of the previous theorem. By the
Hypercyclicity Criterion ([10] or [11]) and Theorem 3.4 it is sufficient to show that
limn→+∞||Rnfm|| = 0 for every m ≥ 0. Applying (3.2) we have Rfm = gm =
fm+i, for m ≥ 0 and so Rnfm = fm+in . Therefore, limn→+∞||Rnfm|| =lim
n→+∞β(m + in) = 0.

Remark. Note that another proof of the previous corollary is obtained by
considering a result in [12] and a result of S. Ansari [1].

Corollary 3.6. For a nonzero constant α and i ≥ 1, if lim n→+∞ β(n)/αn/i =
0 then A = αBi is hypercyclic.

Proof. Applying (3.2), we have Rfm = gm = fi+m/α, for m ≥ 0 and so
Rnfm = fin+m/αn. Hence

lim
n→+∞ ||Rnfm|| = lim

n→+∞
β(m + ni)

αn

= lim
n→∞

β(m + ni)

α
m+ni

i

α
m+ni

i

αn
= lim

n→+∞
β(m + ni)

α
m+ni

i

α
m
i = 0.

Remark. If |α| > 1 and β(n) = 1 for all n, then we conclude that αBi

satisfies the Hypercyclicity Criterion. For i = 1 this was proved by Gethner and
Shapiro [5].



On Cyclicity in the Space Hp(β) 441

ACKNOWLEDGMENT

The author thanks the referee for his useful comments.

REFERENCES

1. S. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), 374-383.

2. R. V. Churchill, and J. W. Brown, Complex Variables and Applications, McGraw-
Hill, Fifth Edition, 1990.

3. J. B. Conway, Functions of One Complex Variable, Second Edition, , Springer-Verlag,
New York, 1978.

4. N. S. Feldman, Countably hypercyclic operators, J. Operator Theory, to appear.

5. R. M. Gethner, and J. H. Shapiro, Universal vectors for operators on spaces of
holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288.

6. G. Godefroy, and J. H. Shapiro, Operators with dense invariant cyclic vector mani-
folds, J. Funct. Anal. 98 (1991), 229-269.
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