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TWIN POSITIVE SYMMETRIC SOLUTIONS FOR LIDSTONE
BOUNDARY VALUE PROBLEMS

Yanping Guo and Weigao Ge

Abstract. In this paper, we consider the Lidstone boundary value problem

00

(@YD) (1) = FE Y)Y (1); - ;y@OiD ) 0 <t<1;
y@(0) =y®P(1)=0; 0<i<n—1;

where f : [0;1] x R™ — R is continuous, ®(v) = |v|Pi2y; p > 1. Growth
conditions are imposed on  which yield the existence of at least two symmetric
positive solutions by using a fixed point theorem in cones.

1. INTRODUCTION

In this paper, we are concerned with the existence of two positive solutions for
the 2nth order Lidstone boundary value problem with a p—Laplacian operator

(@(yC=D))’ (1) = F(Gy(0);y" (1);- ;y@O-D(0); 0 <t <1,
(1) : : :
y@e(0) =y@(1)=0; 0<i<n-1;

where the nonlinear term f is allowed to change sign, and ®(v) = |v|P~2v; p > 1.
We will impose growth conditions on £ which ensure the existence of at least two
positive solutions for (1) by using a fixed point theorem in cones.

Fixed point theorems and their applications to nonlinear problems have a long
history. Recently, there seems to be increasing interest in multiple fixed point the-
orems and their applications to boundary value problems for ordinary differential
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equations or finite difference equations. Such applications can be found in the pa-
pers [1-3, 6, 9-10, 12, 14-16], and the recent book by Agarwal et. al. [1] which
gives a good overview of the current work. Davis et. al. [7-8] imposed condi-
tions on T which yield at least three symmetric positive solutions to the 2mth order
Lidstone boundary value problem

ye™ = F(y(t);y" (1);- - ;yCM-D(v); te [0;1];
y@(0) = y@)(1) =0; 0<i<m-1;

where (—=1)™f : R™ — [0;00) is continuous, using the Leggett-Williams fixed
point theorem [13] and the five functionals fixed point theorem [4]. Avery et. al.
[5] applied a twin fixed point theorem to obtain at least two positive solutions for
the right focal boundary value problem

y°°+f(y) =0;0<t<1;
{

y(0) =y'(1) =0;

where f : R — [0; c0) is continuous.

In order to apply the concavity of solutions in the proofs, all the above results
were obtained under the assumption that function £ or (—1)™f is nonnegative. For
the sign changing nonlinearity f, few results were obtained. In some sense this
paper should be viewed as companion for [7-8], and the result in this paper fills a
gap under the assumption that function (—1)™f is nonnegative in [7-8].

The paper is divided into three sections. In section 2, we prove a fixed point
theorem in cones. In section 3, we impose growth conditions on £ which allow us
to apply the fixed point theorem in obtainingtwosymmetric positive solutions for (1).

2. THe Fixep PoINT THEOREM IN CONES
For a cone K in a Banach space X with norm || - || and a constant r > 0, let
Kr={xeK:|x||<r}, 0K, ={x e K:|x|| =r}. Suppose ®: K - R* isa
continuous functional, let
K(b) ={x e K:®(x) <b}; 0K() ={x e K:®(x) =b}
and Ka(b) = {x € K : a < ||x]||; ®(x) < b}. The origin in X is denoted by .

Definition 1.  Given a cone K in a real Banach space X, a functional ® :
K — R is said to be concave functional on K provided

B(tx + (1 —t)y) > t®(x) + (1 — t)®(y)
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forall x;ye Kand 0 <t<1.

Theorem 1. Let X be a real Banach space with norm || - || and K € X a
cone. Suppose T : K — K is a completely continuous operator , and ® : K — R™
a continuous concave functional satisfying ®(x) < ||x|| for all x € K . If there
are constants ¢ > b > a > 0 such that

(Cy) ||ITx| <afor x € 0Ky;
(C2) ®(Tx) = b for x € @K (b);
(C3) ®(x) < bimplies ||Tx|| <c,
then T has at least a fixed points y in K such that

a<l|yll<c ®y)<b:

Proof. Let the symbol degy denote the degree on the cone K. Then condition
(Cy) implies
deg{l — T; Ky u} = 1:

Let @ = K(b) N Ky, we now prove that
deg {I = T;Q;pu} =0:

Conditions (Cy) and (C3) imply inf ®(Tx)>hb>0 and inf |[|TX|| <c.
B xc@K (b) xe@K (b)
Let T : K(b) — K be an extension of T|gx ) : @K (b) — K. Dugundji extension

theorem ([17, p. 5]) ensures that T is completely continuous and 'F(K(b)) C
tonvexT (@K (b)). Since {x € K : ®(x) > b} N {x € K : ||x|| < c} is a convex
set, we have

inf ®Tx)>b>0; and inf |Tx||<c:
xeK (b) xeK(b)

We claim N
deg{l — T;Q;u} =0:

Clearly @0 = (@K (b) N Kye) U (K2 NK(b)). For x € @9, (1 — T)(X) # L.
If it is not true, then there exists xg € @2 such that

Xo = T Xo:
If x € @K (b) N Ky, then
b= ®(xo) = ®(Txg) = ®(Txg) >b;
a contradiction. On the other hand, if x € @Ky, N K(b); then

2¢ = [[xol| = [[Txo|| < c;
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a contradiction. For x € €, we have
®(x) <b; and ®(Tx) > b:
Thus, (1 — T)(x) # p for x € Q. It follows that
degi {1 = T; Q;u} =0
Take a homotopy H(x; ,) = . Tx+ (1 — ,)'Fx. It is easy to see that
H(x;,) #x; forall x € @Q; , €0;1]):

Thus, N
deg {l = T; G} =deg{l = T;Qu} =0:

From ®(x) < ||x||, we have Ky C K(b) N Ky = €. Then
deg {l — T; 2\ Ky; u}
= degy {I — T; % u} — degi {1 — T; Ka;p}
=—-1:
So T has in K a fixed point y such that
a<|yl<c ®@y)<b:

Theorem 1 is now proved.

3. MaiN ResuLT

In this section, we will impose growth conditions on f which allow us to apply
Theorem 1 to obtain two symmetric positive solutions for (1). Let G(t;s) be the
Green's function for

u' =0; te [0;1];
’ {
u(0) =u(l) =0:
Thus,
(I-t)s; 0<s<t<1,
G(t;s){ 1-9s)t 0<t<s<I:

Let Gi(t;s) = G(t;s), then for 2 < j < n — 1 we recursively define

1
Gj(t;s):/O G(t; r)Gj_1(r;s)dr:
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It is easy to see that G;(t;s)(1 < j < n — 1) is the Green's function for the
boundary value problem

y@(t) =0, 0<t<1;
y@(0)=y@ (1) =0, 0<i<j-1

For each 1 < j < n — 1, we define A; : C[0;1] — C[0;1] by

1
Ajv(s) = /o Gj(s;¢)v(¢)de:
For each 1 < j < n — 1, from the construction of Aj we see that
AV () = v(1);0 <t < 1;

(AV)E(0) = (A1) =0; 0<i<j -1
Therefore (1) has a solution if and only if the boundary value problem

0

((I)(vo)) (t) = F(t; An—1V(t); An—2v(t); - -+ ;A1V(L); v(L)); 0 <t <1;
v(0)=v(1) =0

has a solution. If y is a solution of (1), then v = y@(-1) js a solution of

(5). Conversely, if v is a solution of (5), then y = A,_;v is a solution of (1). In

particular, if (—1)"~1v(t) > 0( 0) on [0; 1], then y = An_1V is a positive solution
of (1).

Lemma 1. G(t;s) has the following properties

(6) /01 ye(t;s)yds:t(lz_t); 0<t<l
1—+

DO =

(7) / [G(ts)lds = 5t 1) -

Proof. From the expression of G(t;s), it is easy to see that (6) and (7) hold.

Let X =C[0;1], K = {x € X : (=1)"Ix(t) > 0;x(t) = x(1 —t); t € [0; 1]},
K’ = {x € K : (-1)"~Ix is concave on [%;1 — ]}, where £ € (0; ). Obviously,
K;K' c X are two cones with K' ¢ K.

Let (—1)[a; b] = [a;b] if j is even and (—1)}[a;b] = [—b; —a] if j is odd. The
following conditions are satisfied throughout the rest of this paper
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- ;Un—1)

n-1 B
(Hp) f:[0;1]x [T (—=1)1[0; 00) — R is continuous and for each (uo;
j=0
c H f(t; Uo; -+ ;Un_1) is symmetric about t = ;

(H2) (-1 )”f(t 0;0;--+0) > 0(£0) for t € [0;1];
and there exist a; b; d > 0 satisfying

0<lii¢4{@(mv-+%;] rd<a<tb<b

such that

(H3)(=1)"f(t;ug; - - - ;un—1)>—M for (t; uo;- - -; un

X H(_l)j -4n_11—j N1 (1 - i)n_l_jd- N
(Hs) (— )”f(t Ug; -« ;Un_1) < 2®(2a) for (t;up; -

X II 0,-—{L—fa];

{n—1-j

(He) (— )M (tuos -+ U 2 (Mt +®

n— 1
€ [t1—4] x {

I+

—24)"

xii(—ningmiﬂb}

For x € K, W_e define

Asx(¢);%(¢))de )ds)™; 0
(Tx)(t) =

1
’——1—jb];

- ;Un—1) € [0; 1]

(b)) for (t; uo; -

_1_jb_ 1

' gn—1-j

~1) €[0; 1]x II(
(Ha) (—=1)"f(t;up;--- ;uUn_1) > %M for (t;uo;--- ;uUn_1) [

l\D|I+

;Un—1)

b];

(H?) (— )nf(t Ug; - ;Un— 1) < %(I) (2a> for (t Ug; - - Un—l) c l:o;

s

2

]
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where (B)* = (~1)" max{(~1)""B;0}.

t
(Pl(/f An]_X()Aan((,) “.
0
Arx(¢ ¢))d¢)ds; 0 <t < %;
(AX)(t) = 1
‘1’1< (¢ An—1X(¢); An—2X(¢ ) -+ 5
t
AX(6);X(¢))dg)ds; 5 < t< 1

For x € X, define p: X — K by (ux)(t) = (—1)"tmax{(—1)"~1x(t); 0}, then
T =poA. Forxe K, let

( —/Ot - (/ff*(c,An_lxm,An_zx((;);--- ,
. . . . . 1.
(T'X)(t) = 1 Alﬁ(c),x(c))dc)dS, 0<t< ot
—/t 31 (/ (61 AnaX(0)i An_aX(0); -
A1X(¢ ) X(¢))d¢ )ds; % <t<1;
where
( F(t;0;0;---;0); (t;ug; -+ ;Un—-1)
n-1
€ [0;1] x H(—l)j+1[0;oo);
F(bUG - 1) (i )
f*(tUp; -+ ;Un_1) = R VR = PN T
0 ! € [5,1 — 5] X ,—11(_1)] [0; 00);
F(tug: -~ suf_g); (G Uos- -+ sUn—1) .
€ ({0, 2] U {1 %;1]) x T (=1Y[0;00)

and uj = uj foru; € (—1)’[@—11,—1” =i (1— i)n—l_jd;ﬁj_b],u,_ (—1)ih
£n-1-J (1 — $)"17d for uj € (—1P[0; gt I (1 — 1)), U =
(_1) gni 1 gD for uj € (_1)J(gn—1.1 o0); Ui = Uj for uj € (_1)1' [0; Sni;l“_b],
Uj = (=1)) gz for uj € (1) (griresh;

*
J
00).

Lemma 2. ([11, Lemma 3.5]) If A : K — X is completely continuous, then
HoA: K — K is also completely continuous.
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(H1) implies that A and T’ are well defined. From the continuity of f, it is easy
to see that A : K — X is completely continuous. So T : K — K is completely
continuous by using Lemma 2. For x € K’, we have [x(t)] > &7 max yx(t)y >

- t

<
+ max _|x(t)| fort € [+; 1—4] by the concavity of (—1)"~x on [;1—3]. Thus,
<t<1—

NIH
NI+

(8) ®(X) < [|x||; and ®(x) >+ max |X(t)]:

Lemma 3. Let (Hy)—(Ha4) hold. Then T’ : K’ — K’ is completely continuous.

Proof. For all x € K’, from (Hz) and (Hs), we have

(~1)" / (61 An 1X(0); An2X(0 )i+ S AIX(2); X(0))de
:/5( D)™ (6 Anc1X(6 )i An—2X(6 )i+ - 1 Arx(¢ )i x(¢))de

+ / (— DM (6 AnaX(6): AnaX(0)i - Arx(0)i X(6))d

+ 11—+ +
> _Z I—
2M+ 2 N 1—#
=0foro<t< =;
2’
1
2 + 1
(—1)”/ (0 AncaX(6); An—2X(¢)s -+ s ArX(¢ ) X(¢))de 20for§§t§§;
S

thus,

So T’ : K/ — K’. Using the continuity of £ and the definition of £*, it is easy
to see that T’ : K — K’ is completely continuous.

Theorem 2. Let (H1) — (H7) hold. Then the boundary value problem (1) has
at least two positive solutions x; and X» such that :

0 < [xP )| < a < |xEO-D); min IX@EOD) ()] < 1b:
te[+;1—4]
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Proof. At first we show that T has a fixed point y; € K with 0 < ||y1]| < a.
In fact, for all x € @K, we have ||x||=a. For1 <j<n—-land 0<t<1,

1
0< ()™ (Ajx)(1) = (1)”1—/06,&6) (z,)d(;ga/o ij(t;&)!dcgéaz

From (Hs) we obtain

||TX|| = max ]( /(D_ </ (&3 An—1X(¢); An—2X(¢); -

o<t <l

Arx(¢); X(¢))de )ds) ™
= max max{(— nl( /‘I)_ </ (&3 An—1X(¢); An—2X(¢); -

0<t<z

Ax(e)ix(e))de)0s): 0}

1 1
<=o1(Z.20(2

: (2 <a>)
= a.

The existence of y; is proved by using the Schauder fixed point theorem.

Obviously, y; is a solution of (5) if and only if y; is a fixed point of A. Next
we need to prove that y; is a solution of (5). Suppose the contrary, i.e., there
is to € (0;1) such that y;(to) # (Ay1)(to). It must be (—1)"~1(Ay;)(tg) <

= yi(to). Let (t1;t2) be the maximal interval such that to € (t;;t2), and
(—=1)"Y(Ay;)(t) < 0 for Vt € (t1;tp). Obviously [ti;ta] # [0;1] by (Ha).
Without loss of generality, suppose t, < 1. Then y;(t) = 0 for t € [t;t,] and
(—=1)"Y(Ayp)(t) < 0 for t € (t1;t2), (Ay1)(t2) = 0. Thus, (—=1)"1(Ay;)/(t2) >
0. (Hp) implies (—=1)""1(®((Ay1)))'(t) = (—1)"~F(t;0;0---;0) < 0 for
t € [ty;tp]. So (—=1)""1(Ay;)'(t) > 0 for t € [ty;tp]. Therefore, t; = 0 and
(—=1)"1(Ay1)(0) < (—=1)"~1(Ay;)(to) < 0. On the other hand, (Ay;)(0) =0, a
contradiction.

We now show that (Cq) of Theorem 1 is satisfied. For x € @K}, we have
IX|[=a. For1<j<n-—1and0<t<1, from (6) we have

1
0< (=) (AX) () =(—1)" / Gj (t; ¢)x(¢)d¢ ga/o IGj(t;¢)]de < éa:

0
From (Hs) we obtain

x| = maxr—/o@—l (/ (61 An_1X(0); AnoX(0 )i
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Next we show that (C,) of Theorem 1 is satisfied. For x € @K'(zh), i.e., ®(x) = zb.
Fort<t<1-4,1<]j<n-—1,from (6), (7) and (8) we have

th < (—1)"Ix(t) <b;
1 1
(_1)n—1—j (Ajx)(t) = (_1)n—1—j/ Gj(t;¢)x(¢)de < b/o IGj(t;¢)]de < éb;

0
1 1—+
(—1)" 1 (A)(t) = (~1)n L / Gyt ¢ )x()di > +b / 1Gj (t;¢)[d;
0 +
> 2%.11'*1(1 —2t)ib:

we may use conditions (Hz) and (Hg) to obtain

£<t<:

Aux(e)ix(2))de )ds|

®(T’X) = min y—/ o (/ (6 AnaX(6 ) AnoX(e )i ;

:/ v </§ DM (¢ An1X(¢ ) An2X(¢ )i+
Arx(0); X(¢))de )ds

>i<I>—1( Mt + (; > 1_22+ (Mi+<1>(b))> = tb:

Using the continuity of £ and the definition of £*, there is ¢ > b such that || T'x|| <c
for ®(x) <b. Applying Theorem 1, T’ has a fixed point y, such that y, € K/ (zb).

Finally, we show that Ax = T'x for x € Kz(zb)n{u : T'u = u}. Let
x € Ki(xb) N {u: T'u = u}, then

11—+ 2d M+
I >a> 5 2e o) +

5 d:

+

We claim ||x|| = max [x(t)|. If there is to € (0;3) such that |x(to)| =
t<ta

LS

X[ > a, then X'(to) = (A'x)'(t ) (té Fr (e Anax (@ )i+ 5 ALX(e )i x(¢)
di) =0 ie, [ZF (A ( - A1x(¢); X(¢))d¢, = 0. From (Hy), we have

X(to)| = Xl = ¢ AR—1X( )i An2X(e)r - s

A]_X

)
’/to (/ "6 An-1X(¢ )i An2X(@ )5 5
))d¢

Ax(e ) x(¢ )ds’
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£ (172 (2a\ ,
=3° (/o f’(?)‘j‘)
a

a contradiction. Therefore, ||x|| = max [X(t)].

+ +
3<t<1-3
+

Next we will prove (—1)”—1x(§) > d. Suppose this is not true, then there
exists to € (3; 3) such that

(—1)""IX(tp) > @71 {(I) (§> + %] ;

s

It follows from the concavity of (—1)"~!x on [%;1 — 3] that

.
(—1)" 1% (%) > (—1)" X (tg) > &L {@ (E> + %] :

For 0 <t < 3, we have

/f(—l)”f*(s; An1X(S); AnoX(S); -

NI

2d
+

NI+

0= (—1)"2x(0) = (~1)"x (§> - /O (—1)" X/ (s)ds < d —

a contradiction. Thus, d < (—1)"!x(t) <bfor; <t<1-3 For1<j<n-1
+

and 3 <t <1- 3, from (6) and (7) we have

1 1
(_1)n—1—j (Ajx)(t) = (_1)n—1—j/o Gj(t; ¢ )x(¢)de < b/o IGj(t;¢)]de < éb;

1 1-3

(=DM AX) () = (-t /O Gj(t;¢)x(¢)de =d Gj(t¢)lde
> 1

-4

, NI+

1+

J(1—+)d:
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From the definition of £*, we have £*(t; An_1X(t); - - - ; Ax(t); X(t)) = F(t; An—1

X(t)
{u

v s Arx();x(t)) for 0 <t < 1. Then Ax = T'x for x € Kj(tb) N
: T'u = u}. Thus, y, is a solution of (5). Let x;i(t) = (An—1Yi)(t) =

fol Gn-1(t;s)yi(s)ds; i = 1;2, then x; and x, are two symmetric positive solutions
of (1), and

10.

11.

12.

13.

;' min

2(n—1 2(n—-1
U<HX§_( ))H<a<HX§( )
te[+;1—4]

x§¢=1) (t)’ < ib:

REFERENCES

. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive Solutions of Differential,
Difference and Integral Equations, Kluwer Academic, Dordrecht, 1999.

R. I. Avery, Existence of multiple positive solutions to a conjugate boundary value
problem, MRS Hot-Line 2 (1998), 1-6.

R. I. Avery and J. Henderson, Three symmetric positive solutions for a second order
boundary value problem, Appl. Math. Lett. 13 (2000), 1-7.

R. I. Aery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci.
Res. Hot-Line 3 (1999), 9-14.

R. I. Avery, Chuan Jen Chyan and J. Henderson, Twin solutions of boundary value
problems for ordinary differential equations and finite difference equations, Comput-
ers and Mathematics with Applications 42 (2001), 695-704.

J. M. Davis and J. Henderson. Triple positive symmetric solutions for a Lidstone
boundary value problem. Differential Equations Dynam. Systems 7 (1999), 321-330.

J. M. Davis, P. W. Eloe, and J. Henderson. Triple positive solutions and dependence
on higher order derivatives. J. Math. Anal. Appl. 237 (1999), 710-720.

J. M. Davis, J. Henderson and P. J. Y. Wong, General Lidstone problems: multiplicity
and symmetry of solutions, J. Math. Anal. Appl. 251 (2000), 527-548.

P. W. Eloe and J. Henderson, Positive solutions for (n — 1; 1) conjugate boundary
value problems, Nonlinear Anal. 28 (1997), 1669-1680.

L. H. Erbe, S. Hu and H. wang, Multiple positive solutions of some boundary value
problems, J. Math. Anal. Appl. 184 (1994), 640-648.

Guo Yanping, Ge Weigao and Gao Ying, Twin positive solutions for higher order
m-point boundary value problems with sign changing nonlinearities, Appl. Math.
Comput. 146 (2003), 299-311.

J. Henderson and H. B. Thompson, Multiple symmetric positive solutions for a
second-order boundary value problem, Proc. Amer. Math. Soc. 128 (2000), 2373-
2379.

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear oper-
ators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688.



Twin Positive Symmetric Solutions for Lidstone Boundary Value Problems 283

14. F. Merdivenci, Two positive solutions of a boundary value problem for difference
equations, J. Differential Equations Appl. 1 (1995), 262-270.

15. P. J. Y. Wong, Triple positive solutions of conjugate boundary value problems, Com-
put. Math. Appl. 36 (1998), 19-35.

16. P. J. Wong and R. P. Agarwal, Double positive solutions of (n;p) boundary value
problems for higher order difference equations, Comput. Math. Appl. 32 (1996),
1-21.

17. Zhong Chenkui et al., Nonlinear Functional Analysis, Lanchow Univ. Press, Lan-
chow, 1998.

Yanping Guo

Marine Environment College,

Ocean University of China,

Qingdao 266003,

and

College of Sciences,

Hebei University of Science and Technology,
Shijiazhuang, 050018, Hebei,

P. R. China

E-mail: guoyanping65@sohu.com

Weigao Ge

Department of Applied Mathematics,
Beijing Institute of Technology,
Beijing, 100081,

P. R. China



