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BOUNDED STABLE SETS OF SKEW PRODUCT
FOR MEROMORPHIC FUNCTIONS

Wang Sheng

Abstract. Boundedness of components of the Fatou set of the skew product is
studied, which is associated with finitely generated meromorphic semigroup.

1. INTRODUCTION AND MAIN RESULT

For some integer m ¸ 1, §m denotes the one sided symbol’s space of m digits,

§m = f1; 2; ¢ ¢ ¢ ; mg £ ¢ ¢ ¢ £ f1; 2; ¢ ¢ ¢ ; mg £ ¢ ¢ ¢ =
1Y
1

f1; 2; ¢ ¢ ¢ ; mg:

¾ : §m ! §m denotes the shift map, i.e. for any w = (w1; w2; w3; ¢ ¢ ¢ ) 2 §m,
¾w = (w2; w3; ¢ ¢ ¢ ).

Let fj (j = 1; 2; ¢ ¢ ¢ ; m; m ¸ 1) be transcendental and meromorphic in C.
The map ~f is said to be the skew product associated with the generator system
ff1; f2; ¢ ¢ ¢ ; fmg, i.e.

~f : §m £C ! §m £C

(w; x)! (¾w; fw1(x));

where w = (w1; w2; ¢ ¢ ¢ ) 2 §m. See [9] for the case of the skew product associated
with rational semigroups. We define the following projection:

¼ ± ~f : §m £C ! C

(w; x)! fw1(x):

Some notations and definitions are stated below.
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f ~f ng is said to be normal at a point (w0; z0) 2 §m£C, if there is a neighborhood
V £ U ½ §m £ C of (w0; z0) such that ~fn are defined in V £ U for all n and
f¼ ± ~fng is normal in V £ U in the sense of Montel.

Furthermore, f ~fng is said to be normal in V £ U if f ~fng is normal at each
point (w; z) 2 V £U .

The Fatou set F ( ~f) of ~f is defined by the subset of §m £C in which f ~fng is
normal. The Julia set J( ~f) of ~f is the complement of F ( ~f), i.e.

J( ~f) = §m £CnF ( ~f):
A component V £ U ½ F ( ~f) is said to be bounded, if U is bounded.

If m = 1, the dynamical behavior of ~f is the same as that of f . In this case,
denote F ( ~f); J( ~f) by F (f); J(f) respectively. See [5] for reference.

Let f be transcendental and meromorphic in C. Set

L(r; f) = inf
jzj=r

jf(z)j:

If f(z) is meromorphic in C satisfying

lim sup
r!1

L(r; f )

r
=1;

then any non wandering component of F (f) must be bounded (see [12], [13], [14],
[15] for some extension). Obviously it is still a research topic to consider the
bounded components of F (f) in the research field, see also [1], [2], [8], [10], [11].
Our main result is following:

Theorem. Let fj(j = 1; 2; ¢ ¢ ¢ ; m; m ¸ 1) be transcendental and meromorphic
in C with the properties: given d > 1, for any positive number L > 1 and for all
sufficiently large R > 0, there exists Rj 2 (R 1

d ; R] such that

(1) L(Rj ; fj) > LR; j = 1; 2; ¢ ¢ ¢ ; m:

Suppose that ~f is the skew product associated with the generator system ff1; f2; ¢ ¢ ¢ ;
fmg. If there is a component V £ U ½ F ( ~f) such that ¼ ± ~fn : V £ U ! U for
all n, and ¼(J( ~f)) has an unbounded component, then V £U is bounded.

Remark. If fj is transcendental and entire of order less than 1
2

(see [4]) or
with gaps (see [6]) or is transcendental meromorphic of order ¾ less than 1

2 and
f(z) has the deficient number ±(1; f) at 1 satisfying ±(1; f) > 1¡ cos¾¼ (see
[7]), then fj satisfies (1), for j = 1; 2; ¢ ¢ ¢ ; m.
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2. LEMMAS

Let us recall some known results on hyperbolic geometry. An open set in C
is hyperbolic if its boundary contains at least three points. Let ­ be a hyperbolic
domain and ¸­(z) denote the hyperbolic density of the hyperbolic metric on ­. Let
½­(z1; z2) stand for the hyperbolic distance between z1 and z2 on ­, i.e.

(2) ½­(z1; z2) = inf°½­
Z

°

¸­(z)jdzj;

where ° is a Jordan curve joining z1 to z2 in ­. If ­ is simply-connected and
d(z; @­) is the Euclidean distance between z 2 ­ and @­, then for any z 2 ­

1

4d(z; @­)
∙ ¸­(z) ∙ 1

d(z; @­)
:

Let f : U ! V be analytic, where U and V are hyperbolic domains. By Contraction
Principle we have

(3) ½V (f (z1); f(z2)) ∙ ½U (z1; z2); 8z1; z2 2 U:

In order to prove the Theorem, we need the following lemmas.

Lemma 1. Let ~f be the skew product associated with ff1; f2; ¢ ¢ ¢ ; fmg, where
fj are meromorphic in C, j = 1; 2; ¢ ¢ ¢ ; m;m ¸ 1. Suppose V £U is a component
of F ( ~f). If ¼ ± ~fn(V £ U) ½ U; n = 1; 2; ¢ ¢ ¢ and ¼(J( ~f)) has an unbounded
component, then for any point (w; z0) 2 V £ U , there exists a compact set B
containing z and ¼ ± ~f((w; z)), B ½ U such that for all sufficiently large n

j¼ ± ~fn((w; z))j ∙ cj¼ ± ~fn¡1((w; z))j+ c0; (w; z) 2 fwg £B;

where c and c0 are some constants.

Proof. Let ¡ be an unbounded component of ¼(J( ~f )). Then Cn¡ is a simple
connected domain and

¼ ± ~fn : fwg £ U ! Cn¡; n = 1; 2; ¢ ¢ ¢ :

Take a 2 ¡. Then for any z 2 Cn¡, we have

¸Cn¡(z) ¸
1

4d(z;¡)
¸ 1

4(jzj+ jaj) :

Let ° be a Jordan curve in U connecting z0 and ¼± ~f((w; z0)). Then ¼± ~f (fwg£°)
connects ¼ ± ~f((w; z0)) and ¼ ± ~f2((w; z0)). Clearly, °[¼ ± ~f(fwg£°) is compact
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and for any (w; z) 2 fwg £ °, it follows that ¼ ± ~f((w; z)) 2 ° [ ¼ ± ~f (fwg £ °).
Set

A = maxf½U(z; z0) : z 2 °; z0 2 ° [ ¼ ± ~f(fwg £ °)g:
Then A < 1. From (2) and (3), for sufficiently large n, we have

½Cn¡(¼ ± ~fn¡1((w; z)); ¼ ± ~fn¡1( ~f(w; z))) ∙ ½U(z; ¼ ± ~f((w; z))) ∙ A; z 2 °:

Note that

A ¸ ½Cn¡(¼ ± ~f n¡1((w; z)); ¼ ± ~fn((w; z))) ¸
Z j¼± ~fn((w;z))j

j¼± ~fn¡1((w;z))j

1

4(jzj+ jaj) jdzj:

By a simple calculation, we obtain

j¼ ± ~fn((w; z))j+ jaj
j¼ ± ~fn¡1((w; z))j+ jaj ∙ e4K ; z 2 °:

Then Lemma 1 follows, with c = e4A, c0 = (e4A ¡ 1)jaj and B = °.
The following lemmas from [4, pp.165].

Lemma 2. Let D be a domain and fn ! f; gn ! g locally and uniformly
on D, fn; gn are analytic on D, n = 1; 2; ¢ ¢ ¢ . If g(D) ½ D, then fn ± gn ! f ± g
locally and uniformly on D, in the chordal metric.

Lemma 3. Let ~f be the skew product associated with ff1; f2; ¢ ¢ ¢ ; fmg, where
fj are meromorphic in C, j = 1; 2; ¢ ¢ ¢ ; m;m ¸ 1. Suppose V £U is a component
of F ( ~f) and for a w 2 V , ¼ ± ~fn : fwg£U ! U , n = 1; 2; ¢ ¢ ¢ . If f¼ ± ~fng has a
nonconstant limit function on fwg £ U , then there exists a subsequence f ~fnkg of
f ~fng such that

¼ ± ~fnk((w; z))! z;8(w; z) 2 fwg £U; k !1:

Proof. By the assumption in Lemma 3, any subsequence ftkg, f¼ ± ~f tkg is
normal in fwg£U . Note that f¼ ± ~fng has nonconstant limit function in fwg£U .
Let g(z) be a limit function of ¼ ± ~fn on fwg £ U . Obviously, g : U ! U . Then
there exists a subsequence flkg such that ¼ ± ~f lk locally and uniformly converges
to g(z) in fwg £U . Set

nk = lk ¡ lk¡1 !1; k !1:

f¼ ± ~fnkg is normal in fwg£U . Without loss of generality, assume Á(z) is a limit
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function of ¼ ± ~fnk in fwg £U . By Lemma 2, it deduces

Á ± g(z) = limk!1 ¼ ± ~fnk ± ¼ ± ~f lk¡1((w; z))

= limn!1[(fwln
± ¢ ¢ ¢ ± fw1) ± (fwln¡1 ± ¢ ¢ ¢ ± fw1)

¡1

±(fwln¡1
± ¢ ¢ ¢ ± fw1)(z)]

= limn!1 fwln
± ¢ ¢ ¢ ± fw1(z)

= limk!1 ¼ ± ~f lk((w; z)) = g(z):

So, Á(z) ´ z. Lemma 3 follows.

3. PROOF OF THEOREM

Assume V £ U is unbounded. Then we shall prove by contradation that there
exists a point (w; a) 2 fwg £ U ½ V £ U such that

(4) j¼ ± ~fn((w; a))j < 1; n = 1; 2; ¢ ¢ ¢ ;

where w = (w1; w2; ¢ ¢ ¢ ; wn ¢ ¢ ¢ ): In fact, if (4) is not true, then for any point
(w; z) 2 fwg £U , we must have

(5) ¼ ± ~fn((w; z))!1; n !1:

Otherwise, suppose that there exists a point (w; z0) 2 fwg £U such that

(6) ¼ ± ~f n((w; z0)) 6! 1; n !1:

From (6), there exists a subsequence fnkg1
k=1 and nonnegative constant M0 such

that
lim

k!1
j¼ ± ~fnk ((w; z0))j = M0:

So, there exists k0 > 0 such that for all k > k0,

(7) j¼ ± ~fnk((w; z0))j < M0 + 1:

Fixed k > k0. Let ¡0 be an unbounded component of ¼(J( ~f )). Then Cn¡0 is a
simple connected domain. From (3), we have

½U(z0; ¼ ± ~f ((w; z0))) ¸ ½Cn¡0(¼ ± ~f nk((w; z0)); ¼ ± ~fnk+1((w; z0))):

Set A0 = maxf½U (z0; ¼ ± ~f((w; z0))); 1g. Then A0 < 1. Since

¸Cn¡0(z) ¸ 1

4(jzj+ ja0j) ; a0 2 ¡0;
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and

½Cn¡0(¼ ± ~fnk ((w; z0)); ¼ ± ~fnk+1((w; z0))) ¸
Z j¼± ~fnk+1((w;z0))j

j¼± ~fnk ((w;z0))j

1

4(jzj+ja0j) jdzj

=
1

4
log

j¼ ± ~fnk+1((w; z0))j+ ja0j
j¼ ± ~fnk((w; z0))j+ ja0j :

From (7), it follows that

j¼ ± ~fnk+1((w; z0))j ∙ e4A0(j¼ ± ~fnk((w; z0))j+ ja0j)

< e4A0(M0 + 1+ ja0j) = e4A0M1;

where M1 = M0 + 1 + ja0j. Similarly, for any integer s > 0, we have

(8) j¼ ± ~fnk+s((w; z0))j ∙ se4sA0M1:

Choose L > 2e4A0 and sufficiently large ~R > e4dA0Md
1 . Then there exists ~R1 2

( ~R
1
d ; ~R] such that

(9) jfwnk+1(z)j ¸ L( ~R1; fwnk +1) > L ~R > e4A0M1; jzj = ~R1:

Choose a Jordan curve ~° in U connecting ¼ ± ~fnk((w; z0)) to a point in fz 2 C :
jzj = ~R1g. Then from (8), we have

fwnk+1(~°)\ fz 2 C : jzj ∙ e4A0M1g 6= ;
and from (9), it follows that

fwnk+1(~°) \ fz 2 C : jzj = L ~Rg 6= ;:
Therefore there exists ~z1 2 ~° satisfying

jfwnk+1(~z1)j = L ~R:

By the assumption in Theorem, there is ~R2 2 ((L ~R) 1
d ;L ~R] such that

(10) jfwnk +2(z)j ¸ L( ~R2; fwnk+2) > L2 ~R > 2e4£2A0M1; jzj = ~R2:

Similarly, from (8), we have

fwnk+2 ± fwnk+1(~°) \ fz 2 C : jzj ∙ 2e4£2A0M1g 6= ;
and from (10), we have

fwnk+2 ± fwnk+1(~°) \ fz 2 C : jzj = L2 ~Rg 6= ;:
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Hence there exists ~z2 2 ~° satisfying

jfwnk+2 ± fwnk+1(~z2)j = L2 ~R:

By mathematical induction, there exists ~zs 2 ~° satisfying

(11) jfwnk+s ± ¢ ¢ ¢ ± fwnk+1(~zs)j = Ls ~R:

Set A0 = maxf½U (¼ ± ~fnk((w; z0)); z); z 2 ~°g. Then A0 < 1. Similarly, from (3),
we have

A0 ¸
Z jfwnk+s±¢¢¢±fwnk+1(~zs)j

j¼± ~fnk+s((w;z0))j

1

4(jzj+ ja0j) jdzj

=
1

4
log

jfwnk+s ± ¢ ¢ ¢ ± fwnk+1(~zs)j+ ja0j
j¼ ± ~fnk+s((w; z0))j+ ja0j :

Therefore

jfwnk+s ± ¢ ¢ ¢ ± fwnk+1(~zs)j ∙ e4A
0
(j¼ ± ~fnk+s((w; z0))j+ ja0j)

Let s = nk+1 ¡ nk. From (7) and (11), it follows that

Lnk+1¡nk ~R ∙ e4A
0
M1;

equirvalently
2nk+1¡nke4(nk+1¡nk+d)A0Md

1 < e4A
0
M1:

Similarly, for any integer p ¸ 1, it follows that

2nk+p¡nke4(nk+p¡nk+d)A0Md
1 < e4A

0
M1:

The above inequality is impossible when p ! 1. This contradiction shows (5) is
valid.

Next, choose a Jordan curve °0
1 in U connecting z to ¼ ± ~f ((w; z)), by Lemma

1, there are constants L > 0 and L0 > 0 satisfying

(12) j¼ ± ~fn((w; z))j ∙ Lj¼ ± ~fn¡1((w; z))j+ L0; (w; z) 2 fwg £ °0
1:

Since °0
1 connects z to ¼ ± ~f((w; z)), take a part curve °0

2 ½ ¼ ± ~f(fwg £ °0
1)

lying between ¼ ± ~f((w; z)) and ¼ ± ~f 2((w; z)) and connecting ¼ ± ~f((w; z)) to
¼ ± ~f2((w; z)), ¢ ¢ ¢ , similarly, take a part curve °0

n ½ ¼ ± ~fn¡1(fwg £ °0
1) lying

between ¼ ± ~fn¡1((w; z)) and ¼ ± ~fn((w; z)) and connecting ¼ ± ~fn¡1((w; z)) to
¼ ± ~fn((w; z)), ¢ ¢ ¢ , such that °0

n and ° 0
n+1 have only one common end point,

n = 1; 2; ¢ ¢ ¢ . Let ¡00 = [1
n=1°

0
n. Then ¡00 is a curve approaches 1 in U . For any

point (w; z0) 2 ¡00, there exists a point (w; z00) 2 °0
1 and n ¸ 1 such that

j¼ ± ~fn¡1((w; z00))j = jz0j:
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Since for any sufficiently large R > 0, we have fz 2 C : jzj = Rg\¡00 6= ;. Then
there exists infinitely many large n, and for each this kind of n, there exists a point
(w; z0

n) 2 fwg £ °0
1 satisfying

Rwn = j¼ ± ~fn¡1((w; z0
n))j:

By the assumption in Theorem, it follows

j¼ ± ~fn((w; z0
n))j = jfwn ± ¼ ± ~f n¡1((w; z0

n))j
¸ L(Rwn; fwn)

> (L+ 1)j¼ ± ~fn¡1((w; z0
n))j:

This is a contradiction to (12), because (w; z0
n) satisfying (12). Hence (4) holds.

From (4), there exists a constant M > 0 such that

(13) j¼ ± ~fn((w; a))j < M < 1; n = 1; 2; ¢ ¢ ¢ :

For any K > 1 and all sufficiently large R > 0, by the assumption of Theorem,
there is R1 ∙ R such that

L(R1; ¼ ± ~f) > KR:

Make a Jordan curve ° in U connecting a to a point in U \ fz : jzj = Rg. Then

¼ ± ~f (fwg £ °) \ fz : jzj = KRg 6= ;

and
¼ ± ~f(fwg £ °)\ fz : jzj ∙Mg 6= ;:

So there exists a point (w; z1) 2 fwg £ ° satisfying

j¼ ± ~f((w; z1))j = KR:

By the assumption in Theorem, there is R2 ∙ KR such that

L(R2; fw2) > K2R; jzj = R2:

Take °1 ½ ¼ ± ~f(fwg £ °), such that °1 connects ¼ ± ~f((w; a)) to a point in
U \ fz : jzj = KRg and °1 ½ fz 2 C : jzj ∙ KRg. Then

¼ ± ~f(f¾wg £ °1)\ fz : jzj =K2Rg 6= ;

and
¼ ± ~f(f¾wg £ °1) \ fz : jzj ∙ Mg 6= ;:
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Hence
¼ ± ~f2(fwg £ °) \ fz : jzj = K2Rg 6= ;

and
¼ ± ~f2(fwg £ °)\ fz : jzj ∙ Mg 6= ;:

There exists a point (w; z2) 2 fwg £ ° satisfying

j¼ ± ~f2((w; z2))j = K2R:

Inductively, for all sufficiently large n, there exist Rn ∙ Kn¡1R and a point
(w; zn) 2 fwg £ ° such that

L(Rn; fwn) > KnR

and

(14) j¼ ± ~fn((w; zn))j = KnR:

It remains to be considered two cases below.

Case 1. f¼ ± ~fng has only constant limit functions on fwg £ U . We can
choose au unbounded connected set ¡ of ¼(J( ~f)) such that

¼ ± ~fn((w; z))! q 62 ¡;8(w; z) 2 fwg £U; n!1:

Then Cn¡ is simple connected and

¼ ± ~fn(fwg £ U) ½ Cn¡; n = 1; 2; ¢ ¢ ¢ :

For a0 2 ¡ and any z 2 Cn¡, then

¸Cn¡(z) ¸
1

4d(z;¡)
¸ 1

4(jzj+ ja0j) :

Similarly, from the above proof, there is a constant A, by Contraction Principle, if
follows that

½Cn¡(¼ ± ~fn((w; a)); ¼ ± ~fn((w; zn))) ∙ ½U(a; zn) < A:

So, from (13), it follows

j¼ ± ~fn((w; zn))j ∙ e4A(j¼ ± ~f n((w; a))j+ ja0j) < e4A(M + ja0j):
It leads to a contradiction if we let n !1 in the following

KnR < e4A(M + ja0j) < 1:
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Case 2. f¼ ± ~fng has nonconstant limit function in fwg £ U . By Lemma 3,
there exists a subsequence f¼ ± ~fnkg such that

¼ ± ~fnk((w; z))! z;8(w; z) 2 fwg £U; k !1:

Therefore, 8(w; z) 2 fwg £U , for all sufficiently large k, it gets

(15) j¼ ± ~fnk((w; z))j < Kjzj:

On the other hand, for all sufficiently large k, there is (w; z) = (w; znk) 2 fwg£°
satisfying (14). And then

j¼ ± ~fnk((w; znk
))j = KnkR:

This contradicts to (15).
Hence in any case, V £U is bounded. We complete the proof.
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