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RATE OF CONVERGENCE BY THE BEZIER VARIANT OF PHILLIPS
OPERATORS FOR BOUNDED VARIATION FUNCTIONS

Vijay Gupta

Abstract. In the present paper, we introduce the Bezier variant of Phillips
operators and study the rate of convergence for the Phillips-Bezier operators
for bounded variation functions.

1. INTRODUCTION

The Phillips operators [6] are defined by
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with +(u) being the Dirac delta function. Alternatively, the operators (1.1) may be
written as follows:
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where p_.(t) = ei »t%:

The Phillips operators defined by (1.1) are similar to the modified Szasz- Mi-
rakyan operators studied in [3,4]. Some approximation properties of the Phillips
operators were discussed in [1], [2] and [5]. Now we introduce the Bezier variant
of these Phillips operators. For ® > 1 and for a function f defined on [0; ) , the
Bezier variant of the Phillips operator is defined as

yas
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103
where Q® (1) =3®,_(©) —J® ., (©); I .m(® = p_j(t): These generalized
£l e e > j:m >
operators (1.2) may also be written in the alternative form as follows:

yas
(1.3) S_e(fit)= We(,;tu)f(u)du;
0

where

X
Wo(iti) =, QU (®P.mi1(U) + QT (HQT(W£(v)
m=1
+(u) being the Dirac delta function.
Obviously, the operators S _.(f; t) defined by (1.2) are linear positive operators.
Particularly when ® = 1, the operators (1.2) reduce to the Phillips operators S ., =
S_. Also S_.p(1;t) = 1. Some basic properties of J ., are as follows:

Zt
(iii)). I m@®)=. p_mir(udu;m=1;2;3:::
0
e 2%
(iv). J.m() =, P mii(u)du=_t
m=1 o mMm=1

(v). foreverym e N;0 < J .m(t) <1and J_.,(t) increases strictly on [0; co) .

In the present paper, we study the rate of convergence of the Bezier variant of
Phillips operators, defined by (1.2), for bounded variation functions.
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2. AUXILIARY RESULTS

In this section we give certain lemmas which are needed by us to prove our
main result (Theorem 1 below).

Lemma 1. [7, p. 159]. If {»m}(m > 1) are independent random variables
with the same distribution and 0 < Dy, < 00; 3 = E |»1 — a1|3 < oo, then

- A ' 2 -
max -P ! X(» —a) <y - 1 ei”2:2du:<&-
_ 1\/—m . m 1 _y \/2—]/4-1 _ b? R ]
1

where a; = E(»1) (expectation of »; ), b2 = D» = E(» — a;)? (variance of »; )
and 1=1/2% < C < 0:82.

It is well known that the basis function p_.,(t) corresponds with the Poisson
distribution in the probability theory. Using Lemma 1, Gupta and Pant [3] obtained
the inequality

32t2 + 2t + 5

2V .t

In Lemma 3 of [9] it is proved that p_.,(t) < Ep%ﬁ Recently, Zeng and Zhao
[10] improved these results and obtained the exact bound as follows:

P.m(D) < € (0;00):

_2)j +1=2

Lemma 2. [10]. Let j be a fixed non negative integer and H(j) = (j+1‘j!
eiU*1=2) Then, for all m;t such that m > j and t € (0; o), there holds

HG).
N

5

p.m() < —=

Moreover, the coefficient H(j) and the asymptotic order _ i1=2 (for , — oo) are
the best possible.

Lemma 3. [2]. Let the function *_..(t);r € NO (the set of non negative
integers) be defined by * ..(t) =S _((u—1t)";t): Then T _o(t) = 1, .4(t) =0
and T _»(t) = 2t: and the following recurrence relation holds:

1a® =2 @ il‘?(t)

2tr tr(r —
+_1,;ri1(t) ( )

> >

2O+ 1‘2’ ()

Furthermore
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(i) *_..(t) is a polynomial in t and 1=, for every t € [0; c0).
(i) 1. (t) =O(, D321y for every t € [0; 00).

Lemma 4. For the kernel We(, ;t; u) of the operators S e, we have

z 2®t
(2.1) W®(D,t,u)du_b(t7y)20_y t;
0
A
. 2®t ]
(22) W®(D,t, U)du S ﬂt <Z<oo:
z
Proof. We first prove (2.1). Clearly
il il
(t—uy?
.4 < .4
We(,;t;u)du < T—y)? We(,;t;u)du
0 0 1

= WS,@((U — %1 <Ot —y) 1 (0):

Using Lemma 3, (2.1) follows. The proof of (2.2) is similar.

Lemma5. Forallte (0;00) and _;m € N, there holds

®H(J)

I8P, im(® < QLM <®p_m(1) <

>

3. MaIN THEOREM

In this section we prove the following main theorem.

Theorem 1. Let f be a function of bounded variation on every finite subin-
terval of [0; co) and let V.(gt) be the total variation of g; on [a;b]. Also let ® > 1
and f(t) = O(t"); t — oo, for some r > 0. Then, for every t € (0;0) and ,
sufficiently large, we have

S o(Fit) ~ (g T(TH) + or F(E)) < [F(t+) — (1) ®3§;>

(3.1)

4@+t X PR :
o VPR @ 0L
> m:
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where 8
< f(u)—Ff(t-);0<u<t

ge(u) = _ Oju=t
T f(u) -f(t+)t<u<oo

Proof. Following [8, eq. (28)], we have
1

- ! ® =
S o(fit) - = F(t+) + —F(t-) -
- ®+1 ®+1 -
(3.2) - o i
<8, :e(@ 1) + 5 S.e(sign(u - + —‘!f(t+) f(t-)|
First,
A% 7t
S_e(sign(u—1t);t) = We(,;t;u)du— We(,;t;u)du
t n 0

=-1+2 Wep(,;tu)du

t

R P
Now using the fact that ,  p_.n(u)du= " p_;(t) for t € (0;00) , we have
t j=0
_ X o
S e(sign(u—1);t) =-1+2, Q. .(0) p m;(u)du

m=1 t

yal
+ QB ®MQQW)(uydu
t

P 0®

=-1+2 QU (®  p_ j);tu)=0ast>0
m=1 =’ j=0 ~
(= P _ @ i ®

=-1+2 p ) Q (D=-1+2" p_;(®I%®)
j=0 m=j Jj=0

Thus we have
X

. 1 5 .
SN ;0 + oy =2 230350 - 537 d®”m
j=0

. P .
Since Q(?l)(t) = 1, by mean value theorem, it follows that
j=0 ~

Q™ = 3% - 3% M)

= @+1)p_;®)°%(®
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where J®; 1 (t) < °®;(t) < J®;(t). Therefore ,

— _1- 22]
S (SO - 00+ 5o =2 7 p 0050 - 7% 0)

X o o X
<2 p;iMOQ ;M-I +1(1) <20 p7;();
j=0 j=0

where we have used the inequality b® —a® < ®(b —a);0 < a;b < 1and ® > 1.
Applying Lemma 2, we get

®—l§_ ®H(J) .

(3.3) -S_e(sign(u —1);t) + o+l VA ;T e (0;00):
Next we estimate S . (g¢; t) as follows:
AR W z z A1
S e@ut) = We(,;tu)ge(u)du= + + We(,;t u)ge(u)du
(34) 0 11 I2 I3

=E;+E;+E3 say,;

where Iy = [0;t—t=v/_], I, = [t—t=V/_;t+t=/_] and I3 = [t+t=V/;00) . We
start with the estimate of E,. For u € [t — t=v/_;t +t=V/_], we have

-+ :p_ 1 x —+ :p_
(3.5) B2l V=@ < = Va0
: > m=1
_ R . o
Suppose _e(t;y) = We(,;t;u)du. We now estimate E; , writingy = t—t=v/,
0

and using Lebesgue-Stieltjes integration by parts, we have

zy Zy

Ei1 = g(Wdu( (YY) =0t(y+) _e(ty) — et u)du(9e(u))
0 0
Using Eq. (2.1) of Lemma 4, we have
2y

20t 20t 1 40>}
(3.6) |E1< Vyt+(gt)W+T mdu(*vlf (a) < < Vtztzpm(gt)
0

=

Finally, we estimate E3 . We define

C

ge(u);0 <t <2t
g(u) =

gt(2u); 2t <u < 0
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and decompose Ej3 into two parts as follows:

yas yas

Es = We(.;tu)ge(u)du+  We(,;t;u)[ge(u) — ge(20)]du
(3.7) P

t+t= 2t

s

= E31 + E3p;say:

With z = t + t=y/, , the first integral can be written in the form

: : °

Egn=lim _g@)[1— oG+ 0(R)[ . otR)-1+ [1- et u)]dugt(u)j

>
z

By (2.1) of Lemma 4, we have

8 - - = 9
< - - =
28t . V¢ 7:(R) 1
[Ea1| < - R“!ml - (Zt(q[t))z + (Rtf 1)2 + WdU(Vtu(gt));
z

Integrating by parts the last term, we obtain

40 X t-Pm
(3.8) [Baul < — AR ()

> m=1

To estimate E3, , by our assumption there exists an integer r such that f(u) =
O(u?"); u — oo. Thus, for a certain constant M depending on f;t and r, we have

A A
Ex| <M We(,:tuu'du<®M W(,;t;u)u?du;
2t 2t

where we have used Lemma 5. Obviously, u > 2t implies that u < 2(u —t) and it
follows by Lemma 3 that

(3.9) [Eg2| < @22 M2 (1) = O(, F");, — o<

Collecting the estimates of (3.2) to (3.9), we get the required result.
This completes the proof of the theorem.
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