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ON INVARIANT SUBSPACES FOR
POWER-BOUNDED OPERATORS OF CLASS C1·

László Kérchy and Vu Quoc Phong

Abstract. We prove that if T is a power-bounded operator of class
C∗· on a Hilbert space which commutes with a nonzero quasinilpotent
operator, then T has a nontrivial invariant subspace. Connections with
the questions of convergence of Tn to 0 in the strong operator topology
and of cyclicity of power-bounded operators of class C1· are discussed.

A linear operator T on a Hilbert space H is called power-bounded if
supn≥0 ‖Tn‖ < ∞. A power-bounded operator T is said to be of class C∗· if
there exists a nonzero vector x ∈ H such that the sequence {‖Tnx‖}n does
not converge to 0, and T is of class C1· if {‖Tnx‖}n does not converge to 0 for
every nonzero vector x. It is still an unsolved problem whether every power-
bounded operator of class C∗· (in particular, C∗·-contraction) has a nontrivial
invariant subspace, i.e., whether there exists a (closed) subspace M of H such
that {0} 6= M 6= H and TM ⊂M. For partial results on that problem, see,
e.g., [1, Chapter XII] or [16]. In this note we prove the following theorem.

Theorem 1. Assume that T is a power-bounded operator of class C∗· on
a Hilbert space H, which commutes with a nonzero quasinilpotent operator.
Then T has a nontrivial invariant subspace.

This theorem will follow from the following one. We recall that the operator
T is called cyclic if it has a cyclic vector, that is, a vector x such that the
sequence {Tnx}n≥0 spans the whole space H.
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Theorem 2. If T is a power-bounded operator of class C1· on a Hilbert
space H such that T commutes with a nonzero quasinilpotent operator, then T
is not cyclic.

The proof is based on the following construction of the limit isometric
operator associated with T (see [11] and [21]).

Given a power-bounded operator T acting on the Hilbert space H, fix a
generalized Banach limit glim on `∞(N) and consider the sesquilinear form
wT on H defined by

wT (x, y) := glimn→∞〈Tnx, Tny〉, x, y ∈ H.

Since {‖Tn‖}n is bounded, it is easy to see that glimn→∞‖Tnx‖ = 0 if and
only if infn≥0 ‖Tnx‖ = 0, and this happens if and only if limn→∞ ‖Tnx‖ = 0.
Let H0(T ) be the kernel of wT , i.e.,

H0(T ) := {x ∈ H : wT (x, x) = 0} = {x ∈ H : lim
n→∞ ‖T

nx‖ = 0}.

Clearly, H0(T ) is a subspace which is invariant for any operator A in the
commutant {T}′ of the operator T . Furthermore, H0(T ) 6= H if and only if
T is of class C∗·, and H0(T ) = {0} if and only if T is of class C1·. Thus,
Theorem 1 is an immediate consequence of Theorem 2.

Let us form the quotient space ĤT = H/H0(T ), and let us consider the
canonical mapping πT : H → ĤT , πT (x) := x +H0(T ) =: x̂. The sesquilinear
form ŵT (x̂, ŷ) := wT (x, y) (x, y ∈ H) provides an inner product on ĤT , so
that ĤT is a pre-Hilbert space. Let T̂ be the operator on ĤT which is defined
by T̂ x̂ := T̂ x. It is easy to see that T̂ is an isometry.

Let HT be the completion of ĤT and let VT be the continuous extension
of T̂ , called the isometric asymptote of T in [11]. Any operator A ∈ {T}′
generates an operator Â on HT by Âx̂ := Âx (x ∈ H) (and by continu-
ous extension from ĤT to HT ). The mapping γT : A 7→ Â is a contractive
algebra-homomorphism from the commutant {T}′ of T into the commutant
{VT }′ of the isometry VT . Since γT is a unital algebra-homomorphism, we
obtain the spectral inclusion σ(Â) ⊂ σ(A) (A ∈ {T}′). It follows that if A is
quasinilpotent then so is Â. It is also clear that Â = 0 holds if and only if
ran A ⊂ H0(T ).

For a bounded linear operator V on a Hilbert space K, let {V }′′ denote
the bicommutant of V . Let R(V ) be the set of operators f(V ), where f runs
through the set of rational functions with poles off the spectrum σ(V ), and
let A(V ) be the closure of R(V ) in the weak operator topology. We will need
the following well-known facts on these algebras.
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Lemma 3. If V is an isometry on a Hilbert space K, then the abelian
Banach algebra {V }′′ is semisimple, and {V }′′ = A(V ).

Proof. For the sake of completeness, we sketch the proof. The Hilbert space
isometry V splits into the orthogonal sum V = Va ⊕ Us, where Va is an abso-
lutely continuous isometry and Us is a singular unitary operator. It is known
that {V }′′ = {Va}′′ ⊕ {Us}′′ and A(V ) = A(Va) ⊕A(Us); see [5] and Rudin’s
theorem in [8, Chapter 6]. Let µ and µs denote the normalized Lebesgue mea-
sure and the scalar spectral measure of Us, respectively, on the unit circle T,
and let H∞ be the Hardy subspace of L∞(µ). It can be easily verified that
{Va}′′ = {ϕ(Va) : ϕ ∈ H∞} if Va is nonunitary, {Va}′′ = {ϕ(Va) : ϕ ∈ L∞(µ)}
if Va is unitary, and {Us}′′ = {ψ(Us) : ψ ∈ L∞(µs)}; see [4, Chapter IX].
Classical approximation theorems yield that {V }′′ = A(V ). On the other
hand, the previous representation shows that every operator A ∈ {V }′′ is sub-
normal, and so ‖A‖ is equal to the spectral radius r(A), which means that
{V }′′ does not contain nonzero quasinilpotent operators (or equivalently, the
Gelfand transformation associated with {V }′′ is injective).

Lemma 4. The isometry V acting on the Hilbert space K is cyclic if and
only if its commutant is abelian, that is, {V }′ = {V }′′.

Proof. Considering the former decomposition V = Va ⊕ Us, we obtain
that V is cyclic if and only if both Va and Us are cyclic. Let us recall that a
unitary operator U is cyclic if and only if U is ∗-cyclic, which means that the
set {Unx}∞n=−∞ spans the whole space with a suitable vector x; see [3]. Now,
the results in [4, Chapter IX] imply the statement.

Proof of Theorem 2. Let us suppose that T has a cyclic vector x. Since
‖ŷ‖ ≤ M‖y‖ holds for every y ∈ H, where M = sup{‖Tn‖}∞n=0, the vector x̂ is
cyclic for the limit isometry VT . Let A be the nonzero quasinilpotent operator
that commutes with T . Then Â = γT (A) commutes with VT , hence we infer
by Lemma 4 that Â ∈ {VT }′′. Since {VT }′′ is semisimple by Lemma 3, we have
Â = 0, and so ran A ⊂ H0(T ) = {0}. Thus A = 0, which is a contradiction.

Applying the Riesz–Dunford functional calculus, Theorem 1 can be easily
extended to the following statement.

Corollary 5. Let T be a power-bounded operator of class C∗· on the
Hilbert space H. If T commutes with a nonscalar operator A having an isolated
spectrum point, then T has a nontrivial invariant subspace. In particular, T
has a nontrivial invariant subspace if T commutes with a nonzero, essentially
quasinilpotent operator A.
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The following proposition shows how the statement of Lemma 4 can be
transferred to power-bounded operators.

Proposition 6. Let T be a power-bounded operator of class C1· on the
Hilbert space H, and let us consider the conditions: (a) T is cyclic, (b) VT is
cyclic, (c) {T}′ = {T}′′.

Then (a)=⇒(b)=⇒(c), but the reverse implications are false.

Proof. We have already seen that (a) implies (b). If VT is cyclic then
{VT }′ is abelian by Lemma 4, which implies that {T}′ is also abelian since the
mapping γT is one-to-one.

In [20], in terms of the Sz.-Nagy–Foias functional model of contractions,
examples are given for the case when VT is cyclic but T is noncyclic.

To show that (c) does not imply (b), let us consider the simply connected
domains Ω+ := {z ∈ D : Re z > −1/2} and Ω− := {z ∈ D : Re z < 1/2},
where D stands for the open unit disc. Let ϕ and ψ be conformal mappings of
D onto Ω+ and onto Ω−, respectively. Let Tϕ and Tψ be the analytic Toeplitz
operators with symbols ϕ and ψ, respectively, on the Hardy space H2, that
is, Tϕf := ϕf , Tψf := ψf (f ∈ H2). We know by [18, Proposition 2] that
ϕ and ψ are (sequential) weak-∗ generators of the algebra H∞, and so the
operators Tϕ and Tψ have the same invariant subspaces as the operator Tχ,
where χ(z) = z. Since Tχ is cyclic, it follows that the operators Tϕ and Tψ are
cyclic, as well.

It is clear that Tϕ and Tψ are contractions of class C1·. Furthermore,
VTϕ and VTψ

are unitarily equivalent to the restrictions Mα := M |χαL2(µ)
and Mβ := M |χβL2(µ), respectively, where Mf := χf (f ∈ L2(µ)), α :=
(Ω+)− ∩T and β := (Ω−)− ∩T.

Let us form the orthogonal sum T := Tϕ ⊕ Tψ. Since VT is unitarily
equivalent to Mα ⊕Mβ and µ(α∩ β) > 0, we obtain that VT is noncyclic. On
the other hand, the conditions µ(β \α) > 0 and µ(α \β) > 0 imply by [6] that
{T}′ = {Tϕ}′⊕{Tψ}′; see also [16, Theorem 18 and Corollary 15]. Taking into
account that Tϕ and Tψ are cyclic, we infer that {T}′ is a semisimple abelian
Banach algebra.

The following example shows that Lemma 3 cannot be generalized to
power-bounded operators.

Example 7. We recall that the power-bounded operator T is called of
class C11 if both T and its adjoint T ∗ are of class C1·. The invariant subspace
M is called quasi-reducing if the restriction T |M is of class C11.

Let T be a cyclic, completely non-unitary contraction of class C11 on the
Hilbert space H such that the spectrum of T is the closed unit disc D−, and
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VT is a cyclic bilateral shift. The existence of such operators follows from [2,
Theorem 2]. For a concrete example we refer to [10, Example 12].

The lattice of the quasi-reducing invariant subspaces of T is isomorphic
to the lattice of the spectral subspaces of VT ; see [9, Theorem 15] and [12,
Theorem 3]. Thus, we have an abundance of quasi-reducing subspaces of T .
These subspaces are exactly those which can be written in the form (ran A)−,
where A ∈ {T}′′; see [9, Remark 5 and Proposition 10]. Hence, there are many
nonzero operators in {T}′′ which have nondense range.

On the other hand, since σ(T ) = D− and VT is a bilateral shift, we infer
by Runge’s theorem and by [13, Corollary 2] that A(T ) = H∞(T ) := {u(T ) :
u ∈ H∞}. However, for any nonzero function u ∈ H∞, the operator u(T ) is
quasisimilar to u(VT ) (see, e.g., [12] and [19]), and so u(T ) has dense range.
Therefore, A(T ) is a proper subset of {T}′′.

Let T be a power-bounded operator of class C1· on the Hilbert space H.
Let A0(T ) denote the norm-closure of the set R(T ). The norm-continuity of
γT and the condition σ(T ) ⊃ σ(VT ) imply that γT (A0(T )) ⊂ A0(VT ). Since
A0(VT ) ⊂ A(VT ) = {VT }′′ and {VT }′′ is semisimple, we may infer (as in the
proof of Theorem 2) that A0(T ) is semisimple. This statement was previously
proved in [17].

If γT ({T}′′) ⊂ {VT }′′ holds, then it follows in the same way that {T}′′ is
semisimple. However, a look at the operator T = Tϕ⊕Tψ occurring in the proof
of Proposition 6 shows that the inclusion γT ({T}′′) ⊂ {VT }′′ does not hold in
general. Indeed, the operator I ⊕ 0 belongs to {T}′′, but γT (I ⊕ 0) = I ⊕ 0
does not belong to {VT }′′. Thus, the following problem remains open.

Question 8. Is the abelian Banach algebra {T}′′ semisimple for every
power-bounded Hilbert space operator T of class C1·?

In view of Theorem 2 and Proposition 6, the answer is affirmative if T is
cyclic.

Remark 9. We note that if VT is of finite multiplicity, then every quasinilpo-
tent operator B in the commutant of VT is nilpotent. Indeed, considering the
functional model of VT (as in [15]), we obtain that B is an operator of multi-
plication by a function Ψ defined on the unit circle T and taking on operator
values Ψ(z) acting on Hilbert spaces H(z) with dimH(z) ≤ m (z ∈ T), where
m is the multiplicity of VT . Since ‖Bn‖ = ess sup{‖Ψ(z)n‖ : z ∈ T} holds for
every n, we infer by the spectral radius formula that Ψ(z) is quasinilpotent,
and so Ψ(z)m = 0 is valid for a.e. z ∈ T. Therefore, Bm = 0 is also true.

As a consequence, we obtain that if the power-bounded operator T of class
C1· is of finite multiplicity, then the quasinilpotent operators in the commutant
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of T are nilpotent. So, if T is of finite multiplicity then the problem above
can be reduced to the question whether every nilpotent operator A in the
bicommutant of T is necessarily zero.

The following result on the stability of the semigroup {Tn}n≥0 is related
to Theorem 1 and has an analogous proof.

Theorem 10. Suppose that T is a cyclic power-bounded operator on a
Hilbert space H such that T commutes with a quasinilpotent operator A. Then
{Tn}n≥0 is stable on the range of A, that is, limn→∞ ‖Tnx‖ = 0 holds for
every x ∈ (ran A)−.

In connection with Theorem 10, let us also note the following related fact
contained in [22].

Theorem 11. Let T be a power-bounded operator which commutes with
a compact operator K with dense range. Then {Tn}n≥0 is stable if and only
if T does not have a unimodular eigenvalue.

We note that most of the previous results can be extended without any
difficulty to operators T such that the norm-sequence {‖Tn‖}n≥0 is regular in
the sense of [14].

Studying these problems in the general Banach space setting, we encounter
the obstacle that Lemma 3 fails, since {V }′′ is not necessarily semisimple if V
is an isometry on an arbitrary Banach space, see [7].
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Fourier, Université de Grenoble I, CNRS, 490 (2000).

18. D. Sarason, Weak-star generators of H∞, Pacific J. Math., 17 (1966), 519-528.

19. B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space,
North-Holland, Amsterdam, 1970.

20. B. Sz.-Nagy and C. Foias, Jordan model for contractions of class C·0, Acta Sci.
Math. (Szeged), 36 (1974), 305-321.

21. Vu Quoc Phong, Theorems of Katznelson–Tzafriri type for semigroups of op-
erators, J. Funct. Anal., 103 (1992), 74-84.

22. Vu Quoc Phong, Stability of semigroups commuting with a compact operator,
Proc. Amer. Math. Soc., 124 (1996), 3207-3209.
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