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SOCLE SERIES OF A COMMUTATIVE ARTINIAN RING

Surjeet Singh and Yousef Alkhamees

Abstract. Let R be a commutative artinian ring, and f(x) ∈ R[x] be a non-
constant monic polynomial. The main purpose of this paper is to determine

the socle series of R[x]/〈f(x)〉 in terms of the socle series of R. As an
application of the results proved, it is proved that R is a QF -ring if and
only if R[x]/〈f(x)〉 is a QF -ring. As another application , a necessary and
sufficient condition for a local artinian ring R having a semisimple ideal B,
with R/B a PIR, to be a split extension of a PIR by a semisimple module,

is given.

1. INTRODUCTION

Let R be a local, commutative artinian ring. By Cohen [3], R has a coefficient

subring T , and R = T [a1, a2, . . . an] for some ai ∈ R. If n 6= 1, i.e., if R is not

a simple extension of its coefficient subring, not much information about the ideal

structure of R can be obtained from the ideal structure of T . To apply induction on n,

we need to investigate the relationship between the ideal structure of a local artinian

ring R and a local artinian ring that is a simple extension of R. For this purpose,
we consider S = R[x]/〈g(x)t+u〉 for some monic polynomial g(x) ∈ R[x], which
is irreducible modulo the radical J of R, where t is a positive integer, and u ∈ J [x]
is of degree < t deg g(x). In Section 1, Theorem 1.5 shows that the composition
lengths of socle (S) and socle (R) are the same. As an application of this result, it
is proved in Theorem 1.6 that for any nonconstant monic polynomial f(x) ∈ R[x],
R is a QF -ring if and only if R[x]/〈f(x)〉 is a QF - ring. It is also proved that any
artinian ring is a homomorphic image of a QF -ring. In Section 2, S = R[x]/〈g(x)t〉
is studied. Each member sock(S) of the socle series of S is determined in terms of
the members soci(R) of the socle series of R. Theorem 2.8 gives the composition
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length of each factor sock(S)/sock−1(S) in terms of the composition lengths of the
factors soci(R)/soci−1(R). This information can be useful in the classification of
artinian rings. In Theorem 2.10, it is shown that any local artinian ring S with

square of its radical zero, is determined within isomorphisms by its residue field,

characteristic and composition length. A local artinian ring R is called a weak

principal ideal ring (in short, a WPI-ring) if it contains a semisimple ideal B such

that R/B is a PIR. Theorem 2.11 gives a necessary and sufficient condition for a

WPI-ring to be a split extension of a PIR by a semisimple module.

All rings considered here are commutative. For any ring R, soc0(R) = {0}
and for i > 0, soci(R)/soci−1(R) = soc(R/soci−1(R)). For any module MR of

finite composition length, dR(M) denotes its composition length. An artinian self-
injective ring is called a QF -ring. A local artinian ring R is a QF -ring if and only

if socle(R) is simple; see Faith [4, p. 217, Exercise 5]. For any g(x) ∈ R[x], cont
(g(x)) denotes the content of g(x), i.e., the ideal of R generated by the coefficients

of g(x).

1. SOCLE

Throughout, R is a local commutative artinian ring, unless otherwise stated,

and g(x) ∈ R[x] is a monic polynomial of degree m, which is irreducible modulo

J = J(R). Let t be a fixed positive integer, and u ∈ J [x] be such that deg u < mt.
Set S = R[x]/〈g(x)t+u〉. This S is a local ring with J(S) = 〈J, g(x)〉/〈g(x)t+u〉.

Lemma 1.1. Let R be any ring and f(x) ∈ R[x] be a nonconstant monic
polynomial.

( i ) For any ideal A of R, if f(x)b(x) ∈ A[x] for some b(x) ∈ R[x], then
b(x) ∈ A[x].

( ii ) For any h(x) ∈ R[x], if h(x) = f(x)w(x)+b(x) for some b(x), w(x) ∈ R[x],
with deg b(x) < deg f(x), then b(x), w(x) ∈ A[x], where A is the content

of h(x).
(iii) Given h(x) ∈ R[x], there exists k(x) ∈ R[x] with cont(k(x)) ⊆ cont(h(x))

such that for any a ∈ R, f(x) divides ah(x) if and only if ah(x) =
ak(x)f(x).

Proof. Obvious.

Lemma 1.2.

(a) Given a z1 ∈ soc(R)[x], and 1 ≤ i ≤ t, if z1g(x)t−i ∈ 〈g(x)t + u〉, then
z1 = z′1g(x) for some z

′
1 ∈ soc(R)[x]

(b) Given a ∈ soc(R), if ag(x)t−i ∈ 〈g(x)t +u〉 for some 1 ≤ i ≤ t, then a = 0.



Socle Series of a Commutative Artinian Ring 249

Proof. Let z1g(x)t−i ∈ 〈g(x)t + u〉. Then z1g(x)t−i = (g(x)t + u)w for some

w ∈ R[x]. By Lemma 1.1 (i), w ∈ soc(R)[x]. So uw = 0, z1 = g(x)iw = z′1g(x),
with z′1 = wg(x)i−1 ∈ soc(R)[x]. This proves (a). Further, (b) is immediate from
(a).

For any f(x) ∈ R[x], f̄(x) denotes its natural image in S.

Lemma 1.3. Let B be an ideal of R contained in soc(R), and 0 6= z ∈ soc(R)
such that zR ∩ B = 0. Then in S, z̄ḡ(x)t−1S 6= 0, and

z̄ḡ(x)t−1S ∩ B̄ḡ(x)t−1S = 0.

Proof. Observe that soc(R)ḡ(x)t−1S ⊆ soc(S). By Lemma 1.2(b), z̄ḡ(x)t−1 6=
0. So z̄ḡ(x)t−1S is a minimal ideal of S. Suppose z̄ḡ(x)t−1S ∩ B̄ḡ(x)t−1S 6= 0.
Then z̄ḡ(x)t−1 ∈ B̄ḡ(x)t−1S, so

zg(x)t−1 = bg(x)t−1 + (g(x)t + u)w

for some b ∈ B[x] and w ∈ R[x]. Thus, modulo B, zg(x)t−1 = (g(x)t + u)w. By
comparing the degrees on both sides, it follows that w ∈ B[x], and hence z ∈ B.
This is a contradiction, which proves the result.

Corollary 1.4. If soc(R) =
⊕s

1 Ai for some minimal ideals Ai, then the

following hold.

( i ) Soc(R)ḡ(x)t−1S =
s⊕
1

Āiḡ(x)t−1S,

(ii) dR(soc(R)) ≤ dS(soc(S)).

Theorem 1.5. Soc(S) = soc(R)ḡ(x)t−1S and dS(soc(S)) = dR(soc(R)).

Proof. Now soc(R)ḡ(x)t−1S ⊆ soc(S). Let λ̄(x) ∈ soc(S). Then λ̄(x)ḡ(x) =
0. So in R, λ(x)g(x) = (g(x)t + u)w for some w ∈ R[x]. Then g(x)(λ(x) −
g(x)t−1w) = uw ∈ J [x]. By Lemma 1.1, λ(x) = g(x)t−1w + w1 for some w1 ∈
J [x] such that g(x)w1 = uw. Now w = g(x)w

′
+w

′′
for some w

′
, w

′′ ∈ R[x], with
deg w

′′
< deg g(x). Then uw

′ ∈ J [x], and λ(x) = (g(x)t + u)w
′
+ g(x)t−1w

′′
+

(w1 − uw
′
) with w2 = w1 − uw

′ ∈ J [x]. So in S, λ̄(x) = ḡ(x)t−1w
′′

+ w2. Also

g(x)w2 = uw
′′
. Thus, without loss of generality, we take

λ(x) = g(x)t−1w + w1,

with deg w < deg g(x) and g(x)w1 = uw. Consider a ∈ J . Then λ̄(x)ā = 0.
For some wa ∈ R[x],

(g(x)t−1w + w1)a = (g(x)t + u)wa.
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Then wa ∈ J [x]. As g(x)w1 = uw, we get (g(x)t + u)wa = (g(x)t + u)g(x)wa,

and wa = g(x)wa. By comparing the degrees of both sides, we get wa = 0.
So w ∈ soc(R)[x]. Then g(x)w1 = uw = 0, which gives w1 = 0. Hence
λ(x) = g(x)t−1w. This proves that soc(S) = soc(R)ḡ(x)t−1S. Now the second
part is immediate from Corollary 1.4.

A local artinian ring R is QF if and only if soc(R) is simple; see Faith [4,
p. 217]. Exercise 6 on page 217 in [4] is a particular case of the following.

Theorem 1.6. Let R be a commutative artinian ring, and f(x) ∈ R[x] be
a monic, nonconstant polynomial. Then R is a QF -ring if and only if S =
R[x]/〈f(x)〉 is a QF -ring. Any artinian ring is a homomorphic image of a QF -
ring.

Proof. As R is artinian, S is also artinian. Without loss of generality, we

suppose that R is a local ring. As S is a direct sum of local rings, by Azumaya [2,

Lemma 3], f(x) =
∏k

1 fi(x), with fi(x) monic, such that

S =
k⊕

1

R[x]/〈fi(x)〉

with each Si = R[x]/〈fi(x)〉 a local ring. Then fi(x) = gi(x)ti + ui for some

monic polynomial gi(x) ∈ R[x] irreducible modulo J , and ui ∈ J [x] with deg
ui < deg fi(x). So without loss of generality, we take S to be a local ring. By

Theorem 1.5, dR(soc(R)) = dS(soc(S)). This gives that R is QF if and only if S

is QF .
To prove the last part, without loss of generality, we consider a local artinian

ring S. Now S = R[a1, a2, ...., an], where R is a coefficient subring of S. As R
is a local artinian principal ideal ring, it is a QF -ring. By applying induction on n

and by using the first part, it follows that S is a homomorphic image of a QF -ring.

Lemma 1.7. Let R be any local, artinian ring, f(x) ∈ R[x] be a monic
polynomial of degree m ≥ 1, and u(x) ∈ J(R)[x]. Then there exists a monic
polynomial h(x) ∈ R[x] of degree m, such that 〈f(x) + u(x)〉 = 〈h(x)〉.

Proof. Set S = R[x]/〈f(x) + u(x)〉. Now A = 〈J, f(x) + u(x)〉 = 〈J, f(x)〉.
Then S/SJ ∼= R[x]/A as R-modules. Further, the R-module R[x]/A is generated

by the m cosets xi + A, 0 ≤ i ≤ m − 1. As J is nilpotent, SR is finitely

generated. By [2, Theorem 6], SR is generated by {x̄i : 0 ≤ i ≤ m − 1}, where
x̄i = xi + 〈f(x) + u(x)〉. Thus in S, x̄m =

∑m−1
i=0 aix̄

i for some ai ∈ R.

Then h(x) = xm −
∑m−1

i=0 aix
i ∈ 〈f(x) + u(x)〉. As R is a local ring, and
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f(x), h(x) both are monic polynomials of the same degree, it follows that h(x) =
(f(x) + u(x))(1 + v(x)) for some v(x) ∈ J [x]. As 1 + v(x) is a unit in R[x],
〈f(x) + u(x)〉 = 〈h(x)〉.

In view of the above lemma, Theorem 1.6 gives the following:

Theorem 1.8. Let R be any local, commutative ring, f(x) ∈ R[x] be a
monic, nonconstant polynomial, and u(x) ∈ J [x]. Then R is QF if and only

if R[x]/〈f(x) + u(x)〉 is QF .

2. SOCLE SERIES

Throughout this section, R is a local, commutative artinian ring, and g(x) ∈
R[x] is a monic polynomial which is irreducible modulo J = J(R). For a fixed
positive integer t,

S = R[x]/〈g(x)t〉.

Proposition 2.1. For 1 ≤ i ≤ t,

soci(S) = 〈soc1(R)ḡ(x)t−i, soc2(R)ḡ(x)t−i+1, . . . , soci(R)ḡ(x)t−1〉.

Proof. We apply induction on i. By Theorem 1.5, the result holds for i = 1.
Let it hold for some i = k < t. Let λ̄(x) ∈ sock+1(S). Then λ̄(x)ḡ(x) ∈ sock(S),
which gives λ(x)g(x) =

∑k
j=1 zjg(x)t−k+j−1 + g(x)tv for some zj ∈ socj(R)[x]

and v ∈ R[x]. Thus

λ(x) =
k∑

j=1

zjg(x)t−k+j−2 + g(x)t−1v.

By dividing v by g(x) in R[x], we get

λ̄(x) =
k∑

j=1

z̄j ḡ(x)t−k+j−2 + ḡ(x)t−1w̄

for some w ∈ R[x] with deg w < deg g(x). Consider a ∈ J . Then λ̄(x)ā ∈
sock(S). So

∑k
j=1 zjag(x)t−k+j−2+g(x)t−1aw =

∑k
j=1 ujg(x)t−k+j−1+g(x)tw

′

for some uj ∈ socj(R)[x] and w
′ ∈ R[x]. As zja ∈ socj−1(R)[x] ⊆ sock(R)[x], we

get g(x)t−1aw ∈ sock(R)[x]+ 〈g(x)t〉. Then g(x)t−k−1v1 = g(x)tv2 + g(x)t−1aw
for some v1 ∈ sock(R)[x] and v2 ∈ R[x]. By using Lemma 1.1(ii), we get aw ∈
sock(R)[x]. Thus w ∈ sock+1(R)[x]. Consequently,

λ̄(x) =
k+1∑

j=1

b̄j ḡ(x)t−(k+1)+j−1
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with bj = zj for 1 ≤ j ≤ k and bk+1 = w. This completes the proof.

Proposition 2.2. For any i ≥ 0,

soct+i(S) = 〈soci+1(R), soci+2(R)ḡ(x), . . . , soci+t(R)ḡ(x)t−1〉

Proof. We apply induction on i. By Proposition 2.1, the result holds for

i = 0. Let it be true for some i = k. Consider λ̄(x) ∈ soct+k+1(S). Then
λ̄(x)ḡ(x) ∈ soct+k(S), which gives

λ(x)g(x) =
t∑

j=1

zk+jg(x)j−1 + g(x)tw

for some zk+j ∈ sock+j(R)[x] and w ∈ R[x]. This gives zk+1 = z
′
k+1g(x) for

some z
′
k+1 ∈ sock+1(R)[x]. Thus

λ(x) = z
′
k+1 +

t∑

j=2

zk+jg(x)j−2 + g(x)t−1w.

So in S,

λ̄(x) = z̄
′
k+1 +

t∑

j=2

z̄k+j ḡ(x)j−2 + ḡ(x)t−1v̄

for some v ∈ R[x] with deg v < deg g(x). Consider any a ∈ J . Then λ̄(x)ā ∈
soct+k(S), which gives

z
′
k+1a +

t∑

j=2

zk+jag(x)j−2 + g(x)t−1av =
t∑

j=1

uk+jg(x)j−1 + g(x)tw
′

for some uk+j ∈ sock+j(R)[x] and w
′ ∈ R[x]. Consequently, g(x)t−1av = w1 +

g(x)tw
′
with w1 ∈ soct+k(R)[x]. By Lemma 1.1(ii), av ∈ soct+k(R)[x], and so

v ∈ soct+k+1(R)[x]. Also, z
′
k+1 + zk+2 ∈ sock+2(R)[x]. Set

uk+2 = z
′
k+1 + zk+2, uk+1+j = zk+1+j

for 2 ≤ j ≤ t − 1 and uk+1+t = v. Then λ̄(x) =
∑t

j=1 ūk+1+j ḡ(x)j−1. This

completes the proof.

Propositions 2.1 and 2.2 can be combined to give the following

Theorem 2.3. Let R be any local, commutative, artinian ring, and g(x) ∈ R[x]
be a monic polynomial, which is irreducible modulo J = J(R). For some positive
integer t, let S = R[x]/〈g(x)t〉.
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(I) For 1 ≤ s ≤ t,

socs(S) =
s∑

j=1

socj(R)[x]ḡ(x)t−s+j−1.

(II) For s ≥ t

socs(S) =
s∑

j=s−t+1

socj(R)[x]ḡ(x)t−s+j−1.

(III) For any j ≥ 1, 0 ≤ k ≤ t−1 and zj ∈ socj(R)[x], z̄j ḡ(x)k ∈ soct−k+j−1(S).

In fact, (I) and (II) in the above theorem can be put together to say that for

any s ≥ 0, socs(S) =
∑
socj(R)[x]ḡ(x)t−s+j−1, where the summation runs

over j ≥ 1, t − s + j − 1 ≥ 0.

Lemma 2.4. For 1 ≤ j ≤ t − 1, if z1ḡ(x)t−j ∈ socj−1(S) for some z1 ∈
soc1(R)[x], then z1 ∈ g(x)soc1(R)[x].

Proof. If j = 1, the result follows from Lemma 1.2. Let j > 1. By Theorem
2.3(I),

z1g(x)t−j =
j−1∑

k=1

ukg(x)t−j+k + wg(x)t

for some uk ∈ sock(R)[x] and w ∈ R[x]. Thus z1g(x)t−j = w
′
g(x)t−j+1 for some

w
′ ∈ R[x]. Consequently, z1 = g(x)w

′
, and by Lemma 1.1(i), w

′ ∈ soc1(R)[x].

Lemma 2.5. For 1 ≤ i ≤ t, if

λ̄(x) =
i∑

k=1

z̄k ḡ(x)t−i+k−1 ∈ soci−1(S)

for some zk ∈ sock(R)[x], then

zk ∈ g(x)sock(R)[x] + sock−1(R)[x].

Proof. We apply induction on i. For i = 1, λ̄(x) = z̄1g(x)t−1 ∈ soc0(S). By
Lemma 1.2, z1 = z

′
1g(x) for some z

′
1 ∈ soc(R)[x]. So the result holds for i = 1.

Let i > 1 and let the result hold for i − 1. Let a ∈ J . Then z1a = 0, and

λ̄(x)a =
i∑

k=2

z̄kag(x)t−i+k−1 ∈ soci−2(S)
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with zka ∈ sock−1(R)[x]. By the induction hypothesis, zka ∈ g(x)sock−1(R)[x]+
sock−2(R)[x]. Consider R̄ = R/sock−2(R). Over R̄, z̄kā is divisible by ḡ(x).
By Lemma 1.1(iii), there exists h(x) ∈ sock(R)[x] such that [zk − h(x)g(x)]a ∈
sock−2(R)[x] for every a ∈ J . Consequently, zk − h(x)g(x) ∈ sock−1(R)[x]. So
zk ∈ g(x)sock(R)[x] + sock−1(R)[x] for 2 ≤ k ≤ i. Then by Theorem 2.3(I),∑i

k=2 zkg(x)t−i+k−1 ∈ soci−1(S). Thus z1g(x)t−i ∈ soci−1(S). Apply Lemma
2.4. This completes the proof.

Similarly by using Theorem 2.3(II), we get the following

Lemma 2.6. For any i ≥ 0, if

λ̄(x) =
t∑

j=1

z̄i+j ḡ(x)j−1 ∈ soct+i−1(S)

for some zi+j ∈ soci+j(R)[x], then

zi+j ∈ g(x)soci+j(R)[x] + soci+j−1(R)[x].

Lemma 2.7. For any i > 0, let Mi = soci(R)[x]/(g(x)soci(R)[x] + soci−1

(R)[x]), and σ : soci(R)[x] → Mi be the natural homomorphism. Then the fol-

lowing hold.

( i ) For any a ∈ soci(R)\soci−1(R), σ(a) 6= 0.

( ii ) Mi is an S/J(S)-module.

(iii) Let η : soci(R) → soci(R)/soci−1(R) be the natural homomorphism. Let A

be any ideal of R contained in soci(R), and let a ∈ soci(R)\soci−1(R) be
such that η(A)∩ η(aR) = 0. Then σ(A)S ∩ σ(a)S = 0.

(iv) dS(Mi) = dR(soci(R)/soci−1(R)).

Proof. Suppose, σ(a) = 0 for some a ∈ soci(R)\soci−1(R). Then a =
g(x)z + u for some z ∈ soci(R) and u ∈ soci−1(R)[x]. By Lemma 1.1(ii), a ∈
soci−1(R). This is a contradiction. Hence σ(a) 6=0. As MiJ = 0, Mig(x) = 0,
J(S) = 〈g(x), J〉, it is immediate that Mi is an S/J(S)-module. For (iii), let
σ(A)S∩σ(a)S 6= 0. By (i) and (ii), σ(a)S is a simple S-module. So σ(a) ∈ σ(A)S.
Then for some f(x) ∈ A[x], a − f(x) ∈ g(x)soci(R)[x] + soci−1(R)[x]. By using
Lemma 1.1(ii), we may take deg f(x) < deg g(x). Now a−f(x) = g(x)w+u for
some u ∈ soci−1(R)[x]. By using Lemma 1.1(ii), we get a− f(x) ∈ soci−1(R)[x].
If b is the constant term of f(x), a−b ∈ soci−1(R). This gives η(a) ∈ η(A), which
is a contradiction. This proves (iii). We write soci(R)/soci−1(R) =

⊕u
j=1 η(aj)R
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for some η(aj) 6= 0. As Mi = σ(soci(R))S, by using (i) and (iii), we get Mi =⊕u
j=1 σ(aj)S. This proves (iv).

Theorem 2.8. Let R be a local commutative artinian ring, and g(x) ∈ R[x]
be a monic polynomial, irreducible modulo J(R). For some positive integer t, let
S = R[x]/〈g(x)t〉. Then the following hold.
(I) For 1 ≤ s ≤ t,

socs(S)/socs−1(S) ∼=
s⊕

k=1

sock(R)[x]/(g(x)sock(R)[x] + sock−1(R)[x])

and

dS(socs(S)/socs−1(S)) =
s∑

k=1

dR(sock(R)/sock−1(R)).

(II) For i > 0,

soct+i(S)/soct+i−1(S) ∼=
t⊕

j=1

soci+j(R)[x]/(g(x)soci+j(R)[x]+soci+j−1(R)[x])

and

dS(soct+i(S)/soct+i−1(S)) =
t∑

j=1

dR(soci+j(R)/soci+j−1(R))

Proof. Consider 1 ≤ s ≤ t. Define

σ :
s⊕

k=1

sock(R)[x] → socs(S)/socs−1(S)

such that

σ(
s⊕

k=1

zk) =
s∑

k=1

z̄k ḡ(x)t−s+k−1 + socs−1(S), zk ∈ sock(R)[x].

By Theorem 2.3 σ is anR[x]-epimorphism. By Lemma 2.5, ker σ ⊆
⊕s

k=1(g(x)sock

(R)[x]
⊕
sock−1(R)[x]). However by Theorem 2.3,

⊕s
k=1(g(x)sock(R)[x]+sock−1

(R)[x]) is contained in ker σ. This proves the first part of (I). The second part of

(I) follows from lemma 2.7(iv). Similarly, (II) can be proved.
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Remark 2.9. In the above theorem, let n be the index of nilpotency of J(R).
For 1 ≤ s ≤ min(t, n), (I) gives

dS(socs(S)/socs−1(S)) =
s∑

j=1

dR(socj(R)/socj−1(R)).

Let t ≥ n. As socj(R) = R for every j ≥ n, we get the following. For n ≤ s ≤ t,

dS(socs(S)/socs−1(S)) =
n∑

j=1

dR(socj(R)/socj−1(R)).

For 0 < i ≤ n−1, dS(soct+i(S)/soct+i−1(S)) =
∑n−i

k=1 dR(soci+k(R)/soci+k−1(R)).
Let t < n. Then, for 0 < i ≤ n − t,

dS(soct+i(S)/soct+i−1(S)) =
t∑

j=1

dR(soci+j(R)/soci+j−1(R)).

For 0 < i ≤ t − 1, dS(socn+i(S)/socn+i−1(S)) =
∑t−i

j=1 dR (socn−t+i+j (R)/
socn−t+i+j−1(R)). In any case, soct+n−2(S) = J(S), and soct+n−1(S) = S.

Let S be any ring and M be an S-module. Then R = S × M becomes a ring,

in which (r, x) + (s, y) = (r + s, x + y) and (r, x)(s, y) = (rs, yr + xs). This
R is an extension of S, called a split extension of S by the module M . If S is a
local ring, so is R. Clearly, J(S)2 = 0 if and only if J(R)2 = 0. If a ring R has a

subring S and an ideal M such that S ∩ M = 0 and R is canonically isomorphic

to the split extension of S by M , we write R = S . M . If a local artinian ring

R contains a nonzero semisimple ideal B such that R/B is a principal ideal ring,

then R is called a WPI-ring. As an application of the results on socle series, we

determine when a WPI-ring is a split extension of a PIR by a semisimple module.
We start with the following.

Theorem 2.10. Let S be a local artinian ring such that J(S) 6= 0 but J(S)2 =
0, and let R be a coefficient subring of S. Then S is a split extension of R. Any two

local rings S and S ′ with squares of their radicals zero are isomorphic if and only
if they have isomorphic residue fields, same characteristic and same composition

length.

Proof. To start with, we take S = R[a] 6= R, where R is a local subring

of S such that S̄ = S/J(S) = R̄. There exists c ∈ R such that (a − c)2 = 0.
Consider T = R[x]/〈(x − c)2〉. We get an R-epimorphism σ : T → S such that

σ(x̄) = a. If R is a field, then T is isomorphic to S and it is the split extension

of R by the simple R-module V = {r(x − c) + 〈(x − c)2〉 : r ∈ R}. Assume
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that R is not a field. By Remark 2.9, the index of nilpotency of J(T ) is three.
Further, J(T ) = soc2(T ) = 〈soc(R), soc2(R)(x− c)〉 = soc(R)[x] + R[x](x− c).
This gives J(T )2 = soc(R)(x− c) = soc(T ). Let A = ker σ. As the index of

nilpotency of J(T/A) is two, soc(T ) ⊆ A. Any simple T -module or a simple
S-module is a simple R-module. Thus, by Theorem 2.8(I), dR(J(T )/soc(T )) =
dT (J(T )) = dR(soc(R)) + dR(soc2(R)/soc(R)) = dR(J(R)) + dR(R/J(R)) =
dR(R). Consequently, dR(T/soc(T )) = 1 + dR(R) ≤ dR(S) = dR(T/A). This
gives A = soc(T ). Now R has a natural embedding in T/A. As an abelian group,
T/A = R⊕V , where V = {r(x− c)2 +A : r ∈ R} is a simple R-module. Clearly

T/A is a split extension of R by V . As S is a finite extension of its coefficient ring,
it now follows that S is a split extension of its coefficient subring. This proves the
first part. Let two local artinian rings S and S

′
with squares of their radicals zero

have isomorphic residue fields, same characteristic and same composition lengths.

Let R and R
′
be their coefficient rings. As R and R

′
have isomorphic residue fields

and have same characteristic, being image of the same v-ring, as given in [3], they
are isomorphic. Then the fact that S and S

′
are split extensions and have same

composition length, gives that S and S
′
are isomorphic.

The above theorem has some similarity with Theorem 1 in [1] for finite rings.

Theorem 2.11. Let R be aWPI-ring withM as its maximal ideal, and having
a semisimple ideal B such that R/B is a PIR. Then R is a split extension of a

PIR by a semisimple module if and only if

( i ) M2 = 0, or
( ii ) char R/M = 0, or
(iii) char R/M = p > 0 and p ∈ M i for some i > 1, or
(iv) char R/M = p > 0 and p ∈ M\(M2 + B).

Proof. Let n be the index of nilpotency of M . Now soc(R) = Mn−1 + B and

for any y ∈ M\(M2 + B), M = yR + M2 + B = yR + B, and M i = yiR for

i ≥ 2. Thus M = yR⊕C for some C ⊆ B. By Theorem 2.10, the result holds for
n = 2. Let n > 2. Let R satisfy one of the conditions (ii), (iii) and (iv). Consider

T = R/M2. By Theorem 2.10, T = T
′
. W , where T

′
is a coefficient subring of

T and W is a semisimple ideal of T .

Case I. Char T is either zero or a prime number. Then T
′
is a field. Now

T
′

= F/M2 for some subring F of R containing M2. Further, W = M/M2.

Consider R1 = F + yR. Then R = R1 + C. Now C is a semisimple R1-module

and R1 is a PIR with J(R1) = yR = yR1 and R1 ∩ C = 0. Hence R = R1 . C.
Case II. For some prime number p, char T is p2. Then T

′
= L/M2 for some

subring L containing M2 with J(T
′
) = (pL + M2)/M2 and W = K/M2 for
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some ideal K ⊆ M . Clearly, p ∈ M\M2. By (iii) and (iv), p /∈ M2 + C, and

so M = pR + M2 + C and M2 = p2R. But every simple R-module is a simple
L-module. This yields pR = pL + p2R = J(L) = pL + J(L)2. Hence L is a

principal ideal ring and R = L / C.
Let R be a split extension of a PI subring S by a semisimple ideal D. Then

J(S) = bS = bR for some b ∈ S and J(S)i = M i for i ≥ 2. Let n > 2. Suppose
char R/M = p > 0. As S is a PIR, it yields that pS = pR = J(S)i for some

i ≥ 1. However, J(S)j = M j for j ≥ 2. If i ≥ 2, (iii) holds. Let pS = J(S). As
J(S) * M2+D, p ∈ M\(M2+D). However, soc(R) = Mn−1⊕D = Mn−1 +B

gives socn−2(R) = M2 + D = M2 + B. So R satisfies (iv).

We now give an example of a WPI-ring that is not a split extension of a PIR
by any semisimple module.

Example. Let p be any prime number and S = Z/(p3)[x]. Let A be the

ideal of S generated by the polynomials (x2 − p)p and (x2 − p)x. Let R = S/A.

This R is a local ring with J(R) generated by x̄ = x + A and p̄ = p + A.
As px = x2x − x(x2 − p) ≡ x2x (mod A) and p2 = px2 − p(x2 − p) ≡ px2

(mod A), J(R)2 = 〈x̄2〉. Suppose x2 − p + A ∈ 〈x̄〉. Then p̄ ∈ 〈x̄〉, p =
xf(x) + (x2 − p)xg(x) + (x2 − p)ph(x). Dividing f(x) by x2 − p, we take

f(x) = ax + b for some a, b ∈ Z/(p3). Then x(ax + b) − p is divisible by
x2 − p. Consequently, b = 0 and ap = p. This yields that a is a unit and that

xf(x) − p = a(x2 − p). Then −a = xg(x) + ph(x). By putting x = 0, we get
−a = ph(0). This is impossible, as a is a unit. Also, (x2 − p) + A ∈ soc(R). We
get J(R) = 〈x̄ > ⊕C, where C = 〈x2−p+A〉. R/C is a PIR, p̄ ∈ J(R)\J(R)2

and p̄ ∈ J(R)2 ⊕ C. By Theorem 2.11, R is not a split extension of PIR by any

semisimple module.
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