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HAHN-BANACH-KANTOROVICH TYPE THEOREMS WITH THE

RANGE SPACE NOT NECESSARILY (O)-COMPLETE

Rodica-Mihaela Dăneţ and Ngai-Ching Wong

Abstract. In the classical Hahn-Banach-Kantorovich theorem, the range space

Y is Dedekind complete. In this paper, by extending the arguments of the origi-
nal Hahn-Banach-Kantorovich theorem and using an idea of Y. A. Abramovich

and A. W. Wickstead, we can weaken the order theoretic assumption on Y
and obtain more general results in the settings of Banach lattices as well as

ordered linear spaces.

1. INTRODUCTION

In the operator version of the Hahn-Banach-Kantorovich theorem, the range

space Y is assumed to be Dedekind complete. This assumption can be considerably

relaxed by using a weaker interpolation property, the so-called Cantor property on Y.
Some generalizations of this type were given by H. B. Cohen [3], J. Lindenstrauss

[9] and G. Buskes [2]. In particular, Y. A. Abramovich and A. W. Wickstead [1]

provided us the following

Theorem 1 [1]. Let X and Y be Banach lattices such that X is separable and

Y has the Cantor property. Let P : X → Y+ be a continuous seminorm. If G is

a linear subspace of X and T : G → Y is a continuous linear operator satisfying

T (v) ≤ P (v) for all v in G, then there exists a continuous extension S of T to the
whole of X such that S(x) ≤ P (x) for all x in X .

In this paper, we obtain two new results along the line. The first one states that

any positive linear operator from a majorizing subspace of a separable Banach lattice
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into a Banach lattice with the Cantor property can be extended. The second one

states that any (o)-continuous linear operator from a subspace of an ordered linear

space with (os)-property into an ordered linear space with the strong (σ)-interpolation

property dominated by an (o)-continuous seminorm can also be extended.

2. PRELIMINARIES

As far as the linear-order-theoretical terminology is concerned, we mostly follow

Cristescu’s book [4]. In particular, an ordered linear space X is said to have the

(os)-property if there exists a countable subset D of X such that for each x in
X there is a sequence {xn}n in D with xn

o→ x. A linear subspace G of X is

a majorizing subspace if for every x in X there exists a v in G with x ≤ v.
Consequently, there also exists a u in G such that u ≤ x.

Definition. Let Y be an ordered linear space. Y is said to have the Cantor

property (or the (σ)-interpolation property or the countable property) if for every
increasing sequence {xn}n and every decreasing sequence {zm}m in Y with xn ≤
zm, ∀ n, m ∈ N, there is a y in Y such that xn ≤ y ≤ zm, ∀ n, m ∈ N. Y is said to

have the strong (σ)-interpolation property if for every pair of sequences {xn}n and

{zm}m in Y with xn ≤ zm, ∀ n, m ∈ N, there is a y in Y such that xn ≤ y ≤ zm, ∀
n, m ∈ N. In case Y is a vector lattice, these two notions coincide.

G. Seever [10] showed that for a completely regular space K, C(K) has the
Cantor property if and only if K is an F -space, i.e., every pair of disjoint open

(Fσ)-sets in K has disjoint closures. C. B. Huijsmans and B. De Pagter [8] showed

that an Archimedean vector lattice Y has the Cantor property if and only if Y is

uniformly complete and normal. In general, for a vector lattice we have: Dedekind

completeness implies Dedekind (σ)-completeness implies Cantor property implies

order completeness implies uniform completeness (see, e.g., [12, p. 696]).

In case Y is a Banach lattice, A. W. Wickstead [11] proved that the following are

all equivalent: (1) Y has the Cantor property; (2) the space of all regular operators

from convergent sequences into Y has the strong (σ)-interpolation property; (3)

the space of all regular operators from convergent sequences into Y has the Riesz

decomposition property. More recently, N. Daneţ [6] showed that they are also

equivalent to: (3′) the space of all regular operators from any separable Banach

lattice into Y has the Riesz decomposition property.

3. MAIN RESULTS

We start with a Kantorovich-type theorem concerning the extension of a positive

linear operator. Note that every positive linear operator from a majorizing subspace

of a Banach lattice into a Banach lattice is continuous.
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Theorem 2. Let X be a separable Banach lattice, G a majorizing subspace of

X, and Y a Banach lattice with the Cantor property. If T : G → Y is a positive

linear operator, then there exists a positive linear operator S : X → Y such that

S(v) = T (v), ∀v ∈ G.

Proof. Let x0 ∈ X \ G and G1 the linear hull of G∪ {x0}. We will extend T
to G1. Because G is a majorizing subspace of X , we can choose u, v from G such

that u ≤ x0 ≤ v. Since the operator T is positive, we have

T (u) ≤ T (v).(1)

Let W be the nonempty set of all such u, v in G. Since X is separable, there exists

a countable dense subset D of W . In particular, the inequality (1) holds for any

u, v in D with u ≤ x0 ≤ v. By the Cantor property of Y we can find a y0 in Y
satisfying

T (u) ≤ y0 ≤ T (v), for all u, v ∈ D, u ≤ x0 ≤ v.

Since T is continuous, the last double inequality remains true for all u, v in G with

u ≤ x0 ≤ v. Now, letting T1(x0) = y0 we obtain a desired extension of T, namely,

T1 : G1 → Y , defined by

T1(v + λx0) = T (v) + λy0.

Obviously, G1 is again a majorizing subspace of X . Moreover, T1 : G1 → Y is

positive. Indeed, let v + λx0 ≥ 0 with λ 6= 0. If λ > 0 then x0 ≥ −(1/λ)v, which
implies y0 ≥ T (−(1/λ)v) = −(1/λ)T (v). Therefore, T1(x0) ≥ −(1/λ)T (v), and
thus T1(v + λx0) ≥ 0. If λ < 0, we get the same result.

Finally, a routine application of Zorn’s lemma will finish the proof.

Recall that an axial element is an e in X+ such that for each x in X there exists

λ > 0 satisfying x ≤ λe.

Corollary 3. Let X and Y be Banach lattices such that X is separable and

contains an axial element e and Y has the Cantor property. Then for each y0 in

Y+ there exists a positive linear operator U : X → Y with U(e) = y0.

Proof. Because e is an axial element of X, the linear hull G = Sp(e) is a
majorizing subspace of X . We define T : G → Y by T (λe) = λy0 and then apply

Theorem 2.

Before stating another corollary of Theorem 2, we remark that any linear sub-

space G of an ordered linear space X containing an element in the interior IntX+
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of the positive cone X+ of X is majorizing. Moreover, any positive linear opera-

tor from X into an ordered linear space Y vanishing in a majorizing subspace is

necessarily zero.

Corollary 4. Let X be a separable Banach lattice with IntX+ 6= ∅, and Y

a Banach lattice with the Cantor property. Then for any linear subspace G of X
disjoint from IntX+, there exists a nonzero positive linear operator U : X → Y

with U |G= 0.

Proof. We choose an element x0 from IntX+ and denote by G0 the linear hull

of G∪{x0}. It follows that G0 is a majorizing subspace of X . Define T0 : G0 → Y

by T0(v + λx0) = λy0 for some fixed element y0 in Y+.

Let us prove that T0 is positive. Let v ∈ G and λ 6= 0 such that v + λx0 ≥ 0.
Suppose that λ < 0. Then −λx0 ∈ IntX+ and hence v = v + λx0 + (−λx0) ∈
IntX+. This conflicts with the hypothesis that G∩ IntX+ = ∅. So λ > 0 and hence
T0(v + λx0) = λy0 ≥ 0. By Theorem 2, we can extend T0 to a positive linear

operator U : X → Y. Obviously, U |G= 0.

The following results supplement Theorem 1. The first appears without proof

in [7].

Theorem 5. SupposeX and Y are ordered linear spaces, G is a linear subspace

ofX with the (os)-property, and Y has the strong (σ)-interpolation property. Let T :
G → Y be an (o)-continuous linear operator and P : X → Y+ an (o)-continuous

seminorm such that T (v) ≤ P (v) for all v in G. Then for any x0 in X \G we can

extend T to an (o)-continuous linear operator T1 : G1 = Sp(G∪ {x0}) → Y such

that T1(z) ≤ P (z) for all z in G1.

Proof. Because G has the (os)-property, there exists a countable subset D of

G such that, for each v in G, there is a sequence (vn)n∈N in D with vn
o→ v. If

u, v ∈ G, then

T (u)− T (v) = T (u − v) ≤ P (u − v)
= P ((u + x0) − (v + x0)) ≤ P (u + x0) + P (v + x0).

So

−P (v + x0) − T (v) ≤ P (u + x0) − T (u), for all u, v ∈ G.(2)

In particular, the inequality holds for all u, v inD. Using the strong (σ)-interpolation
property of Y , we find a y0 in Y such that

−P (v + x0) − T (v) ≤ y0 ≤ P (u + x0) − T (u), for all u, v ∈ D.(3)
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But T and P are (o)-continuous and hence the inequalities (3) hold for all

u, v in G. Now, by letting

T1(v + λx0) = T (v) + λy0,

we obtain a linear extension of T to G1.

It remains to show that T1(v + λx0) ≤ P (v + λx0) for all v in G and λ in R,
or, equivalently,

T (v) + λy0 ≤ P (v + λx0) for all v ∈ G and λ ∈ R.(4)

If λ = 0, the inequality (4) is valid because T1 = T ≤ P on G. If λ > 0, using the
right inequality in (3), for (1/λ)v instead of u, we obtain

y0 ≤ P

(
1
λ

v + x0

)
− T

(
1
λ

v

)
=

1
λ

[P (v + λx0) − T (v)].

Therefore,

T (v) + λy0 ≤ P (v + λx0).

If λ < 0, we use the left inequality in (3) to establish (4) instead.
Being dominated by the (o)-continuous seminorm P , the extension T1 of T is

(o)-continuous as well.

Corollary 6. Suppose in Theorem 5, in addition, every linear subspace ofX has

the (os)-property. Then there exists an (o)-continuous linear operator S : X → Y

such that S(v) = T (v) for all v in G, and S(x) ≤ P (x) for all x in X .

Proof. It follows from Theorem 5 and an application of Zorn’s lemma.
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