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GROUP TESTING IN BIPARTITE GRAPHS∗

Su-Tzu Juan and Gerard J. Chang†

Abstract. This paper investigates the group testing problem in graphs as

follows. Given a graph G = (V, E), determine the minimum number t(G)
such that t(G) tests are sufficient to identify an unknown edge e with each
test specifies a subset X ⊆ V and answers whether the unknown edge e is in
G[X] or not. Damaschke proved that dlog2 e(G)e ≤ t(G) ≤ dlog2 e(G)e + 1
for any graph G, where e(G) is the number of edges of G. While there are
infinitelymany complete graphs that attain the upper bound, it was conjectured

by Chang and Hwang that the lower bound is attained by all bipartite graphs.

This paper verifies the conjecture for bipartite graphs G with e(G) ≤ 24 or

2k−1 < e(G) ≤ 2k−1 + 2k−3 + 2k−6 + 19 · 2 k−7
2 − 1 for k ≥ 5.

1. INTRODUCTION

The idea of group testing originated from the blood testing in 1942 by Dorfman,

who published the first paper [8] on this topic. While traditional group testing

literature employs probabilistic models, Li [12] was the first to study combinatorial

group testing as follows. Consider a population V of n items consisting of an

unknown subset D ⊆ V of d defectives. The problem is to identify the set D
by a sequence of group tests. Each test is on a subset X of V with two possible

outcomes: a pure outcome indicates that X ∩ D = ∅, and a contaminated outcome
indicates that X ∩ D 6= ∅. The goal is to minimize the number M(d, n) of tests
under the worst scenario. A best algorithm under this goal is called a minmax

algorithm. For a good reference, see the book by Du and Hwang [9].
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As the sample space of the problem consists of
(n
d

)
samples, we have the fol-

lowing information-theoretic lower bound

M(d, n) ≥ dlog2

(
n

d

)
e,

where dxe (bxc) denotes the smallest (largest) integer not less (greater) than x.
Using a bisection method, it is easy to get

M(1, n) = dlog2 ne.

On the other hand, it is hard to determineM(d, n) for d ≥ 2. Even for the case of
d = 2, we only know that

dlog2

(
n

2

)
e ≤ M(2, n) ≤ dlog2

(
n

2

)
e + 1.

Toward the study of M(2, n), Chang and Hwang [4, 5] considered the problem
of identifying two defectives in two disjoint sets A and B, each containing exactly
one defective. At first, it seems that one cannot do better than working on the two

disjoint sets separately. Surprisingly, a small example with |A| = 3 and |B| = 5
shows that 4 = dlog2(3 · 5)e tests is enough rather than identifying the defectives
in A and B separately, which takes dlog2 3e + dlog2 5e = 5 tests. In general, they
[5] proved that the minmax number to identify the only defective in A and the only
defective in B is

dlog2(mn)e,

where m = |A| and n = |B|. By associating each item to a vertex, Spencer [4]
observed that the sample space of this problem can be represented by a bipartite

graph where each edge represents a sample in A × B. (Throughout this paper we

presume that the reader is familiar with the basic-theoretic notations. See [3, 13]

if necessary.) Chang and Hwang [4] conjectured that a bipartite graph with 2k

(k ≥ 1) edges always has an induced subgraph with 2k−1 edges, or equivalently,

t(G) = dlog2 e(G)e for any bipartite graph G. While the conjecture remains open,

it has stimulated forthcoming research casting group testing on graphs.

Aigner [1] proposed the following problem: Given a graph G = (V, E), deter-
mine the minimum number t(G) such that t(G) tests are sufficient in the worst case
to identify an unknown edge e when each test specify a subset X ⊆ V and answers

whether the unknown edge e is in G[X ] or not, where G[X ] is the subgraph of G
induced by the vertex set X . It is then clear that t(G) = 0 if G has exactly one

edge, and otherwise

t(G) = 1 + min
X⊆V

max{t(G[X ]), t(G− E(X))}.
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The information-theoretic lower bound for this parameter is

dlog2 e(G)e ≤ t(G),

where e(G) denotes the number of edges in G. Chang and Hwang’s result [5]
becomes that

t(Km,n) = dlog2 e(Km,n)e = dlog2(mn)e

for complete bipartite graphs Km,n, and their conjecture is

Conjecture 1 [4]. For any bipartite graph G, we have t(G) = dlog2 e(G)e.

From the result in [6], it follows that t(Kn) ≤ dlog2 e(Kn)e + 1, and there are
infinitely many complete graphs attaining the upper bound. Althöfer and Triesch [2]

showed that t(G) ≤ dlog2 e(G)e+1 for bipartite graphs, and t(G) ≤ dlog2 e(G)e+3
for arbitrary graphs. Damaschke [7] proved that t(G) ≤ dlog2 e(G)e+1 for arbitrary
graphs. In fact, he proved a more general result that t(G) = dlog2 e(G)e for a graph
G with 2k−1 < e(G) ≤ 2k−1+ 171

64 ·2
k−1
2 when k ≥ 13 and e(G) ∈ [1, 14]∪[17, 25]∪

[33, 45]∪ [65, 83]∪ [129, 155]∪ [257, 295]∪ [513, 568]∪ [1025, 1105]∪ [2049, 2165].
The attempt of this paper is to determine the largest number f(k) such that

t(G) = dlog2 e(G)e for any bipartite graph G with 2k−1 < e(G) ≤ f(k). Note that
Conjecture 1 says f(k) = 2k for k ≥ 0. In this paper, we verify the conjecture for
k ≤ 4, and show that f(k) ≥ 2k−1 + 2k−3 + 2k−6 + 19 · 2

k−7
2 − 1 for k ≥ 5.

2. GRAPHS G WITH t(G) = dlog2 e(G)e

It is of our interest to study which graphs G satisfy t(G) = dlog2 e(G)e. The
first well-known result of this kind is

Theorem 2 [5]. For any complete bipartite graph Km,n, we have

t(Km,n) = dlog2 e(Km,n)e = dlog2(mn)e.

It is not hard to see that acyclic graphs also have this property.

Theorem 3. For any acyclic graph G, we have t(G) = dlog2 e(G)e.

Proof. Removing successively vertices of degree one, we can get induced sub-

graphs of G whose numbers of edges range from 1 to e(G). This together with the
information-theoretic lower bound gives the theorem.

Damaschke’s result [7] is for general graphs.
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Theorem 4 [7]. For any graph G with 2k−1 < e(G) ≤ 2k−1 + 171
64 · 2

k−1
2 and

k ≥ 13, and e(G) ∈ [1, 14]∪ [17, 25]∪ [33, 45]∪ [65, 83]∪ [129, 155]∪ [257, 295]∪
[513, 568]∪ [1025, 1105]∪ [2049, 2165], we have t(G) = dlog2 e(G)e.

In the remaining part of this paper, we employ Damaschke’s techniques towards

Conjecture 1. For a graph G, denote by δ(G) the minimum degree of a vertex in
G.

Lemma 5. If G is a bipartite graph with δ(G) ≥ n, then e(G) ≥ n2.

Proof. The lemma follows from the fact that any part of the vertex set of G has

at least n vertices and any vertex is of degree at least n.

Lemma 6. If n2 − 1 ≤ b < (n + 1)2 − 1 and a = b− n + 1, then any bipartite

graph G with e(G) ≥ a has an induced subgraph H with a ≤ e(H) ≤ b.

Proof. Choose an induced subgraph H of G with as few vertices as possible

such that a ≤ e(H). Assume e(H) ≥ b + 1. By the choice of H , for any vertex
x of degree δ(H) in V (H), we have e(H − x) ≤ a − 1 < b + 1 ≤ e(H), which
implies that

δ(H) = degH(x) = e(H)− e(H − x) ≥ b − a + 2 = n + 1.

Assume that δ(H) = n + i, where i ≥ 1. Then, according to Lemma 5, e(H) ≥
(n + i)2. Therefore,

e(H − x)= e(H)− δ(x) ≥ (n + i)2 − (n + i) ≥ n2 + n

= (n + 1)2 − 1 − n > b− n = a − 1,

a contradiction. Hence a ≤ e(H) ≤ b as desired.

Lemma 7. Suppose vertices x and y are in the same part of a bipartite graph

G. If degG(x)+degG(y) ≥ 2m, then G has an induced subgraph with exactly 2m
edges.

Proof. Suppose H is the subgraph of G induced by C ∪ {x, y}, where C is the

set of all neighbors of x and y. As
∑

v∈C degH(v) = degG(x) + degG(y) ≥ 2m

and degH(v) is 1 or 2 for any vertex v in C, there is a subset D ⊆ C such that∑
v∈D degH(v) = 2m. Hence D ∪ {x, y} induces a subgraph with exactly 2m

edges.

Theorem 8. Conjecture 1 is valid for k ≤ 4.
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Proof. The theorem is clearly true for k ≤ 1. Now consider a bipartite graph
G of 2k vertices for 2 ≤ k ≤ 4. It is sufficient to prove that G has an induced

subgraph with 2k−1 edges. By Lemma 7, we may assume

(∗) degG(x) + degG(y) < 2k−1

for any two vertices x and y in the same part of G.

This in turn implies that for 2 ≤ k ≤ 3 every vertex of G has degree at most

two, which allows the existence of an induced subgraph of 2k−1 edges. So now

consider the case of k = 4.
According to (∗), any part of G has at most one vertex of degree at least 4.

Furthermore, either there is some part in which there are some vertices whose degree

sum is 8, or else the degree sequence of each part is (4, 3, 3, 3, 3) or (3, 3, 3, 3, 3, 1).
For the former case, those vertices of degree sum 8 together with their neighbors
induce a subgraph of 8 edges. For the later case, choose a vertex x in part A with

exactly 3 neighbors y1, y2, y3 in B. Then, choose a vertex z in B − {y1, y2, y3}
with exactly 3 neighbors w1, w2, w3 in A − {x}. At least one of w1, w2, w3, say

w1, is of degree 3. Then G− {x, z, w1} is an induced subgraph of G with exactly

8 edges.

Theorem 9. f(k + 1) ≥ 2f(k) + 1 − b
√

f(k) + 1c.

Proof. Suppose n2−1 ≤ f(k) < (n+1)2−1, i.e., n = b
√

f(k) + 1c. We only
need to show that for any bipartite graph G with 2f(k)+1−n edges, t(G) ≤ k+1.
Choosing b = f(k) and applying Lemma 6, we infer thatG has an induced subgraph
H with

f(k) + 1 − n ≤ e(H) ≤ f(k).

And hence

f(k) + 1 − n ≤ e(G − E(H)) ≤ f(k).

Therefore, t(H) ≤ k and t(G − E(H)) ≤ k, which imply

t(G) ≤ 1 + max{t(H), t(G− E(H))} ≤ k + 1.

This completes the proof of the theorem.

To estimate a good lower bound for f(k) by using the above theorem, we
consider the sequence {bk : k ≥ 4} defined by b4 = 16 and

bk = 2bk−1 + 1 − b
√

bk−1 + 1c

for k ≥ 5. It is clear that f(k) ≥ bk for k ≥ 4. Note that

b5 = 2 · 16 + 1 − b
√

16 + 1c = 29.
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Lemma 10. For any k ≥ 5, we have bk + 1 ≤ 15 · 2k−4.

Proof. First, b5 +1 = 29+1 = 15 ·25−4. Suppose k ≥ 5 and bk +1 ≤ 15 ·2k−4

holds. Then

bk+1 + 1 = 2bk + 1 − b
√

bk + 1c + 1 ≤ 2bk + 2 ≤ 2(15 · 2k−4) = 15 · 2(k+1)−4

and so the lemma follows from induction.

Theorem 11. For k ≥ 5, we have bk ≥ 2k−1 + 2k−3 + 2k−6 + 19 · 2
k−7
2 − 1.

Proof. The theorem is true for k = 5 as b5 = 29 = 25−1 + 25−3 + 25−6 + 19 ·
2

5−7
2 − 1. Suppose k ≥ 6 and the theorem is true for k − 1. Then

bk = 2bk−1 + 1 − b
√

bk−1 + 1c (by the definition of bk)

≥ 2bk−1 + 1 −
√

15 · 2
k−5

2 (by Lemma 10)

≥ 2(2k−2 + 2k−4 + 2k−7 + 19 · 2
k−8
2 − 1) + 1 −

√
15 · 2

k−5
2

(by the induction hypothesis)

= 2k−1 + 2k−3 + 2k−6 + (19
√

2 − 2
√

15)2
k−7
2 − 1

≥ 2k−1 + 2k−3 + 2k−6 + 19 · 2
k−7
2 − 1 (since 19

√
2 − 2

√
15 > 19).

The theorem then follows

Corollary 12. If G is a bipartite graph with 2k−1 < e(G) ≤ 2k−1 + 2k−3 +
2k−6 + 19 · 2

k−7
2 − 1 and k ≥ 5, then t(G) = dlog2 e(G)e.
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