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Dedicated to Professor Kôzô Yabuta on his sixtieth birthday

Abstract. We consider the best approximation by projections in Banach spaces

under certain suitable conditions. Furthermore, applications are discussed for

multiplier operators and convolution type operators associated with strongly

continuous families of bounded linear operators as well as for homogeneous

Banach spaces which include the classical function spaces, as particular cases.

1. INTRODUCTION

Let X be a Banach space with norm ‖ · ‖, and let B[X ] denote the Banach
algebra of all bounded linear operators of X into itself with the usual operator

norm, which will be denoted by the same symbol ‖ · ‖. Let Z denote the set of all
integers, and let P = {Pj : j ∈ Z} be a sequence of projection operators in B[X ]
satisfying the following conditions:

(P-1) P is orthogonal, i.e., PjPn = δj,nPn for all j, n ∈ Z, where δj,n denotes

Kronecker’s symbol.

(P-2) P is fundamental, i.e., the linear span of the set ∪j∈ZPj(X) is dense in X .

(P-3) P is total, i.e., if f ∈ X and Pj(f) = 0 for all j ∈ Z, then f = 0.

Let N be the set of all nonnegative integers. For each n ∈ N, Mn stands for

the linear span of the set {Pj(X) : |j| ≤ n}, which is a closed linear subspace of
X . Let Tn denote the set of all bounded linear operators T of X into Mn such

that T (f) = f for all f ∈ Mn. In other words, Tn is the set of all bounded linear

projections of X onto Mn.
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In this paper, we consider the best approximation by operators in Tn under

certain suitable conditions. Moreover, applications are discussed for multiplier op-

erators (cf. [1, 4, 5, 11]) and convolution type operators associated with strongly

continuous families of operators in B[X ] (cf. [4]) as well as for homogeneous
Banach spaces (cf. [2, 4, 8, 12]), which include the Banach space C2π of all

2π-periodic, continuous functions f on the real line R with the norm

‖f‖∞ = max{|f(t)| : |t| ≤ π}

and the Banach space Lp
2π of all 2π-periodic, pth power Lebesgue integrable func-

tions f on R with the norm

‖f‖p =
( 1

2π

∫ π

−π

|f(t)|pdt
)1/p

(1 ≤ p < ∞),

as special cases.

For the general theory of the best approximation in normed linear spaces, we

refer to [10].

2. BEST APPROXIMATION BY PROJECTIONS

Let (Ω, µ) be a probability measure space. Let T = {Tt : t ∈ Ω} and U =
{Ut : t ∈ Ω} be uniformly bounded families of operators in B[X ] such that for all
f ∈ X and all T ∈ B[X ], the mapping t 7→ TtTUt(f) is strongly µ-measurable on
Ω. For any T ∈ B[X ], we define

ΦT (f) = ΦT (T, U; f) =
∫

Ω
TtTUt(f) dµ(t) (f ∈ X),

which always exists as a Bochner integral in X . Then ΦT belongs to B[X ] and the
uniform boundedness of T and U yields

‖ΦT ‖ ≤ AB‖T‖,

where

A = sup{‖Tt‖ : t ∈ Ω} < ∞(1)

and

B = sup{‖Ut‖ : t ∈ Ω} < ∞.(2)

From now on we suppose that the following additional conditions

TtPj = PjTt for all j ∈ Z, t ∈ Ω,(3)
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UtPj = PjUt for all j ∈ Z, t ∈ Ω,(4)

and

TtUt = I for all t ∈ Ω,(5)

where I is the identity operator on X .

Lemma 2.1. Let T ∈ B[X ]. If TtT = TTt or UtT = TUt for all t ∈ Ω, then
ΦT = T .

Proof. Let f ∈ X and suppose that TtT = TTt for every t ∈ Ω. Then by (5),
we have

ΦT (f) =
∫

Ω
(TTt)Ut(f) dµ(t) =

∫

Ω
TI(f) dµ(t) = T (f).

The case of UtT = TUt is similar.

For each n ∈ N, we define

Sn =
n∑

j=−n

Pj ,

which belongs to Tn. Then (3) and (4) imply

SnTt = TtSn, SnUt = UtSn (n ∈ N, t ∈ Ω).(6)

Lemma 2.2. If T ∈ Tn, then ΦT ∈ Tn.

Proof. Let f ∈ X . Then we have

TUt(f) = Sn(TUt(f)) (t ∈ Ω),

and so (6) gives

ΦT (f)=
∫

Ω
Tt(Sn(TUt(f))) dµ(t) =

∫

Ω
Sn(TtTUt(f)) dµ(t)

= Sn

(∫

Ω
TtTUt(f) dµ(t)

)
= Sn(ΦT (f)).

Therefore, ΦT maps X into Mn. Also, if f ∈ Mn, then (6) gives

Ut(f) = Ut(Sn(f)) = Sn(Ut(f)),
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and so T (Ut(f)) = T (SnUt(f)) = SnUt(f) = Ut(f). Thus by (5), we have

ΦT (f)=
∫

Ω
Tt(TUt(f)) dµ(t)

=
∫

Ω
(TtUt(f)) dµ(t) =

∫

Ω
I(f) dµ(t) = f (f ∈ Mn).

For each n ∈ N, we define

T∗
n = {T ∈ Tn : ΦT Pj = 0 for all j ∈ Z, |j| > n}.

By (P-1), (6) and Lemma 2.1, Sn belongs to T∗
n.

Lemma 2.3. If T ∈ T∗
n, then ΦT = Sn.

Proof. Let T ∈ Tn and suppose that

ΦT Pj = 0 whenever j ∈ Z, |j| > n.(7)

Since ΦT and Sn are continuous linear operators on X , it will suffice to show that
ΦT (Pj(f)) = Sn(Pj(f)) for all f ∈ X and all j ∈ Z because of Condition (P-2). If
|j| ≤ n, then Sn(Pj(f)) = Pj(f) and by Lemma 2.2, we have ΦT (Pj(f)) = Pj(f).
If |j| > n, then Condition (P-1) and (7) give

Sn(Pj(f)) =
n∑

k=−n

Pk(Pj(f)) =
n∑

k=−n

δk,jPj(f) = 0 = ΦT (Pj(f)).

We are now in a position to establish the following main result.

Theorem 2.4. Let S be an operator in B[X ] such that SUt = UtS or STt =
TtS for all t ∈ Ω. Then we have

‖S − Sn‖ ≤ AB inf{‖S − T‖ : T ∈ T∗
n}.(8)

In particular, if AB ≤ 1, then

‖S − Sn‖ = min{‖S − T‖ : T ∈ T∗
n},

which implies that Sn is an operator of best approximation to S from T∗
n.

Proof. Suppose that SUt = UtS for all t ∈ Ω. Let f ∈ X and T ∈ T∗
n. Then

by Lemma 2.3 and (5), we have

(S − Sn)(f)= (S − ΦT )(f) =
∫

Ω

(S − TtTUt)(f) dµ(t)

=
∫

Ω
(TtUtS − TtTUt)(f) dµ(t) =

∫

Ω
(TtSUt − TtTUt)(f) dµ(t)

=
∫

Ω
(Tt(S − T )Ut)(f) dµ(t) = ΦS−T (f).
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Therefore, we obtain

‖S − Sn‖ = ‖ΦS−T ‖ ≤ AB‖S − T‖,

which yields the desired inequality (8). The case of STt = TtS is similar.

Corollary 2.5. Let α be a scalar. Then

‖αI − Sn‖ ≤ AB inf{‖αI − T‖ : T ∈ T∗
n}.

In particular, if AB ≤ 1, then

‖αI − Sn‖ = min{‖αI − T‖ : T ∈ T∗
n}.

Let V = {Vt : t ∈ Ω} be a uniformly bounded family of operators in B[X ]
such that for each f ∈ X , the mapping t 7→ Vt(f) is strongly µ-measurable on Ω
and let χ be a µ-integrable function on Ω. Then we define the convolution type

operator WV,χ associated with V and χ by

WV,χ(f) =
∫

Ω

χ(t)Vt(f) dµ(t) (f ∈ X),(9)

which exists as a Bochner integral in X (cf. [4]). Clearly, WV,χ belongs to B[X ]
and

‖WV,χ‖ ≤ C

∫

Ω

|χ(t)| dµ(t),

where

C = sup{‖Vt‖ : t ∈ Ω} < ∞.(10)

Corollary 2.6. Suppose that VuUt = UtVu or VuTt = TtVu for all t, u ∈ Ω.

Then the claim of Theorem 2.4 holds for S = WV,χ.

3. APPLICATIONS

For any f ∈ X , we associate its (formal) Fourier series expansion

f ∼
∞∑

j=−∞
Pj(f).(11)

An operator T ∈ B[X ] is called a multiplier operator onX if there exists a sequence

{τj : j ∈ Z} of scalars such that for every f ∈ X ,

T (f) ∼
∞∑

j=−∞
τjPj(f),
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and the following notation is used:

T ∼
∞∑

j=−∞
τjPj

(cf. [1, 4, 5, 11]). Let M [X ] denote the set of all multiplier operators on X , which

is a commutative closed subalgebra of B[X ] containing I and Sn, which is the nth
partial sum operator associated with the Fourier series (11).

From now on, letΩ be a separable topological space and µ a probability measure

on Ω.
Let T = {Tt : t ∈ Ω} and U = {Ut : t ∈ Ω} be families of operators in M [X ]

satisfying (1) and (2) and having the expansions

Tt ∼
∞∑

j=−∞
ej(t)Pj (t ∈ Ω)(12)

and

Ut ∼
∞∑

j=−∞
fj(t)Pj (t ∈ Ω),(13)

where {ej : j ∈ Z} and {fj : j ∈ Z} are sequences of scalar-valued continuous
functions on Ω such that

ej(t)fj(t) = 1 for all j ∈ Z, t ∈ Ω.(14)

By (12), we have

lim
t→u

‖Tt(g)− Tu(g)‖ = lim
t→u

|ej(t) − ej(u)| ‖g‖ = 0 (u ∈ Ω)

for every g ∈ Pj(X), j ∈ Z. Therefore, the mapping t 7→ Tt(f) is strongly
continuous on Ω for each f ∈ X , since P is fundamental and T is uniformly

bounded. Similarly, the mapping t 7→ Ut(f) is strongly continuous on Ω for each

f ∈ X . Therefore, the mapping t 7→ TtTUt(f) is strongly continuous on Ω. Also,
Conditions (3), (4) and (5) hold because of (12), (13), (14) and Condition (P-3).

Consequently, all the results obtained in the preceding section hold under the above

setting.

Now, we suppose that

∫

Ω
ej(t)fk(t) dµ(t) = 0 whenever j 6= k.(15)

Lemma 3.1. T∗
n = Tn.
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Proof. It will suffice to show that every T ∈ Tn satisfies (7). Let j ∈ Z, |j| > n

and f ∈ X . Then by (12), (13) and (15), we have

ΦT (Pj(f))=
∫

Ω
TtTUt(Pj(f)) dµ(t)

=
∫

Ω
(TtT )(PjUt(f)) dµ(t) =

∫

Ω
(TtT )(fj(t)Pj(f)) dµ(t)

=
∫

Ω
fj(t)Tt(TPj(f)) dµ(t) =

∫

Ω
fj(t)Tt(Sn(TPj(f))) dµ(t)

=
∫

Ω

fj(t)Sn(TtTPj(f)) dµ(t) =
n∑

k=−n

∫

Ω

fj(t)Pk(TtTPj(f)) dµ(t)

=
n∑

k=−n

∫

Ω
fj(t)ek(t)Pk(TPj(f)) dµ(t)

=
n∑

k=−n

{∫

Ω
fj(t)ek(t) dµ(t)

}
Pk(TPj(f)) = 0 (|j| > n),

which implies (7).

Theorem 3.2. Let S ∈ M [X ]. Then

‖S − Sn‖ ≤ AB inf{‖S − T‖ : T ∈ Tn}.

In particular, if AB ≤ 1, then Sn is an operator of best approximation to S from
Tn.

Proof. Since S commutes with Ut and Tt for every t ∈ Ω, this follows from
Lemma 3.1 and Theorem 2.4.

Let V = {Vt : t ∈ Ω} be a family of operators in M [X ] satisfying (10) and
having the expansions

Vt ∼
∞∑

j=−∞
vj(t)Pj (t ∈ Ω),(16)

where {vj : j ∈ Z} is a sequence of scalar-valued continuous functions on Ω. Then

the convolution type operator WV,χ given by (9) belongs to M [X ] and

WV,χ ∼
∞∑

j=−∞
cj(V, χ)Pj ,(17)
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where

cj(V, χ) =
∫

Ω

χ(t)vj(t) dµ(t) (j ∈ Z).

Thus we have the following corollary.

Corollary 3.3. The claim of Theorem 3.2 holds for S = WV,χ.

Theorem 3.4. Let α be a scalar. Then we have

‖αI − Sn‖ ≤ AB inf{‖αI − T‖ : T ∈ Tn}.

In particular, if AB ≤ 1, then

‖αI − Sn‖ = min{‖αI − T‖ : T ∈ Tn}.

Proof. This follows from Lemma 3.1 and Corollary 2.5.

Remark 1. Suppose that

A = sup{‖Tt‖ : t ∈ R} < ∞

and

Tt ∼
∞∑

j=−∞
eλjtPj (t ∈ R),(18)

where {λj : j ∈ Z} is a sequence of scalars. Then T = {Tt : t ∈ R} becomes a
strongly continuous group of operators in B[X ] and

G(f) ∼
∞∑

j=−∞
λjPj(f) (f ∈ D(G)),

where G is the infinitesimal generator of T with domain D(G) [4, Proposition 2].
Let Ω = [a, b] ⊆ R. Then in view of (14) and (18), (13) reduces to

Ut ∼
∞∑

j=−∞
e−λjtPj (t ∈ [a, b]).

Also, typical examples of the sequences {ej} and {fj} satisfying (14) and (15)
are given by

ej(t) = e−imjϕ(t), fj(t) = eimjϕ(t) (t ∈ [a, b], j ∈ Z),
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where

ϕ(t) =
2π

b− a

(
t − 1

2
(b− a)

)
(t ∈ [a, b])

and {mj : j ∈ Z} is a sequence of integers such that mj 6= mk whenever j 6= k.
Next, we consider a fundamental, total, biorthogonal system G = {gj , g

∗
j}j∈Z,

where {gj : j ∈ Z} and {g∗j : j ∈ Z} are sequences of elements in X and X∗

(the dual space of X), respectively (cf. [3, 9]). That is, G satisfies the following

conditions:

(G-1) G is fundamental, i.e., the linear span of {gj : j ∈ Z} is dense in X .

(G-2) G is total, i.e., if f ∈ X and g∗j (f) = 0 for all j ∈ Z, then f = 0.

(G-3) G is biorthogonal, i.e., g∗j (gn) = δj,n for all j, n ∈ Z.

Then we define

Pj(f) = g∗j (f)gj (j ∈ Z, f ∈ X),

which satisfies Conditions (P-1), (P-2) and (P-3). Therefore, Theorems 3.2 and 3.4

and Corollary 3.3 are applied in this setting.

Now, we restrict ourselves to the case where X is a homogeneous Banach space

(cf. [2, 4, 8, 12]). That is, X is a space which satisfies the following conditions:

(H-1) X is a linear subspace of L1
2π and it is a Banach space with norm ‖ · ‖X .

(H-2) X is continuously embedded in L1
2π, i.e., there exists a constant K > 0 such

that

‖f‖1 ≤ K‖f‖X for all f ∈ X.

(H-3) The right translation operator Tt defined by

Tt(f)(·) = f(· − t) (f ∈ X)

is isometric on X for each t ∈ R.
(H-4) For each f ∈ X , the mapping t 7→ Tt(f) is strongly continuous on R.
Typical examples of homogeneous Banach spaces are C2π and Lp

2π, 1 ≤ p < ∞.
For other examples, see [4] (cf. [2, 8, 12]).

Now take

(Ω, µ) =
(

[−π, π],
1
2π

dt

)
, ej(t) = e−ijt, fj(t) = gj(t) = eijt,

g∗j (f) =
1
2π

∫ π

−π

f(t)e−ijt dt,

which is the jth Fourier coefficient of f (cf. Remark 1). Then Tn is the set of all

bounded linear projections of X onto the closed linear subspace of X consisting of
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all trigonometric polynomials of degree at most n. Also, we have Ut = T−t for all

t ∈ [−π, π] and A = B = 1. Let V = T and χ ∈ L1
2π. Then we have

WV,χ(f)(x) =
1
2π

∫ π

−π

χ(t)f(x − t) dt = (χ ∗ I)(f)(x) (f ∈ X).

Consequently, by Corollary 3.3 and Theorem 3.4 we have the following:

Theorem 3.5. Let χ ∈ L1
2π and let α be a scalar. Then we have:

‖χ ∗ I − Sn‖ = min{‖χ ∗ I − T‖ : T ∈ Tn},(a)

‖αI − Sn‖ = min{‖αI − T‖ : T ∈ Tn}.(b)

Here, we mention several concrete examples of χ in Theorem 3.5 (a), which

induce the classical important approximation processes of convolution operators (cf.

[1, 4, 5, 6, 7, 11]).

1◦ (Fejér). Let α > 0, m ∈ N and

χ(t) = Fm,α(t) =
m∑

j=−m

A
(α)
m−|j|

A
(α)
m

eijt,

where

A(β)
m =

(
m + β

m

)
=

(β + 1)(β + 2) · · ·(β + m)
m!

, β > −1.

2◦ (Riesz). Let m ∈ N, κ, λ > 0 and

χ(t) = rm,κ,λ(t) =
m∑

j=−m

(
1 −

∣∣∣ j

m + 1

∣∣∣
κ)λ

eijt.

3◦ (de la Vallée-Poussin). Let m ∈ N and

χ(t) = vm(t) =
(m!)2

(2m)!

(
2 cos

1
2
t
)2m

.

4◦ (Jackson). Let m ∈ N \ {0}, r ∈ N \ {0, 1} and

χ(t) = jm,r(t) = cm,r

{sin 1
2mt

sin 1
2t

}2r
,

where the normalizing constant cm,r > 0 is taken in such a way that

ĵm,r(0) =
1
π

∫ π

0
jm,r(t) dt = 1.
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5◦ (Fejér-Korovkin). Let m ∈ N and

χ(t) = Km(t) = Λm

∣∣∣
m∑

j=0

λm(j)eijt
∣∣∣
2
,

where

λm(j) = sin
( j + 1

m + 2

)
π (j = 0, 1, 2, . . . , m), Λm =

( m∑

j=0

λ2
m(j)

)−1
.

6◦ (Gauss-Weierstrass). Let λ > 0 and

χ(t) = wλ(t) =
√

π

λ

∞∑

j=−∞
exp

{
−(t − 2πj)2

4λ

}
=

∞∑

j=−∞
e−λj2

eijt.

7◦ (Poisson). Let 0 ≤ r < 1 and

χ(t) = pr(t) = 1 + 2
∞∑

j=1

rj cos jt =
1− r2

1 − 2r cos t + r2
.

Finally, it should be noticed that other applications can be devoted to certain

negative problems of estimetes for the degree of the best approximation, and we

omit the details (cf. [6, 7]).
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