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REMOTAL SETS REVISITED

Marco Baronti and Pier Luigi Papini

Abstract. Farthest point theory is not so rich and developed as nearest point
theory, which has more applications. Farthest points are useful in studying the
extremal structure of sets; see, e.g., the survey paper [14]. There are some
interactions between the two theories; in particular, uniquely remotal sets in
Hilbert spaces are related to the old open problem concerning the convexity
of Chebyshev sets.

The aim of this paper is twofold: first, we indicate characterizations of
inner product spaces and of infinite-dimensional Banach spaces, in terms of
remotal points and uniquely remotal sets. Second, we try to update the survey
paper [15], concerning uniquely remotal sets.

1. INTRODUCTION AND DEFINITIONS

Let (X, ‖.‖) be a real Banach space; set, for x ∈ X and r ≥ 0: B(x, r) =
{y ∈ X ; ‖y − x‖ ≤ r}; B(X) = B(Θ, 1); S(X) = {x ∈ X ; ‖x‖ = 1}. Given
a (nonempty) bounded set A ⊂ X , denote by δ(A) its diameter; throughout the
paper, we shall always understand that A is nonempty and bounded. For x ∈ X ,
set r(A, x) = sup{‖x− a‖; a ∈ A}; F (A, x) = {a ∈ A; ‖x− a‖ = r(A, x)}. The
points in F (A, x) (if they exist) are called farthest points to x from A. We say that
A is remotal (uniquely remotal) if for every x ∈ X , F (A, x) 6= Ø (respectively,

F (A, x) is a singleton). Given A, set FA : x 7→ F (A, x); this multivalued map,
whose codomain is the set of remotal points, is the farthest point map. We also set

r(A) = inf{r(A, x); X ∈ X} (radius of A).

A center of A is a point c (if it exists) such that r(A, c) = r(A).
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Notwithstanding many partial results, no general solution has been given to the

following problem:

(Pb) Must a uniquely remotal set, in a Banach space X , be a singleton?

In particular, note that many results concerning a positive solution to (Pb) are known

(see [15, §3]); some other results, concerning product spaces, have been given in
[9] for `1 products, and in [12] for `∞ products.

In Section 2, we shall indicate results concerning farthest points in spaces with

an inner product; we show that a characterization of centers, well-known in inner

product spaces, in fact characterizes these spaces. In Section 3, we characterize

infinite-dimensional Banach spaces in terms of farthest points. In Section 4, we

indicate some facts concerning the continuity of the farthest point map.

As a starting point, we use the survey article [15] concerning uniquely remotal

sets; we refer it for older results, while we try to update that paper by indicating

here relevant further results in the area.

2. EUCLIDEAN AND HILBERT SPACES

In this section, we assume that the norm of X is derived from an inner product.

The following result is well-known:

Theorem 2.1. In a Hilbert space X, let c be the (unique) center of the set A.
Then we have:

(p) r2(A) + ‖x− c‖2 ≤ r2(A, x) for each x ∈ X .

This result was first indicated only for uniquely remotal sets (see [4, Proposition

1]). In [16, Theorem 5], it was proved by only assuming that A is remotal, and

it was noticed that (p) is also sufficient that c be a center; in fact, it is clear that,

in any space X , (p) implies that c is the unique center of A. A general proof of
Theorem 2.1 appears in [19, Lemma 3.1], then again in [5, Theorem 1]; in the

last paper an example is given, in a two-dimensional smooth (non-strictly convex)

space, showing that (p) is not a necessary condition for centers in non-Euclidean

spaces. Finally, note that in [15] and in [5] the inequality (p) is considered only
for points x ∈ B(c, r(A)) (which is not a true restriction).

In fact, the result says that the characterization of centers by (p) is only valid in

Hilbert spaces, thus answering a question raised in [4, p. 1316], then also in [18,

p. 55].

Theorem 2.2. Let X be a normed space; then X is an inner product space if

and only if for any nonempty, bounded set A with a center c, (p) is true.
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Proof. The “only if” part is known. We prove the “if” part. We assume that

X is not an inner product space and we construct a compact set A with a center c,
which does not satisfy (p).

According to [1, (6.9′′)], under our assumption on X , there exists a pair x, y
such that ‖x + y‖ = ‖x − y‖ and ‖x + y‖2 + ‖x − y‖2 < 2(‖x‖2 + ‖y‖2); by
scaling, and eventually exchanging x and y, we can assume ‖x‖ ≤ 1 = ‖y‖. Now
let A = {−y, y, x, Θ}. We have r(A) = 1, Θ is a center of A and y is farthest to

x from A. But

r2(A)+ ‖x−Θ‖2 = ‖x‖2 + 1 >
1
2
(‖x + y‖2 + ‖x− y‖2) = ‖x− y‖2 = r2(A, x),

so (p) is not satisfied. This proves the theorem.

We refer to [2, p. 365] for a simple example of a bounded, closed convex set A

in a Hilbert space, such that for its center c we have A ∩ B(c, r(A)) = Ø.
The following problem was studied in [10]: Given a compact, convex subset of

a Euclidean space En, construct a minimal uniquely remotal set containing A.
Monotonicity properties of the map FA in Hilbert spaces were studied in [21,

§6]. In [16, Proposition 3], it was proved that in inner product spaces, FA is

pseudocontractive if A is uniquely remotal.

3. CHARACTERIZATIONS OF INFINITE-DIMENSIONAL BANACH SPACES

In finite-dimensional Banach spaces, a simple compactness argument shows that

bounded closed sets are remotal. In infinite-dimensional spaces (even if they have

some nice properties), this is not true.

We recall that some general properties of X can be characterized in terms

of farthest points; for example, it is easy to see that X is strictly convex if and

only if B(X) is uniquely remotal with respect to X-{Θ} (see [3], where also other
geometrical properties of the norm are characterized by using uniquely remotal sets).

In some classes of spaces, it is known that “most” points (e.g., in the sense of

categories) admit farthest points (see, e.g., [11, §3]); but there are also spaces where
bounded closed convex bodies A exist such that F (A, x) = Ø for every x ∈ X (in

that case A is said to be antiremotal). For antiremotal sets, see also [6].

As proved in [20], every infinite-dimensional Banach space contains a convex

body A such that Θ ∈ int(A) and pA(x − y) < sup{pA(ξ − η); ξ, η ∈ A} for
every x, y ∈ A, pA being the Minkowski functional of A.

Examples of sets lacking some good properties concerning remotality are scat-

tered in the literature. The next result (which generalizes [7, Theorem 1] shows that

some of them have indeed a general character,

Theorem 3.1. The following properties are equivalent:
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(a) dim(X) < ∞;
(b) if A is a bounded closed set with a center c such that F (A, c) is a singleton,

then A must be a singleton.

Proof. (b) ⇒ (a): We shall prove that not (a) ⇒ not (b).

By assuming dim(X) = ∞, we construct a closed set A, not a singleton, as in
(b). Since S(X) is not compact, there exists a sequence {xn} ⊂ S(X) such that
‖xi − xj‖ ≥ 1/2 for i 6= j. Set A = {x1} ∪ {±(1 − (1/n))xn; n ≥ 2}; this set is
bounded and closed (it is a discrete set). We have r(A) = 1, Θ is a center of A,

and F (A, Θ) = {x1}.
(a) ⇒ (b) (this generalizes Theorems 3.2 and 3.31 in [15]). Assume that

dim(X) < ∞. Let the set A have a center c such that F (A, c) is a singleton;
without loss of generality, we can assume that c = Θ. Moreover, if A is not a

singleton, we can also assume r(A) = 1, and then, if F (A, Θ) = {q}, we have
‖Θ − q‖ = 1. The set Aε = {a ∈ A; 1 − ε ≤ ‖a‖ ≤ 1} is closed and bounded,
so it is compact; moreover (see, e.g., [8, Lemma 4.6]), r(Aε) = 1. Now set

Gε = Aε ∩ {a ∈ A; ‖a − q‖ ≥ 1/2}. Again, Gε is bounded and nonempty for

any ε > 0 (otherwise, Aε ⊂ {a ∈ A; ‖a − q‖ < 1/2} would imply r(Aε) ≤ 1/2).
For any n ∈ W , we take gn ∈ G1/n ⊂ A1/n so that ‖gn‖ ∈ [1 − ε, 1] and
‖gn − q‖ ≥ 1/2. Since {gn} is bounded, we can find a convergent subsequence
{gnk

}, say, gnk
→ g0 ∈ ∩∞

n=1G1/n ⊂ A. Then ‖go‖ = 1 and ‖g0− q‖ ≥ 1/2. This
implies that g0 6= q, and then F (A, Θ) would not be a singleton.

Remark 3.2. In other terms, our proof that (b) ⇔ (a) in Theorem 3.1 shows

that dim(X) = ∞ if and only if given a bounded, closed set A which is not a

singleton, if c is a center of A, then F (A, c) is either empty, or it contains at least
two different points. Moreover (see [13, Theorem 2.2]), (a) is also equivalent to:

(c) every bounded, closed set A is remotal.

Since A is remotal if and only if co(A) is remotal, we can also indicate the following
equivalent condition:

(c′) every bounded closed and convex set A is remotal.
This shows that if X is reflexive (and dim(X) = ∞), then there exists in X a

weakly compact, nonremotal set; but some reflexive spaces contain also antiremotal

sets (see [6]; compare with [14, p. 62]).

4. THE ROLE OF CENTERS VERSUS UNIQUE REMOTENESS

Continuity and differentiability properties of the map FA have been considered

with respect to its single-valuedness; see, e.g., [11, Theorem 3.1].

Note that y ∈ F (A, x) always implies y ∈ F (A, x + t(y − x)) for all t < 0.
Moreover, whenX is strictly convex, under the same assumption we can see that for
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t < 0, F (A, x+ t(y−x)) = {y}, and so r(A, x+ t(y−x)) = r(A, x)+ |t| ·‖y−x‖.
For another result in strictly convex spaces, see [21, Proposition 3.1].

Several results concerning a (positive) solution to (Pb), in terms of continuity

of FA, have been proved; see, e.g., [15, Theorems 3.12 and 3.14]. In fact, sectional

continuity of FA suffices, and for remotal sets such continuity can be limited to

single points (see [17, Corollary 3]). Moreover, concerning uniquely remotal sets

with a center c, continuity at c plays a key role, and it is important to look at what

happens along [c, FA(c)]. In general (see [17, Theorem 1]), continuity of FA at a

point x can be studied considering only its restriction to the set

Ex = {y ∈ X ; r(A, y) ≥ r(A, x)}.

If we assume that {y1, y2} ⊂ F (A, x) with y1 6= y2, then F cannot be continuous

at x (take sequences x + (1/n)(x− y1), x + (1/n)(x− y2) for n large).

The following conditions have been used in this context. If x is a remotal point
of a set A, not a singleton, let:

Ex : u ∈ [x, FA(x)] implies u ∈ Ex (see [15, p.6]),

and say that P (x, d) is true for some d, 0 < d < 1, if y ∈ F (A, x) implies

y ∈ F (A, x + t(y − x)) for 0 < t ≤ d (see [7]).

Note that Ex and P (x, d) are mutually exclusive, and P (x, d) implies sectional
continuity of FA at x along the ray containing [x, FA(x)]. The condition Ex implies

that r(A, x) has no directional derivative. According to the results in [21, p. 86],
under some geometric assumptions on X (for example, X is a Hilbert space),

FA must be discontinuous at x. Moreover, according to [15, Theorem 3.25 (iii)],

in Hilbert spaces uniquely remotal sets which are not singletons present a strong

discontinuity at centers.

It is known (see [15, Theorem 3.14]) that a uniquely remotal set A must be a

singleton if FA is continuous at a center c of A. More generally, the same conclusion

holds under the assumption that FA is continuous at a point x satisfying Ex.

Here are some remarks concerning P (x, d):
- P (c, d) cannot be true if c is a center, F (A, c) = Ø, A is not a singleton and
d > 0 (we would obtain r(A, c + d(y − c)) = r(A, c)-d‖y − c‖ for y ∈ F (A, c)).
In other words, if P (x, d) holds for some x and some d > 0, then x is not a center
of A.

- If X is strictly convex, then P (x, d) cannot be true if F (A, x) contains at least
two elements y1, y2 (set z = x + d(y1 − x), 0 < d < 1; y1 ∈ F (A, z) implies that
y1 is the unique farthest point to x = z + d(x − y1) = z + (d/(1 − d)) (z − y1)
since d/(1− d)) > 1; thus y2 /∈ F (A, z)).
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Note that in the above statement, instead of assuming P (x, d) we could assume that
d > 0 depends on the point y ∈ F (A, x).

To conclude, we indicate the following result, which is a slightly stronger version

of Theorem 9 in [7]:

Proposition 4.1. Let A be a remotal set such that for some ε > 0, there exists

d > 0 for which P (y, d) is satisfied for all y ∈ X satisfying r(A, y) < r(A) + ε.
Then A must be a singleton.

Proof. Under our assumptions, let r(A) > 0 and take cd such that r(A, cd) <
r(A) · (1+ d). If qd ∈ F (A, cd), take c′ = cd + d(qd − cd). For all x ∈ A, we have

‖c′ − x‖ ≤ ‖c′ − qd‖ = ‖cd − qd‖d · r(A, cd) < r(A) + d · r(A) − d · r(A). This
absurdity proves the result.
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