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THE EDGE SPAN OF DISTANCE TWO LABELLINGS
OF GRAPHS

Roger K. Yeh∗

Abstract. The radio channel assignment problem can be cast as a graph
coloring problem. Vertices correspond to transmitter locations and their
labels (colors) to radio channels. The assignment of frequencies to each
transmitter (vertex) must avoid interference which depends on the seper-
ation each pair of vertices has. Two levels of interference are assumed in
the problem we are concerned. Based on this channel assignment prob-
lem, we proposed a graph labelling problem which has two constraints
instead of one. We consider the question of finding the minimum edge of
this labelling. Several classes of graphs including one that is important
to a telecommunication problem have been studied.

1. INTRODUCTION

Given a graph G = (V, E), an L(2, 1)-labelling of G is a nonnegative
integral function f such that |f(x)−f(y)| ≥ 2 if {x, y} ∈ E and |f(x)−f(y)| ≥
1 whenever the distance between x and y is two in G.

The motivation of studying the L(2, 1)-labelling comes from the channel
assignment problem in radio system [7], where each vertex is taken to be a
transmitter location, with the label (color) assigned to it determining the chan-
nel on which it transmits. Particularly, the available channels are uniformly
spaced in the spectrum justifying integer labellings. The assignment of fre-
quencies to each transmitter (vertex) must avoid interference which depends
on the seperation each pair of vertices has. In our problem there are two levels
of interference which correspond to two constraints in the labelling.
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There are several articles (see references [1, 3–6, 9–14]) studying the L(2, 1)-
labelling since it was proposed in [12, 6]. In these papers, most people are seek-
ing the smallest m such that there is an L(2, 1)-labelling f with max f -min
f=m, or equivalently max f=m since the minimum label is always 0. This
parameter is called the L(2, 1)-number of a graph G (or the L(2, 1) span of
G) and is denoted by λ(G). Further, [2, 4] consider generalizations of L(2, 1)-
labellings. This paper focuses on another parameter of the L(2, 1)-labelling.

Given an L(2, 1)-labelling f on G, define the L(2, 1) edge span of f ,
β(G, f) = max{|f(x) − f(y)| : {x, y} ∈ E(G)}. The L(2, 1) edge span of
G, β(G), is min β(G, f), where the minimum runs over all L(2, 1)-labellings f
on G.

In the next section we discuss some results on cycles, trees and complete
multipartite graphs. In Section 3 we pay attention to two kinds of graphs, the
triangular lattice and the square lattice, which arise from the design of planar
regions for cellular phone networks.

2. BASIC RESULTS

It is obvious that β(G) ≤ λ(G) for any graph G. If G is a complete graph
then β(G) = λ(G). However, the edge span might far less than the L(2, 1)-
number (the span). To see this, we begin with several well-known graphs.
Notice that if H is a subgraph of G then β(H) ≤ β(G).

Theorem 2.1. Let Cn be a cycle of order n ≥ 3. Then β(C3) = 4 and
β(Cn) = 3 for n ≥ 4.

Proof. It is easy to see that β(C3) = 4. Assume n ≥ 4. Let V (Cn) =
{v0, v1, · · · , vn−1}, where vi is adjacent to vi+1 for i = 0, 1, · · · , n − 2 and
vn−1 is adjacent to v0. Since the labels are nonnegative, one of the vertices
must have label 0, without loss of generality, say, v0. By the definition of the
L(2, 1)-labelling, either the label of v1 or the label of vn−1 is at least 3. Thus
the L(2, 1) edge span of Cn with n ≥ 4 is greater than or equal to 3.

On the other hand, consider the following labellings:

Case 1. n = 2k + 1 with k ≥ 2.

Label v0, v1, · · · , vk, vk+1 with 0, 2, 4, · · · , 2k, 2k + 2, respectively. Label
vn−1, vn−2, · · · , vk+2 with 3, 5, · · · , 2k − 1, respectively. This labelling is an
L(2, 1)-labelling with edge span 3. Thus β(Cn) ≤ 3.

Case 2. n = 2k with k ≥ 2.
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Label v0, v1, · · · , vk by 0, 2, 4, · · · , 2k−2, respectively and label vn−1, vn−2,
· · · , vk+1 by 3, 5, 7, · · · , 2k+1, respectively. Again, this labelling is an L(2, 1)-
labelling with edge span 3. Hence β(Cn) ≤ 3.

These results assert that the theorem holds.

Theorem 2.2. Let T be a tree with maximum degree M . Then β(T ) =
dM/2e+ 1.

Proof. Let m = dM/2e + 1. Since the maximum degree of T is M , T
contains a K1,M as a subtree. It is easy to see that the L(2, 1) edge span of
K1,M is greater than or equal to m. So β(T ) ≥ β(K1,M ) ≥ m. Next consider
the following labelling scheme. It yields the edge span m. The theorem then
follows.

Choose an arbitrary vertex of T , call it v0, and label it by x. (At this
moment we can just assume the value of x is large enough so that every label
used is nonnegative. This can be done since the number of vertices is finite.)
We visit the internal vertices of T by a BFS. Each time a vertex v is visited,
v is labeled by some y but its children are unlabeled. As v has at most M − 1
children, we can use labels in {y − 2, y + 2, · · · , y −m, y + m} to label these
children. The labelling completes when all internal vertices are visited.

Theorem 2.3. Let K = Kn1,n2,··· ,nk
be a complete k-partite graph, where

n1 ≥ n2 ≥ n3 ≥ · · · ≥ nk. Then β(K) = dn1/2e+ n2 + n3 + · · ·+ nk + k − 2.

Proof. Let t = dn1/2e + n2 + n3 + · · · + nk + k − 2. Suppose V (K) =
V1 ∪ V2 ∪ · · · ∪ Vk ∪ Vk+1, where V1 ∪ Vk+1, V2, · · · , Vk are partite sets of K,
where |V1| = dn1/2e, |Vk+1| = bn1/2c and |Vi| = nu, i = 2, 3, · · · , k. Label the
vertices in each Vj with consecutive integers such that the minimum label in
V1 is 0, and the minimum label of Vj is the maximum label of Vj−1 plus 2.
It is straightforward to check that the edge span of this labelling is t. Thus
β(K) ≤ t.

Suppose f is an L(2, 1)-labelling with β(K, f) = β(K). We shall prove
that β(K, f) ≥ t. Let v ∈ Vr and u ∈ Vs be such that f(v) = 0 and f(u) =
p = maxw∈V (K) f(w). Note that

p ≥ λ(K) =
k∑

i=1

ni + k − 2 = t + bn1/2c ≥ t.

If r 6= s, then β(K, f) ≥ p ≥ t. So, we may assume that r = s. In this
case, we in fact have that p ≥ t + bn1/2c+ 1. Let z and y be respectively, the
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maximum and minimum value of f on all vertices not in Vr.

z − y ≥
k∑

i=1

ni − nr + k − 3 = t + bn1

2
c − 1− nr

and so
(z − 0) + (p− y) ≥ 2t + 2bn1

2
c − nr ≥ 2t− 1.

Therefore, either z − 0 ≥ t or p− y ≥ t, which implies β(K, f) ≥ t.

3. TRIANGULAR LATTICE AND SQUARE LATTICE

Define vectors ε1 = (1, 0) and ε2 = (1/2,
√

3/2) in the Euclidean plane.
Then the triangular lattice Λ∆ is defined by Λ∆ = {iε1 + jε2 : i, j ∈ Z} and
the square lattice Λ∆ = Z2, wher Z is the set of integers. The graphs of Λ∆ and
Λ∆, denoted by ∆ and , respectively, are defined by V (∆) = Λ∆, E(∆) =
{uv : u, v ∈ Λ∆, dE(u, v) = 1}, V ( ) = Λ and E( ) = {uv : dE(u, v) = 1},
where dE(u, v) denotes the Euclidean distance between u and v. For brevity,
we simply call ∆ the triangular lattice and the square lattice, with the metric
induced by the respective edge sets understood. Notice that both graphs are
infinite. See Figures 1 and 2 for and ∆, respectively.

In this section we study the L(2, 1) edge spans of these two classes of
graphs. The triangular lattice is important to the radio engineer, since, if
the area of coverage (in the Euclidean plane) of each transmitter is a disk
of fixed radius r centered on the transmitter site, then placing those sites at
the vertices of a regular triangular lattice (with adjacent sites a distance r

√
3

apart) covers the whole plane with the smallest possible transmitter density
(cf. [8]). The square lattice is related to the product of two paths.

Given n, m, denote n,m the subgraph of induced by {(i, j) : 0 ≤ i ≤
n, 0 ≤ j ≤ m}. Notice that n,m is isomorphic to the product graph Pn×Pm,
where Pn and Pm are paths of length n and m, respectively. Recall that the
product G1 ×G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
with vertex set V1×V2 specified by putting (x1, y1) adjacent to (x2, y2) if and
only if (1) x1 = x2 and y1y2 ∈ E2 or (2) y1 = y2 and x1x2 ∈ E1. Without
loss of generality, we assume n ≥ m, since n,m is isomorphic to m,n. For
example, the “dark” vertices in Figure 1 induce a 3,2.

Theorem 3.1. β( ) = β( n,m) = 3, n ≥ m ≥ 1.

Proof. Since 1,1 is isomorphic to C4, by Theorem 2.1, we have β( 1,1) =
β(C4) = 3. For any n ≥ m ≥ 1, n,m contains a 1,1 as a subgraph, hence
β( ) ≥ β( n,m) ≥ β( 1,1) = 3.
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On the other hand, define a labelling f on V ( ) by f(i, j) = 2i+3j, where
f(i, j) stands for f((i, j)).
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Figure 1. The square lattice

We know whenever (i1, j1) is adjacent to (i2, j2), either |i1 − i2| = 1 and
j1 = j2, or i1 = i2 and |j1 − j2| = 1. Thus if (i1, j1) and (i2, j2) are adjacent
then |f(i1, j1)− f(i2, j2)| is either 2 or 3. If the distance between (i1, j1) and
(i2, j2) is two, then |i1− i2| = 1 = |j1− j2|, |i1− i2| = 2 and j1 = j2, or i1 = i2
and |j1 − j2| = 2. In each case |f(i1, j1) − f(i2, j2)| is never 0. Therefore,
we find that f is an L(2, 1)-labelling with edge span 3. This proves the
theorem.

In the proof above we observe that the largest label we used is 2n + 3m
which depends on the order of n,m. We like to ask “Is there an optimal
labelling with the maximum label independent of n and m?” It is unknown
for us at this moment. However we do have a “near” optimal solution to the
problem.

We call a labelling f a d-L(2, 1)-labelling of a graph G, if f is an L(2, 1)-
labelling using labels less than or equal to d. Notice that such a d-L(2, 1)-
labelling exists provided d ≥ λ(G). The L(2, 1) edge span of f is denoted by
β(G, d, f). The edge span β(G, d) = minβ(G, d, f), where the minimum runs
over all d-L(2, 1)-labellings of G. Thus β(G) = min{β(G, d) : for all possible
d}.

[14] has proved that λ(Pn × Pm) = 6 for n ≥ m ≥ 2. Translating this into
our language, we have λ( n,m) = 6 for n ≥ m ≥ 2. Next we investigate β( , d)
when d = λ( n,m) = 6.

Theorem 3.2. β( n,m, 6) = 5 for n ≥ m ≥ 2 and β( , 6) = 5.
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Proof. Define the labelling f from V ( ) to {0, 1, · · · , 6} by f(i, j) = (2i +
3j) (mod 7).
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Figure 2. The triangular lattice ∆

As in Theorem 3.1, we can verify that f is a 6-L(2, 1)-labelling with edge
span 5. Therefore β( , 6) ≤ 5. On the other hand, we can check that 5 ≤
β( 2,2, 6) ≤ β( n,m, 6) ≤ β( ). The first assertion is proved. Since the somain
of f above can be extended to the set V ( ) so that the argument is still correct,
the second assertion is obvious.

In order to investigate β(∆), we first study the following subgraph of ∆.
Let ∆m be the subgraph induced by {(i, j) : −m ≤ i ≤ 0, 0 ≤ j ≤ m and
0 ≤ i + j ≤ m for m ≥ 2} in ∆. For example, “dark” vertices in Figure 2
induce a ∆2.

Theorem 3.3. β(∆m) = 5, m ≥ 2.

Proof. Notice that V (∆) = {iε1 + jε2 : i, j ∈ Z}. For convenience we use
(i, j) to represent a vertex v = iε1 + jε2 in ∆.

First assume m ≥ 3. Define f : V (∆) → {0, 1, · · · , 5m} by f(i, j) =
−3i + 2j. Let (i1, j1) and (i2, j2) be two adjacent vertices in ∆. Then i1 = i2
and |j1− j2| = 1, j1 = j2 and |i1− i2| = 1, or (i1− i2)(j1− j2) = −1. For each
case, |f(i1, j1)− f(i2, j2)| ≥ 2. (The difference is either 2 or 3.)

We see that f is an L(2, 1)-labelling with edge span 5. On the other hand,
it suffices to find a subgraph of ∆m such that the edge span is 5. This will
provide the lower bound on β(∆m) and hence the theorem follows. Let W be
the subgraph induced by {(1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2)}. It is
isomorphic to the subgraph induced by the “dark” vertices in Figure 3. We
can show easily that W is what we need.
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Figure 3. W

The case of m = 2 can be verified directly.

Again we are interested in seeking a number d (not dependent on m) such
that β(∆m) = β(∆, d) = 5 for m ≥ 2. The following result gives us a solution
closed to the best one.

Proposition 3.4. λ(∆) = 8.

Proof. We use the same coordinate as above. Define f : V → {0, 1, 2, · · · 8}
by f(i, j) = −3i + 2j mod 9. The verification for f being an L(2, 1)-labelling
is the same as in the proof of Theorem 3.3. The maximum label of f is 8.
Thus we have λ(∆) ≤ 8.

Let H be the subgraph induced by {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1),
(3, 1), (0, 2), (1, 2), (2, 2)} in ∆. It is isomorphic to the subgraph induced by
the “dark” vertices in Figure 4. We can verify easily that λ(H) = 8. So
λ(∆) ≥ λ(H) = 8. Now we can conclude that λ(∆) = 8.

We also can see that the L(2, 1)-labelling f defined above is a labelling
with edge span 7. Further by considering the L(2, 1) edge span of H above,
we have β(∆, 8) ≥ 7. Hence we have the following theorem.

Theorem 3.5. β(∆, 8) = 7.
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Figure 4. H
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