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ON THE STABILITY OF STEADY SURFACE-TENSION
DRIVEN FLOWS

Ching-An Wang* and Tu-Cheng Wu

Abstract. In this paper, we study the stability of similarity solutions
for the problem f ′′′ + Q(Aff ′′ − (f ′)2) = β, with Q > 0, A ≥ 1 and
β ∈ R. The given problem was derived from the symmetric reduction of
similarity transformations from the Navier-Stokes equation for the planar
flows. By imposing additional eigenvalue problems, our numerical studies
show that the resultant steady flows are unstable as Q becomes large for
various A < 2. Furthermore, our analytical result gives that the steady
flows are stable for small Q, when 1 ≤ A < 2, or for any Q > 0 when
A ≥ 2. Moreover, the existence of asymmetric flows for various A < 2 is
also found numerically.

1. INTRODUCTION

The surface-tension driven flows of low Prandtl number fluids are impor-
tant in processes such as the production of silicon crystals and cylindrical rods
of silicon. Surface-tension phenomena mainly occur along a floating rectangu-
lar slot or a floating disk due to the difference of temperatures of fluid from
some imposed conditions. By means of floating, it was assumed that two op-
posite surfaces of the rectangular slot or the disk are free. For the physical
consideration, the floating zones are assumed to be in a micro-gravity envi-
ronment. Usually, the lateral solid surfaces (wall) of the slot or the disk and
the free surfaces confine the flow in the low Prandtl number fluid. On the free
surfaces, a temperature radiation, due to the difference of temperatures at the
mid-line for the slot and at the lateral solid wall, is assumed, and the radiation
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drives the surface-tension driven flows. Assume a slot is described by the co-
ordinate system such that −l ≤ x ≤ l and 0 ≤ y ≤ 2d, where y = d represents
half of the depth for the slot and y = 0, 2d denote the position at the free sur-
faces. The Navier-Stokes system was applied to describe the surface-tension
flows for the distributions of velocity in a low Prandtl number fluid confined
in the domain of a floating rectangular slot and let u and v denote the tan-
gential and normal velocity of the planar flow. Therefore, the formulation of
boundary layer approximation of the 2-dimensional Navier-Stokes equations
for the surface-tension driven flows is given as follows:
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where P , ρ, ν, and T represent the pressure, density, kinematic viscosity and
time, respectively.

For the steady state, we recall that, as in [7, 9], η = y/δ(x) is an inde-
pendent variable and the similarity function f(η) corresponds to the stream
function Ψ(x, y) = uR(x)δ(x)f(η) with u = Ψy and v = −Ψx, where f(η) =∫ η
0 h(s)ds and h(η) = u(x, y)/uR(x). Then, the x-momentum equation (2) for

the steady flow leads to the following equation

f ′′′ + Q(Aff ′′ − (f ′)2) = β, (′= d/dη),(4)

for 0 ≤ η ≤ 2, where δ(x), uR(x) are properly chosen and Q, β, A are real
with A > 1/2. The flows were confined by the free surfaces and, hence, the
condition v = 0 was imposed. Moreover, the geometry of the free surface could
be described by the condition −µuy = dσ/dx, where µ and σ represent the
dynamical viscosity and the surface tension, respectively. Thus,

f(0) = f(2) = 0(5)

and the normalized conditions

f ′′(0) + 1 = f ′′(2)− 1 = 0(6)

are derived.
By the symmetry assumption for the planar flows crossing the center line

y = d in the slot, the equation (4) subject to
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The bifurcation diagram in the parameter (Q, β) space for the problem (1),
(2) when A = 1, 3/2, 5/4, and 2.

f(0) = f ′′(0) + 1 = f(1) = f ′′(1) = 0(7)

was studied numerically in [7, 8]. Two types of nonnegative solutions and one
type of oscillatory solutions on [0, 1] were found. Here, the type I denotes the
positive and concave, while the type II represents the positive and nonconcave
solution on (0, 1). Moreover, the type III is labeled that the solution of (4),
(7) has exactly one zero in (0, 1). The corresponding bifurcation diagrams
and profiles of type I,
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FIG. 2. (a) The profile of symmstric
solution f corresponding to
type I. (b) The streamline of
a symmetric flow for the type
I solution.

FIG. 3. (a) The profile of symmstric
solution f corresponding to
type II. (b) The streamline
of a symmetric flow for the
type II solution.

II and III solutions were shown in Figures 1-4. In fact, Chen et al. [2, 10]
verified the following properties:

(P1) The problem (4), (7) can only possess the type I, II and III solutions
for 1 ≤ A < 2 and the type I solutions if A ≥ 2.
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FIG. 4. (a) The profile of symmstric
solution f corresponding to
type III. (b) The streamline
of a symmetric flow for the
type III solution.

FIG. 5. (a) The profile of an symm-
stric solution f . (b) The
streamline of an symmetric
flow.

(P2) Suppose A ≥ 1. The problem (4), (7) has at least one type I or II
solution for Q ≥ 0. Moreover, there is at least one Q < 0 such that (4),
(7) has a type I solution for β > 1.

(P3) Let 1 ≤ A ≤ 3/2. The problem (4), (7) has at least a type III solution
for sufficiently large Q > 0.
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It is our purpose here to study the stability of the solutions for the problem
(4), (7) by imposing a corresponding eigenvalue problem on (4)-(6). The
formulation of the eigenvalue problem and the numerical studies of the stability
for various A are given in Section 3. The asymptotic behavior of the principal
eigenvalues of type I solutions for some Q is analyzed in Sections 4 and 5.
Our study shows that the steady state solutions are unstable for large Q when
1 ≤ A < 2. Furthermore, the numerical computation indicates the existence
of some families of asymmetric solutions for various A, 1 ≤ A < 2.

2. FORMULATION OF THE EIGENVALUE PROBLEM

For the stability analysis, we write the stream function as

Ψ(x, y, T ) = uR(x)δ(x)F (η, T ),

where F (η, T ) =
∫ η
0 h(s, T )ds and h(η, T ) = u(x, y, T )/uR(x). Let

t = (duR(x)/dx)T . Then we obtain that

QFηηt = Fηηηη + Q(AFFηηη + (A− 2)FηFηη)(8)

and

F (0, t) = F ′′(0, t) + 1 = F (2, t) = F ′′(2, t)− 1 = 0.(9)

Treat the temporal stability of the steady state flows by expressing

F (η, t, Q) = f(η, Q) + g(η, t, Q),(10)

linearizing (8) for small g, and taking normal modes with g(η, t,Q) =
estG(η,Q). This leads to the eigenvalue functional

G′′′′ = QsG′′ −Q(AfG′′′ + (A− 2)f ′G′′ + (A− 2)f ′′G′ + Af ′′′G)(11)

for the determination of the eigenvalues s and the corresponding eigenfunctions
G. To be consistent with (9), G must satisfy

G(0) = G′′(0) = G(2) = G′′(2) = 0.(12)

For convenience, we may study the stability of the symmetric flow on the
upper half, 0 ≤ η ≤ 1. Therefore, the eigenfunction G is imposed by the
boundary conditions as

G(0) = G′′(0) = G′(1) = G′′′(1) = 0(13)
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at the odd mode, and

G(0) = G′′(0) = G(1) = G′′(1) = 0(14)

at the even mode. Note that we predict instability of a specified basic flow f
with Q > 0 if Re(s) > 0, or Re(s) < 0 with Q < 0, for at least one eigenvalue.
It indicates that the steady flows are unstable when there exist some positive
eigenvalues.

3. LOCAL BIFURCATION AND NUMERICAL SIMULATION

By means of a small perturbation, we may perturb a steady solution f0 of
(4)-(6) at given Q0 by f(η, Q) with small ε = Q−Q0. In fact, it is known that
a power series in ε is appropriate at a regular point, but in ε1/2 at a turning
point or a pitchfork bifurcation. Assume the expansion

f(η, Q) = f0(η) + ε1/2f1/2(η) + εf1(η) + ε3/2f3/2(η) + · · ·(15)

for small ε. Differentiating (4), we get

f
′′′′

+ Q(Aff
′′′

+ (A− 2)f
′
f
′′
) = 0.(16)

By substituting (15) into the problem (16), (5), (6) and equating coefficients
of terms in ε0, we obtain that

f
′′′′
0 + Q0(Af0f

′′′
0 + (A− 2)f

′
0f

′′
0 ) = 0

subject to
f0(0) = f

′′
0 + 1 = f0(2) = f

′′
0 (2)− 1 = 0.

Next we equate coefficients of ε1/2 and obtain that

f
′′′′
1/2 + Q0(Af0f

′′′
1/2 + (A− 2)f

′
0f

′′
1/2 + (A− 2)f

′′
0 f

′
1/2 + Af

′′′
0 f1/2) = 0(17)

subject to

f1/2(0) = f
′′
1/2(0) = f1/2(2) = f

′′
1/2 = 0.(18)

Suppose all the eigenvalues of (11), (12) are nonzero for a given Q0. Then,
it is clear that f1/2 = 0 is the only possible solution of (17), (18). Indeed,
it shows that at such a point the perturbed solution is expressible as a series
in integer powers of ε, and is unique. Then no bifurcation may occur. This
indicates that a turning point or a pitchfork bifurcation may be expected when
obtaining a zero eigenvalue at a certain Q0.

It is clear that, as in Section 4, the eigenvalues are discrete. Denote the
eigenvalues at ith odd and even mode by σo

i and σe
i , respectively. For numerical

simulation, we compute the first three σo
i and σe

i by a multiple shooting code
BVPSOL [3-6] to integrate the basic flow f and eigenfunction G. Also, the
eigenfunction is normalized by imposing G

′
= 1 at η = 0.
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The correlation diagrams of eigenvalues and Q for the symmetric solutions of
the types I, II and III when A = 1, where solid and dotted curves represent
σ0

n and σe
n, respectively.

By applying the continuation scheme, we begin the computation at Q = 0.1
for various A. The initial data for the first three eigenvalues σa

i , σs
i , i = 1,

2, 3, have been chosen by the asymptotic values obtained in Section 4. The
continuation scheme is applied along the type I, II and III branches, as in
Figure 1, by increasing Q. The plots of the corresponding (Q, σo

i ) or (Q, σe
i )

curves, i = 1, 2, 3, along the type I branch are given in Figures 6-9. By the
corresponding (Q, s) diagrams, it could be observed that the type I symmetric
solution is temporally stable and becomes unstable when Q increases beyond
a particular level Q = Q∗ at which σo

1(Q
∗) = 0 for various A < 2, while it is

temporally stable for Q > 0 when A ≥ 2. Here Q∗ ≈ 1607, 2113, 2977 when
A = 1, 5/4, 3/2, respectively, and, as shown in



The Stability of Some Steady Flow 487

The correlation diagrams of eigenvalues and Q for the symmetric solutions
of the types I, II and III when A = 1.25, where solid and dotted curves
represent σ0

n and σe
n, respectively.

Figure 10, our computation indicates that Q∗ tends to infinity as A approaches
to 2. In fact, in Section 5, we shall verify that σo

n and σe
n for the type I solution

with A ≥ 1 tend to zero as Q increases and the solutions of types II and III
are unstable.

Furthermore, it is known that the asymmetric solutions may bifurcate
from some symmetric solutions with a zero eigenvalue. By imposing the data
obtained from the eigenfunction with σo

1(Q
∗) = 0, a continuous family of

asymmetric solutions is also found that the corresponding branch bifurcates
at Q = Q∗. It is clear that the mirror image of an asymmetric solution at the
center line η = 1 is also a solution of (4) - (6) and this indicates that the
pitchfork bifurcation occurs at Q∗. The
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The correlation diagrams of eigenvalues and Q for the symmetric solutions of
the types I and III when A = 1.5, where solid and dotted curves represent
σ0

n and σe
n, respectively.

FIG. 9. The correlation diagrams of
eigenvalues and Q for the
symmetric solutions of the
type I when A = 2, where
solid and dotted curves repre-
sent σ0

n and σe
n, respectively.

FIG. 10. The correlation diagrams of
σ0

1 and Q, when σ0
1 ≥ 0 for

various 1 ≤ A ≤ 3/2.

detailed bifurcation diagrams for the asymmetric flows when Q is close to Q∗

are given in Figures 11-13 when A = 1, 5/4, 3/2. The profile of a selected
asymmetric solution and its corresponding stream line are shown in Figure 5.
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FIG. 11. The diagrams in the pa-
rameter (Q, f ′(0)) and (Q, β)
spaces for the symmetric (I)
and asymmetric (I1, I

′
1) solu-

tions when A = 1.

FIG. 12. The diagrams in the pa-
rameter (Q, f ′(0)) and (Q, β)
spaces for the symmetric (I)
and asymmetric (I1, I

′
1) solu-

tions when A = 1.25

4. ASYMPTOTIC EXPANSION OF THE EIGENSOLUTIONS FOR SMALL Q

In this section, we begin with the analytical study of the steady flows f ,
the eigenfunctions G, and the eigenvalues s for small Q. It is clear that the
problem (4), (7) has a unique symmetric solution

f0(η) =
1
3
η − 1

2
η2 +

1
6
η3

when Q = 0 for any A. We expand
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The diagrams in the parameter (Q, f ′(0)) and (Q, β) spaces for the symmetric
(I) and asymmetric (I1, I

′
1) solutions when A = 1.5

f(η, Q) = f0(η) +
∞∑

n=1

fn(η)Qn(19)

for small Q. Since f satisfies the boundary conditions (7), the fn’s in the
expansion must satisfy the boundary conditions

f0(0) = f ′′0 (0) + 1 = f0(1) = f ′′0 (1) = 0

and
fn(0) = f ′′n(0) = fn(1) = f ′′n(1) = 0

for n = 1, 2, · · · . Substituting (19) into (16) and equating coefficients of terms
in Q, we get

f ′′′′1 + Af0f
′′′
0 + (A− 2)f0f

′′
0 = 0(20)

subject to the boundary conditions

f1(0) = f ′′1 (0) = f1(1) = f ′′1 (1) = 0.(21)

Then, f1(η) is expressed as

f1(η) = −A + 2
945

η − A− 4
270

η3 +
A− 2

72
η4 − 5A− 8

360
η5

+
2A− 3

360
η6 − 2A− 3

2520
η7
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by solving (20), (21), and the other fn’s can also be obtained by equating
coefficients of terms in Qn for n = 2, 3, · · · . We proceed similarly with the
eigensolution by writing

G(η, Q) = G0(η) +
∞∑

n=1

Gn(η)Qn(22)

and

Qs = −σ0 −
∞∑

n=1

σnQn(23)

as Q tends to zero. Substituting (19), (22) and (23) into (11), and equating
coefficients of terms in Qn for n = 0, 1, 2, · · · , we find that

G′′′′
0 + σ0G

′′
0 = 0,

G′′′′
1 + σ0G

′′
1 = −σ1G

′′
0 − (Af0G

′′′
0 + (A− 2)f ′0G

′′
0

+(A− 2)f ′′0 G′
0 + Af ′′′0 G0),

...

To be consistent with the boundary conditions of G, Gn must satisfy

Gn(0) = G′′
n(0) = G′

n(1) = G′′′
n (1) = 0

for the odd modes and

Gn(0) = G′′
n(0) = Gn(1) = G′′

n(1) = 0

for the even modes, when n = 0, 1, 2, · · · . Note that the equation for Gn

involves G0, G1,· · · , Gn−1, σ0, σ1, · · · , σn. As in most of our numerical results,
we normalize the eigenfunction by imposing the condition that G′(0) = 1, and
so take G′

0(0) = 1 and G′
n(0) = 0 for n = 1, 2, · · · . For the convenience, we

denote by σo
nm the value of σn in (23) corresponding to the mth odd mode,

and, similarly, denote by σe
nm the corresponding quantity for the even modes.

Also, Go
nm and Ge

nm are defined analogously for each type of modes.
For the odd modes, we obtain that
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σa
0m =

(2m− 1)2π2

4
,

σa
1m =

4 + 5A

2(2m− 1)2π2
,

Ga
0m =

2
(2m− 1)π

sin
2m− 1

2
πη,

Ga
1m =

32 + 32A
(2m− 1)4π4

+
[
− A

24(2m− 1)π
η4 +

A

6(2m− 1)π
η3

+
(
− A

6(2m− 1)π
+

12 + 11A

2(2m− 1)3π3

)
η2 − 12 + 11A

(2m− 1)3π3
η

−
(

4σa
1m

(2m− 1)3π3
− 8 + 6A

3(2m− 1)3π3
+

56 + 54A
(2m− 1)5π5

)]
sin

2m− 1
2

πη

+
[
− 4 + 3A

6(2m− 1)2π2
η3 +

4 + 3A

4(2m− 1)2π2
η2 +

(
2σa

1m

(2m− 1)2π2

− 4 + 3A

3(2m− 1)2π2
+

28 + 27A
(2m− 1)4π4

)
η − 32 + 32A

(2m− 1)4π4

]
cos

2m− 1
2

πη.

For the even modes, we find that

σs
0m = m2π2,

σs
1m =

4 + 5A
8m2π2

,

Gs
0m =

1
mπ

sinmπη,

Gs
1m = −2 + 2A

m4π4
η +

2 + 2A

m4π4
+

[
4 + 3A

12m3π3
− 12 + 11A

8m3π3
η

−
(

A

12mπ
− 12 + 11A

16m3π3

)
η2 +

A

12mπ
η3 − A

48mπ
η4

]
sinmπη

−
[
2 + 2A

m4π4
−

(
σs

1m

2m2π2
− 4 + 3A

12m2π2
+

28 + 27A
16m4π4

)
η

− 4 + 3A

8m2π2
η2 +

4 + 3A

24m2π2
η3

]
cosmπη.
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For small Q, it follows that

G(η, Q) ≈ G0(η)(24)

and

s ≈ −σ0

Q
− σ1.(25)

By using (24), (25) to estimate G and s for small Q, it shows that the flow is
temporally stable as Q is small when A > 0. Moreover, the asymptotic results
obtained here are in accordance with the numerical results obtained in the
previous section. The selected data are shown in Tables 1 and 2.

5. THE ANALYSIS OF σo
1, σe

1 FOR THE TYPE I WITH LARGE Q

In [2], it was pointed out that the type II or type III solutions with
small |β| are very similar to the type I ones, when Q is sufficiently large,
when 1 ≤ A < 2 and the problem (4), (7) possesses only the type I solutions
for A ≥ 2. Hence, we need only consider the asymptotic behavior of the
eigenvalues for the type I solutions for large Q. We shall verify that σo

1 > 0
for large Q as 1 ≤ A < 2 and it tends to zero as Q increases for A ≥ 1.

For large Q, the outer solution of (4) satisfies

Aff ′′ − (f ′)2 ≈ β

Q
(26)

The antisymmetric modes at Q = 0.1

σa
1 σa

2 σa
3

A=1 numerical result -25.1609 -222.1567 -616.8835
analytical result -25.1299 -222.1168 -616.8685

A=5/4 numerical result -25.2217 -222.1633 -616.8794
analytical result -25.1933 -222.1238 -616.8711

A=3/2 numerical result -25.2824 -222.1698 -616.8752
analytical result -25.2566 -222.1308 -616.8736

A=2 numerical result -25.4039 -222.1828 -616.8669
analytical result -25.3833 -222.1399 -616.8787
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The symmetric modes at Q = 0.1

σs
1 σs

2 σs
3

A=1 numerical result -98.8434 -394.8431 -888.2993
analytical result -98.8100 -394.8127 -888.2770

A=5/4 numerical result -98.8572 -394.8411 -888.2963
analytical result -98.8290 -394.8166 -888.2788

A=3/2 numerical result -98.8711 -394.8390 -888.2932
analytical result -98.8416 -394.8205 -888.2906

A=2 numerical result -98.8988 -394.8350 -888.2870
analytical result -98.8734 -394.8285 -888.2841

subject to the outer boundary conditions

f(1) = 0, f ′′(1) = 0.

Since f(1) = 0, from (26), it follows that

f ′(1)2 ≈ − β

Q
.

It was verified, in [2], that f ′(1) < 0 and β < 0 for large Q. For convenience,
we set f ′(1) = α, α < 0 and α2 = −β/Q. Substituting f(1) = 0, f ′(1) = α
and f ′′(1) = 0 into (4), we obtain f ′′′(1) ≈ 0. Then, f(1) = 0, f ′′(1) = 0
and f ′′′(1) ≈ 0 yield that f ′′′′(1) ≈ 0. By applying a similar argument, we get
f (k)(1) ≈ 0 for all k > 2. It implies that, by the Taylor’s expansion,

f(η) ≈ α(η − 1).

Also, from (11) at η = 1, we may expect that the eigenvalue s has the asymp-
totic behavior s = O(α) for large Q at the odd mode. In fact, it is also true
for the even mode and will be verified later in this section.

5.1. The limits of α

We shall first verify that α tends to zero for large Q. By applying the
transformation as in [2], let y = b(1− η) and g(y) = Q

b f(η) for any nonzero Q
and positive b. Then (4), (7) is equivalent to

g′′′ + (g′)2 −Agg′′ = −Qβ

b4
,

(
′ =

d

dy

)
,(27)
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subject to

g′(0) = g(b) = g′′(0) = g′′(b) +
Q

b3
= 0.

Let g(y; B, E) be the solution of (27) subject to

g(0) = g′(0)−B = g′′(0) = 0,(28)

where A is given and E = −Qβ/b4. Suppose g(y; B,E) meets the y-axis at
some positive y∗. Then, by setting b = y∗, the problem (4), (7) has a solution
when

Q(B, E) = −y3∗g′′(y∗;B, E),

β(B, E) =
Ey∗

g′′(y∗; B, E)
.

As given in [2], it is known that g(y; B,E) has a unique positive zero y∗ for
(B, E) ∈ D = {(B, E)|B > 0, E < B2} and it leads to the type I solution of
(4), (7) with Q(B,E) > 0. In fact, g(y∗; B,E) has the following property.

Property 1 [2]. For A ≥ 1 and (B, E) ∈ D, g(y; B,E) > 0, g′′(y; B, E) <
0, g′′′(y;B, E) < 0 on (0, y∗) and g′(y∗;B, E) < 0.

Moreover, by the homogeneity of g, the set Γ of (Q, β) on which (4), (7)
possesses the type I solution can be rewritten as

Γ = {(Q(1, r), β(1, r))| −∞ < r < 1}.
Then, by the continuous dependence, Γ is a connected subset in the half plane
Q > 0, β ∈ R. Also, Q and y∗ have the following properties.

Property 2 [2]. For A ≥ 1,
(a) limr→1− y∗(1, r) = ∞;
(b) limr→1− Q(1, r) = ∞.

From Property 2 (a), there exists a δ > 0 such that y∗(1, r) > 1 for all r,
0 < 1− δ < r < 1. By Property 1 and (27), we obtain that

(g′(y∗(1, r); 1, r))2 > g′′′(y∗(1, r); 1, r) + (g′(y∗(1, r); 1, r))2 = r > 0.

Then
g′(y∗(1, r); 1, r) < −√r.

Since g′(0; 1, r) = 1, we then have

−√r − 1 > g′(y∗(1, r); 1, r)− g′(0; 1, r)

=
∫ y∗
0 g′′(t; 1, r)dt

≥ y∗(1, r)g′′(y∗(1, r); 1, r).



496 Ching-An Wang and Tu-Cheng Wu

For 0 < 1− δ < r < 1, it is clear that

ry∗(1, r)
g′′(y∗(1, r); 1, r)

>
r

−√r − 1
.

Hence,
β(1, r) >

r

−√r − 1

and
lim

r→1−
β(1, r) > −1

2
.

On the other hand, integrating (27), we get that

g′′(y∗(1, r); 1, r)− ry∗(1, r) =
∫ y∗

0
(A + 1)g(t; 1, r)g′′(t; 1, r)dt.

By Property 1, we further have

1− ry∗(1, r)
g′′(y∗(1, r); 1, r)

=
∫ y∗

0

(A + 1)g(t; 1, r)g′′(t; 1, r)
g(y∗(1, r); 1, r)

dt > 0.

Since β(1, r) = ry∗(1, r)/g′′(y∗(1, r); 1, r), this implies that

lim
r→1−

β(1, r) < 1.

Hence, limQ→∞ α = 0 is obtained since α2 = −β/Q and β(1, r)/Q(1, r) tends
to 0 as r tends to 1−. We also obtain the feature that limr→1− |α|Q = ∞.

5.2. The asymptotes of σo
1 and σe

1

Now, we proceed with the study of the asymptotic behavior of σo
1, σe

1 for
large Q. Replacing f(η) by α(η − 1), and letting z = 1 − η and H(z, Q) =
G(η,Q), we can rewrite (11) in the form

H ′′′′ −QA|α|zH ′′′ −Q(s− (2−A)|α|)H ′′ = 0,(29)

where H(z, Q) denotes the inviscid representation of G(η, Q). The boundary
conditions at z = 0 are H = H ′′ = 0 for the even, and H = H ′′′ = 0 for the
odd modes, respectively. Set

H ′′(z,Q) = u(z,Q)v(z,Q),(30)

where v(z, Q) = eA|α|Qz2/4. Substituting (30) into (29) yields

u′′ −
(

1
4
(QA|α|z)2 + Qs− 4−A

2
Q|α|

)
u = 0.
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Setting u(z, Q) = w(z̃, Q), z̃ = (A|α|Q)1/2z, and s̃ = s/(A|α|)− (4−A)/(2A),
we get that

w′′ −
(

1
4
z2 + s̃

)
w = 0(31)

with the general solution

w(z̃, Q) = c1U(s̃, z̃) + c2V (s̃, z̃),

where c1, c2 are constants and U , V are the parabolic cylinder functions.
Hence, we obtain

H ′′(z,Q) = e
z̃2

4 (c1U(s̃, z̃) + c2V (s̃, z̃)).

The asymptotic behaviors of U , V , for large Q are given by

U(s̃, z̃) = e−
z̃2

4 z̃−s̃− 1
2

(
1− (s̃ + 1

2)(s̃ + 3
2)

2z̃2
+ · · ·

)
,

V (s̃, z̃) =
√

2
π

e
z̃2

4 z̃s̃− 1
2

(
1 +

(s̃ + 1
2)(s̃ + 3

2)
2z̃2

+ · · ·
)

,

for z̃ >> |s̃|, and

U(s̃, 0) =
√

π

2
1
2
(s̃+ 1

2
)Γ(1

2 s̃ + 3
4)

,

U ′(s̃, 0) =
√

π

2
1
2
(s̃− 1

2
)Γ(1

2 s̃ + 1
4)

.

We assume here that the normalization of the eigenfunctions is O(1). Note
that H ′′ is exponentially large for z 6= 0 unless c2 is exponentially small. It
follows that

H ′′(0, Q) =
c1
√

π

2
1
2
(s̃+ 1

2
)Γ(1

2 s̃ + 3
4)

and

H ′′′(0, Q) =
c1
√

π

2
1
2
(s̃− 1

2
)Γ(1

2 s̃ + 1
4)

.

Thus, we obtain the following asymptotic limits

σe
n ∼ 2|α| (1−A + (1− n)A) , n = 1, 2, · · · ,(32)
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for the even modes, and

σo
n ∼ 2|α|

(
2−A

2
+ (1− n)A

)
, n = 1, 2, · · · ,(33)

for the odd modes. From (32) and (33), we know that,

σe
1 ∼ 2|α|(1−A) ≤ 0(34)

when A ≥ 1,

σo
1 ∼ 2|α|

(
2−A

2

)
> 0(35)

when 1 ≤ A < 2, and

σo
1 ∼ 2|α|

(
2−A

2

)
≤ 0(36)

when A ≥ 2. Therefore, σe
1, σo

1 both tend to zero as Q tends to infinity, and,
from (34) and (36), the type I solution for large Q is stable when A ≥ 2.

6. CONCLUDING REMARKS

By means of a small perturbation, we have imposed the even and odd
boundary conditions for the eigenfunctions to analyze the local stability of the
symmetric steady flows. Numerical results for various A indicate that the type
I steady flows are stable for A ≥ 2, Q > 0, and 1 ≤ A < 2 as Q is small, while
it is unstable for 1 ≤ A < 2 if Q is large. In fact, our mathematical result
verified parts of the numerical observation.

Beyond the symmetric flow, the asymmetric flows are also found numer-
ically by imposing an odd eigenfunction on the type I flows. In fact, the
asymmetric flows are bifurcated from a type I flows with a zero eigenvalue
and our result indeed indicates that the existence of zero eigenvalues, σo

1 = 0,
at some Q along the type I branch in Figures 11-13. Hence, it can be con-
jectured that the problem (4) - (6) possesses asymmetric solutions at some
Q > 0 when 1 ≤ A < 2, although neither the mathematical verification nor
the stability study is yet found elsewhere.
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