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ERGODIC THEOREMS AND APPROXIMATION THEOREMS
WITH RATES

Sen-Yen Shaw

Abstract. A-ergodic nets and A-regularized approximation processes of
operators are introduced and their convergence theorems are discussed.
There are strong convergence theorems, uniform convergence theorems,
theorems on optimal convergence, and theorems on non-optimal conver-
gence and its sharpness. The general results provide unified approaches
to investigation of convergence rates of ergodic limits and approximation
of various operator families. In particular, we shall deduce some results
for an r-times integrated resolvent family for a Volterra integral equa-
tion. The latter contains integrated semigroups and integrated cosine
functions as special cases.

1. INTRODUCTION

In 1931, von Neumann published the first mean ergodic theorem. It states
that if τ is a measure preserving transformation on a measure space (Ω, µ),
then for every f ∈ L2(µ), (1/n)

∑n−1
k=0 f◦τk converges in ‖·‖2 norm to some f ∈

L2(µ) such that f◦τ = f. Since then, generalizations to more general operators
on abstract spaces have been proved by numerous authors, among whom are
Riesz (1938), Yosida (1938), Lorch (1939), and Dunford (1939), to mention
only a few earlier ones. There was also Eberlein’s (1949) abstract ergodic
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theorem for S-ergodic nets. The first continuous version of mean ergodic
theorem, which deals with convergence of Cesáro means of strongly continuous
semigroups of operators, was proved by Dunford (1957). One can also consider
convergence of Abel means, which leads to Yosida’s (1961) ergodic theorem
for pseudo-resolvents.

The above results are concerned with the strong convergence of the involved
objects, so they are called strong ergodic theorems. It is also interesting to
consider criteria for their convergence in operator norm. Theorems of this
kind are called uniform ergodic theorems. Among them are theorems due to
Yosida and Kakutani (1941), M. Lin (1974), Lotz (1985) [16], and Shaw (1986
[22], 1988 [23]).

The first result which considers the rates of convergence of ergodic limits
is the saturation theorem of Butzer and Westphal (1971) [8] which describes
optimal convergence rates of ergodic limits of discrete semigroups. Later,
Butzer and Dickmeis (1981) [5] investigated not only optimal convergence but
also non-optimal convergence for strongly continuous semigroups. Recently,
Nasri-Roudsari, Nessel and Zeler (1995) [18] established the sharpness of non-
optimal convergence. For a more detailed account of the developement of
ergodic theorems, the readers are referred to [30].

Eberlein’s abstract frame work, i.e., S-ergodic net, provides a unified ap-
proach to deduce many strong ergodic theorems, but it cannot deal with uni-
form ergodic theorems or convergence rates of ergodic limits. To improve this
weakness, in recent years I have introduced an abstract frame work, called
A-ergodic nets. One of the purposes of this paper is to review (in Section 2)
some results in connection with A-ergodic nets.

While a Cesáro ergodic theorem with rate for a strongly continuous semi-
group (usually called C0-semigroup) {T (t); t ≥ 0} of operators is concerned
with the convergence rates of the Cesáro mean Ctx := t−1

∫ t
0 T (s)xds as t →∞

for various x, a local ergodic theorem with rate deals with the convergence rate
of Ctx as t → 0+. Since T (t) converges strongly to the identity operator I as
t → 0+, both {T (t)} and {Ct} are approximation processes. The first result in
the direction of the convergence rate of an approximation process seems to be
the saturation theorem of Butzer and Berens (1967) about optimal convergence
of C0-semigroups. In 1968, they also characterized non-optimal convergence
rate (i.e., those x for which ‖T (t)x− x‖ = O(tβ) with 0 < β < 1) in terms of
the convergence rate of a K-functional. The first result concerning the sharp-
ness of non-optimal convergence of C0-semigroups was proved by Butzer and
Dickmeis (1985), and later improved by Davydov (1993) [11].

To deal with optimal convergence rates for various approximation pro-
cesses, Butzer and Nessel (1971) [7] introduced an abstract frame work, called
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approximation process with a regularization process. Unfortunately, it is not
useful for investigating non-optimal convergence rates.

In Section 3, I shall introduce an improved abstract frame work, namely A-
regularized approximation process, which can deal with optimal convergence,
non- optimal convergence, and its sharpness.

As applications of the general results to be discussed in Sections 2 and
3, we shall deduce in Section 4 uniform ergodic theorem and strong ergodic
theorem with rates for r-times integrated solution families for Volterra integral
equations, and in Section 5 their approximation and local ergodic theorems
with rates.

2. ABSTRACT ERGODIC THEOREMS FOR A-ERGODIC NETS

In [24-26] and [29] we considered the following framework for discussing
general strong ergodic theorems, uniform ergodic theorems, and ergodic theo-
rems with rates.

Let A : D(A) ⊂ X → X be a closed linear operator, and let {Aα} and
{Bα} be two nets in B(X) satisfying:

(C1) ‖Aα‖ ≤ M for all α;

(C2) R(Bα) ⊂ D(A) and BαA ⊂ ABα = I −Aα for all α;

(C3) R(Aα) ⊂ D(A) for all α, and ‖AAα‖ = O(e(α));

(C4) B∗
αx∗ = ϕ(α)x∗ for all x∗ ∈ R(A)⊥, and |ϕ(α)| → ∞;

(C5) ‖Aαx‖ = O(f(α)) (resp. o(f(α))) implies ‖Bαy‖ = O(f(α)/e(α)) (resp.
o(f(α)/e(α))),

where e and f are positive functions satisfying 0 < e(α) ≤ f(α) → 0. We call
{Aα} an A-ergodic net and {Bα} its companion net.

The functions e and f are to act as estimators of the convergence rates of
{Aαx} and {Bαy}, which, in practical applications, approximate the ergodic
limit and the solution x of Ax = y, respectively.

Let P and B1 be the operators defined respectively by




D(P ) := {x ∈ X; lim
α

Aαx exists};
Px := lim

α
Aαx for x ∈ D(P ),





D(B1) := {y ∈ X; lim
α

Bαy exists};
B1x := lim

α
Bαy for y ∈ D(B1).

{Aα} is said to be strongly (resp. uniformly) ergodic if D(P ) = X and Aαx →
Px for all x ∈ X (resp. ‖Aα − P‖ → 0).
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In [24, Theorem 1.1, Corollary 1.4 and Remark 1.7], we proved the follow-
ing theorem.

Theorem 2.1 (Strong Ergodic Theorem). Under conditions (C1) - (C4),
the following are true.

(i) P is a bounded linear projection with range R(P ) = N(A), null space
N(P ) = R(A), and domain D(P ) = N(A) ⊕ R(A) = {x ∈ X; {Aαx} has a
weak cluster point}.

(ii) B1 is the inverse operator A−1
1 of the restriction A1 := A|R(A) of A

to R(A); it has range R(B1) = D(A1) = D(A) ∩ R(A) and domain D(B1) =
R(A1) = A(D(A) ∩ R(A)). Moreover, for each y ∈ D(B1), B1y is the unique
solution of the functional equation Ax = y in R(A).

(iii) {Aα} is strongly ergodic if and only if N(A) separates R(A)⊥, if and
only if {Aαx} has a weak cluster point for each x ∈ X. In this case, we
have R(A) = R(A1). These conditions are satisfied in particular when X is
reflexive.

Note that when A is densely defined, the condition R(A) = R(A1) is also
equivalent to the strong ergodicity. The next theorem is proved in [25] under
the assumption that A is densely defined. It can be shown that the conclusion
still holds without this assumption.

Theorem 2.2 (Uniform Ergodic Theorem). Under conditions (C1) - (C3),
we have: D(P ) = X and ‖Aα − P‖ → 0 if and only if ‖Bα|R(A)‖ = O(1), if
and only if B1 is bounded and ‖Bα|R(A) − B1‖ → 0, if and only if R(A)
(or R(A1)) is closed, if and only if R(A2) (or R(A2

1)) is closed, if and only
if X = N(A) ⊕ R(A). Moreover, the convergence of these limits has order
O(e(α)).

A Banach space X is called a Grothendieck space if every weakly∗ con-
vergent sequence in X∗ is weakly convergent (see, e.g., [28] for equivalent
definitions), and is said to have the Dunford-Pettis property if every weakly
compact operator from X to any Banach space maps weakly compact sets into
norm compact sets or, equivalently, if 〈xn, x∗n〉 → 0 whenever xn → 0 weakly in
X and x∗n → 0 weakly in X∗. The spaces L∞, H∞, and B(S, Σ) are particular
examples of Grothendieck spaces with the Dunford-Pettis property. An inter-
esting phenomenon in such spaces is that strong operator convergence often
implies uniform operator convergence (see, e.g., [15, 23, 27]). The following
theorem slightly generalizes Theorem 2 in [25], which deals only with the case
that A has dense domain.

Theorem 2.3. Let {{Aα}, {Bα}, A} satisfy conditions (C1) - (C3), and
suppose {x ∈ D(A);Ax ∈ Y } is dense in Y := D(A). When Y is a Grothendieck
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space with the Dunford-Pettis property, {Aα} is uniformly ergodic on Y if and
only if it is strongly convergent on Y .

Proof. We first see that AαAx = AAαx for all x ∈ D(A). Indeed, if
x ∈ D(A), then by (C2) we have Aαx = x − BαAx ∈ D(A) and AAαx =
Ax−ABαAx = Ax−(I−Aα)Ax = AαAx. Hence AαA ⊂ AAα. Note that Y is
an invariant subspace for Aα and Bα. Let A◦α and B◦

α denote their restrictions
to Y , and let A◦ denote the part of A in Y . Being the intersection of the
closed graph of A and Y × Y , the graph of A◦ is closed. Using this and the
fact that R(Aα) ⊂ D(A) and AαA ⊂ AAα, we easily see that R(A◦α) ⊂ A◦,
A◦αA◦ ⊂ A◦A◦α and ‖A◦A◦α‖Y = O(e(α)), i.e., (C3) holds with Aα and A
replaced by A◦α and A◦, respectively. Similarly, (C2) with the closedness of
A◦ implies that it holds with Aα, Bα, and A replaced by A◦α B◦

α, and A◦,
respectively. Hence {A◦α} is an A◦-ergodic net on Y and {B◦

α} is its companion
net. Since D(A◦) = {x ∈ D(A); Ax ∈ Y } is assumed to be dense in Y , and
Y is assumed to be a Grothendieck space with the Dunford-Pettis property,
it follows from Theorem 2 of [25] that the strong convergence of {A◦α} on Y
implies its operator-norm convergence.

The rates of covergence of ergodic limits are characterized by means of
K-functional and relative completion, which we recall as below.

Let X be a Banach space with norm ‖ · ‖X , and Y a submanifold with
seminorm ‖ · ‖Y . The K-functional is defined by

K(t, x) := K(t, x,X, Y, ‖ · ‖Y ) = inf
y∈Y

{‖x− y‖X + t‖y‖Y }.

If Y is a Banach space with norm ‖ · ‖Y , the completion of Y relative to X is
defined as

Y X̃ := {x ∈ X : ∃{xm} ⊂ Y such that lim
m→∞ ‖xm−x‖X = 0 and sup ‖xm‖Y < ∞}.

It is known [4] that K(t, x) is a bounded, continuous, monotone increasing and
subadditive function of t for each x ∈ X, and K(t, x, X, Y, ‖ · ‖Y ) = O(t) (t →
0+) if and only if x ∈ Y X̃ .

We next specify the required notations. Let X1 := R(A) and X0 :=
D(P ) = N(A) ⊕ X1. Since the operator B1 : D(B1) ⊂ X1 → X1 is closed,
its domain D(B1) (= R(A1)) is a Banach space with respect to the norm
‖x‖B1 := ‖x‖ + ‖B1x‖. Let B0 : D(B0) ⊂ X0 → X0 be the operator
B0 := 0⊕B1. Then its domain

D(B0) (= N(A)⊕D(B1) = N(A)⊕A(D(A) ∩R(A)))



370 Sen-Yen Shaw

is a Banach space with norm ‖x‖B0 := ‖x‖+‖B0x‖, and [D(B0)]̃ X0 = N(A)⊕
[D(B1)] X̃1 .

Now we can state the following theorem (see [26] and [29, Theorem 1]),
which is concerned with optimal convergence and non-optimal convergence
rates of ergodic limits and approximate solutions.

Theorem 2.4. Under conditions (C1) - (C5), the following statements
hold.

(i) For x ∈ X0, one has: ‖Aαx− Px‖ = o(e(α)) ⇔ x ∈ N(A).

(ii) For x ∈ X0 = N(A)⊕R(A), one has:

‖Aαx− Px‖ = O(f(α))⇔ K(e(α), x,X0, D(B0), ‖ · ‖B0) = O(f(α))
⇔ x ∈ [D(B0)]̃ X0(in case f = e).

(iii) For y ∈ D(B1) = R(A1), one has: ‖Bαy −B1y‖ = o(e(α)) ⇔ y = 0.

(iv) For y ∈ D(B1) = R(A1), one has:

‖Bαy −B1y‖ = O(f(α))⇔ K(e(α), B1y,X1, D(B1), ‖ · ‖B1) = O(f(α))

⇔ y ∈ A(D(A) ∩ [D(B1)]∼X1
) (in case f = e).

Thus, when A 6= 0, the rate of optimal convergence of ‖Aαy‖ = O(e(α))
is sharp everywhere on [D(B1)]̃ X1 \ {0}. The following theorem [29, Theorem
2] shows that the non-optimal convergence rate: ‖Aαy‖ = O(f(α)) with f
satisfying f(α)/e(α) →∞ is sharp.

Theorem 2.5. Suppose that A, {Aα}, and {Bα} satisfy conditions (C1)
- (C5), with f(α)/e(α) → ∞. Then R(A) is not closed if and only if there
exists an element yf ∈ X1 such that

‖Aαyf‖
{

= O(f(α));
6= o(f(α)).

Moreover,

‖Aα(x + yf )− P (x + yf )‖
{

= O(f(α));
6= o(f(α))

for all x ∈ N(A).

3. REGULARIZED APPROXIMATION PROCESSES
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A net {Tα} of bounded linear operators on a Banach space X is called an
approximation process on X if

‖Tαx− x‖ → 0 for all x ∈ X.

The process {Tα} is said to possess the saturation property if there exists a
positive function e(α) tending to 0 such that every x ∈ X for which

‖Tαx− x‖ = o(e(α))

is an invariant element of {Tα}, i.e., Tαx = x for all α, and if the set

F [X;Tα] = {x ∈ X; ‖Tαx− x‖ = O(e(α))}

contains at least one noninvariant element. In this case, the approximation
process {Tα} is said to have optimal approximation order O(e(α)) or to be
saturated in X with order O(e(α)), and F [X; Tα] is called its Favard class or
saturation class.

Let e(α) be a positive function tending to 0. A net {Tα} of bounded
linear operators on X is called an A-regularized approximation process of order
O(e(α)) on X if it is uniformly bounded, i.e., ‖Tα‖ ≤ M for some M > 0 and
all α, and satisfies
(A1) there are a (necessarily densely defined) closed linear operator A and a

uniformly bounded approximation process {Sα} on X such that R(Sα) ⊂
D(A) and

SαA ⊂ ASα = (e(α))−1(Tα − I) for all α.

In this case, the process {Sα} is called a regularization process associated with
{Tα}.

The convergence rates of {Tα} were studied in [32] recently. In the follow-
ing, we quote some of the general results.

Lemma 3.1. (i) x ∈ D(A) and y = Ax if and only if y = limα(e(α))−1(Tα−
I)x.

(ii) D(A) is dense in X, and ‖Tαx− x‖ → 0 for all x ∈ X.

The next is a uniform convergence theorem.

Theorem 3.2. Let {Tα} be an A-regularized approximation process of
order O(e(α)).

(i) If A is bounded, then ‖Tα − I‖ = O(e(α)) → 0.
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(ii) ‖Tα − I‖ → 0 implies A ∈ B(X) if either R(Tα) ⊂ D(A) for all α, or
Sα and Tα satisfy the following condition:
(A2) ‖Tα − I‖ → 0 implies ‖Sα − I‖ → 0.

(iii) If the space X is a Grothendieck space with the Dunford-Pettis property
and if R(Tα) ⊂ D(A) for all α, then A ∈ B(X) and ‖Tα − ‖ = O(e(α)).

As usual, the rates of covergence will be characterized by means of K-
functional and relative completion. The following is an optimal convergence
(saturation) theorem.

Theorem 3.3. Let {Tα} be an A-regularized approximation process of
order O(e(α)), and let D(A) be equipped with the graph norm ‖ · ‖D(A). For
x ∈ X, we have:

(i) ‖Tαx − x‖ = o(e(α)) if and only if x ∈ N(A), if and only if Tαx = x
for all α.

(ii) ‖Tαx − x‖ = O(e(α)) if and only if x ∈ [D(A)] X̃ , if and only if
x ∈ D(A) in the case that X is reflexive.

The next theorem is about non-optimal convergence.

Theorem 3.4. Let 0 ≤ e(α) ≤ f(α) → 0. If K(e(α), x, X,D(A), ‖ ·
‖D(A)) = O(f(α)), then ‖Tαx−x‖ = O(f(α)). The converse statement is also
true under the following assumption:
(A3) ‖Sαx− x‖ = O(f(α)) whenever ‖Tαx− x‖ = O(f(α)).

The sharpness of non-optimal rate of convergence is shown by the following
theorem.

Theorem 3.5. Suppose an A-regularized approximation process {Tα} and
its regularization process {Sα} satisfy condition (A2). Then A is unbounded
if and only if for each f(α) with 0 ≤ e(α) < f(α) → 0 and f(α)/e(α) → ∞
there exists xf ∈ X such that

‖Tαxf − xf‖
{

= O(f(α));
6= o(f(α)).

The proof of Theorem 3.5 depends on the the following proposition which
is a variation of a condensation theorem of Davydov [11, Theorem 1].

Proposition 3.6. Let {pα} be a net of continuous seminorms on a Banach
space X satisfying the conditions:
(a) lim

α
‖pα‖ = ∞, where ‖pα‖ := sup{pα(x);x ∈ X, ‖x‖ ≤ 1};
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(b) the set {x ∈ X; lim
α

pα(x) = 0} is dense in X.

Then there exists an element x0 ∈ X such that sup
α

pα(x0) ≤ 1 and lim
α

pα(x0) =

1.

Proof of Theorem 3.5. If A is bounded, then by Theorem 3.2(i) we have
‖Tα − I‖ = O(e(α)) so that ‖Tα − I‖ = o(f(α)). This shows the sufficiency.

For the necessity, suppose A is unbounded and define pα(x) = (f(α))−1‖Tαx−
x‖, x ∈ X. Note that pα is a seminorm on X with ‖pα‖ ≤ (M + 1)/f(α). We
show that {pα} satisfies the hypothesis of Proposition 2.8.

By Theorem 3.2(i), we have limα‖Tα − I‖ > 0, so that limα‖pα‖ =
limα(f(α))−1 ‖Tα−I‖ = ∞. Moreover, we have pα(x) = (f(α))−1e(α)‖SαAx‖ →
0 for all x ∈ D(A), by (A1) and the assumption f(α)/e(α) → ∞. Hence the
set {x ∈ X; limα pα(x) = 0} contains D(A), which is dense in X by (A1).

The hypothesis of Proposition 3.6 being satisfied, it follows that there exists
an xf ∈ X such that supα pα(xf ) ≤ 1 and limαpα(xf ) = 1, i.e., xf satisfies
‖Tαxf − xf‖ = O(f(α)) and ‖Tαxf − xf‖ 6= o(f(α)).

4. ERGODIC THEOREMS FOR r-TIMES INTEGRATED SOLUTION FAMILIES

Let A be a (not necessarily densely defined) closed linear operater in X
and a ∈ L1

loc(R+) be a positive kernel. Consider the Volterra equation:

u(t) = f(t) +
∫ t

0
a(t− s)Au(s)ds, t ≥ 0,(V E,A, a, f)

for f ∈ C([0,∞);X).
Let r ∈ [0,∞). A family {S(t); t ≥ 0} in B(X) is called an r-times

integrated solution family for (V E, A, a, f) (see [2, 19] for the case r = n ∈ N)
if
(S1) S(·) is strongly continuous on [0,∞), and S(0) = I if r = 0 and 0 if r > 0;
(S2) S(t)x ∈ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;
(S3) for x ∈ X and t ≥ 0, a ∗ S(t)x ∈ D(A) and

S(t)x =
tr

Γ(r + 1)
x + A

∫ t

0
a(t− s)S(s)xds.

A 0-times integrated solution family is also called a solution family or
resolvent family [3, 9, 14, 20].

The notion of an r-times integrated solution family is an extension of the
concepts of r-times integrated semigroups (see [1, 12, 13, 17]) and n-times
integrated cosine functions [31] (corresponding to the cases a ≡ 1 and a(t) = t,
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respectively). The existence of an r-times integrated solution family enables
one to find the solution for the equation (V E, A, a, f) (see [19]).

In this section, we deduce ergodic theorems for an r-times integrated so-
lution family S(·). These are concerned with the convergence of some Cesáro
type means Qm(t), m ≥ 1, and Abel means of S(·) as t → ∞. For the exis-
tence of the limits, the fulfilment of the condition S(t) = O(tr) as t →∞ and
as t → 0 is required. Thus, throughout the section we assume that

‖S(t)‖ ≤ Mtr for all t ≥ 0.(4.1)

Put jr(t) = tr/Γ(r + 1) for t ≥ 0 and r ≥ 0 and denote by a0 the Dirac
measure δ0 at 0. For each m ≥ 0, let am+1(t) = a ∗ am(t) for t ≥ 0, let
km(t) = am+1 ∗ jr(t)/am ∗ jr(t) for t > 0, and define

Qm(t)x =
am ∗ S(t)x
am ∗ jr(t)

for x ∈ X and t > 0.

In particular, k0(t) = a∗jr(t)/jr(t), k1(t) = a∗a∗jr(t)/a∗jr(t), Q0(t) = (Γ(r+
1)/tr) S(t), and Q1(t) = a∗S(t)/a∗jr(t), which are

∫ t
0 a(s)ds, a∗a∗1(t)/a∗1(t),

S(t), and a ∗ S(t)/a ∗ 1(t), respectively, when r = 0.
Note that am(t) and am ∗ jr(t) are nondecreasing positive functions of t.

Therefore,

km(t) =
1

am ∗ jr(t)

∫ t

0
a(t− s)(am ∗ jr)(s)ds ≤

∫ t

0
a(s)ds → 0(4.2)

as t → 0.
By the assumption (4.1), we have

‖Qm(t)x‖≤ 1
am ∗ jr(t)

∫ t

0
am(t− s)‖S(s)x‖ds

≤ M‖x‖
am ∗ jr(t)

∫ t

0
am(t− s)srds = MΓ(r + 1)‖x‖

for all x ∈ X, so that

‖Qm(t)‖ ≤ MΓ(r + 1) (m ≥ 0, 0 < t ≤ 1).(4.3)

We shall need the next lemma [32], which relates A, Qm(t), and Qm+1(t).

Lemma 4.1. Let S(·) be an n-times integrated solution family for (V E, A, a, f)
such that ‖S(t)‖ ≤ Mtr for all t ≥ 0, and let A◦ be the part of A in Y := D(A).
Then

Q0(t)D(A) ⊂ D(A) and Q0(t)Ax = AQ0(t)x for x ∈ D(A),(4.4)
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Qm+1(t)X ⊂ D(A) and

Qm+1(t)A ⊂ AQm+1(t) =
1

km(t)
(Qm(t)− I),

(4.5)

Q0(t)D(A◦) ⊂ D(A◦) and Q0(t)A◦x = A◦Q0(t)x for x ∈ D(A◦),(4.6)

Qm+1(t)Y ⊂ D(A◦) and

Qm+1(t)A◦ ⊂ A◦Qm+1(t)|Y =
1

km(t)
(Qm(t)− I)|Y

(4.7)

for all m ≥ 0 and t > 0.

For m ≥ 0 and t > 0, let At and Bt be operators defined respectively by

At := Qm+1(t) and Btx := −km+1(t)Qm+2(t) = − am+2 ∗ S(t)
am+1 ∗ jr(t)

.

Then (2.5) becomes

R(Bt) ⊂ D(A) and BtA ⊂ ABt = I −At for t > 0,

that is, condition (C2) is satisfied. Moreover, AtA ⊂ AAt = (km(t))−1(Qm(t)−
I) for t > 0. Hence conditions (C1) and (C3) hold with e(t) = 1/km(t).

We suppose km(t) → ∞ and km+1(t) → ∞ as t → ∞. To check (C4), let
x∗ ∈ R(A)⊥. Then, by (S3) we have

〈x, S∗(t)x∗〉 = jr(t)〈x, x∗〉+ 〈A
∫ t

0
a(t− s)S(s)xds, x∗〉 = jr(t)〈x, x∗〉

for all x ∈ X, so that S∗(t)x∗ = jr(t)x∗ and hence

(Bt)∗(t)x∗ = −am+2 ∗ S∗(t)x∗

am+1 ∗ jr(t)
= −am+2 ∗ jr(t)

am+1 ∗ jr(t)
x∗ = −km+1(t)x∗

for all t ≥ 0. Thus condition (C4) is satisfied.
Finally, to see (C5) with f(t) = e(t)β = (km(t))−β, 0 < β ≤ 1, let x be

such that ‖Atx‖ ≤ Mx(km(t))−β. Then

‖Btx‖= ‖ am+2 ∗ S(t)
am+1 ∗ jr(t)

‖ = ‖a ∗ [am+1 ∗ jr(t)Atx]
am+1 ∗ jr(t)

‖

≤ a ∗ am ∗ jr(t)km(t)(km(t))−βMx

am+1 ∗ jr(t)
= Mx(km(t))1−β
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for all t ≥ 0. Similarly, ‖Atx‖ = o((km(t))−β) implies ‖Btx‖ = o((km(t))1−β).
Now, applying Theorems 2.1, 2.4, and 2.5, we can formulate the following

strong ergodic theorem with rates.

Theorem 4.2. Let a ∈ L1
loc(R+) be a positive function such that km(t) →

∞ and km+1(t) →∞ as t →∞, and let S(·) be an r-times integrated solution
family for (V E, A, a, f) satisfying ‖S(t)‖ ≤ Mtr for all t ≥ 0. For m ≥ 0 we
have:

(i) The mapping P : x 7→ limt→∞Qm+1(t)x is a bounded linear projection
with R(P ) = N(A), N(P ) = R(A), and

D(P ) = N(A)⊕R(A) = {x ∈ X; {Qm+1(t)x} has a weak cluster point}.

For 0 < β ≤ 1 and x ∈ X0 := D(P ) = N(A)⊕R(A), one has:

‖Qm+1(t)x− Px‖ = O((km(t))−β)

⇐⇒ K((km(t))−1, x,X0, D(B0), ‖ · ‖B0) = O((km(t))−β)

⇐⇒ x ∈ [D(B0)]∼X0
(in case β = 1).

(ii) The mapping B1 : y → − limt→∞ km+1(t)Qm+2(t)y is the inverse
operator A−1

1 of the restriction A1 := A|R(A) of A to R(A); it has range
R(B1) = D(A) ∩ R(A), and domain D(B1) = A(D(A) ∩ R(A)). For each
y ∈ A(D(A) ∩ R(A)), B1y is the unique solution of the functional equation
Ax = y in R(A), and we have, for 0 < β ≤ 1,

‖km+1(t)Qm+2(t)y + A−1
1 y‖ = O((km(t))−β) (t →∞)

⇐⇒ K((km(t))−1, B1y, X1, D(B1), ‖ · ‖B1) = O((km(t))−β) (t →∞)

⇐⇒ y ∈ [D(B1)]∼X1
(in case β = 1).

(iii) R(A) is not closed if and only if for every (some) 0 < β < 1, there is
a yβ ∈ R(A) such that

‖Qm+1(t)yβds‖
{

= O((km(t))−β)
6= o((km(t))−β)

(t →∞).

As will be seen in Section 5, D(A◦) is dense in Y = D(A). We can apply
Theorems 2.2 and 2.3 to deduce the following uniform ergodic theorem.

Theorem 4.3. Under the hypothesis in Theorem 4.2, we have:
(i) ‖Qm+1(t) − P‖ → 0 if and only if ‖km+1(t)Qm+2(t) + A−1

1 ‖R(A) → 0,
if and only if R(A) is closed, if and only if R(A2) is closed, if and only if
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X = N(A)⊕R(A). In this case, we have ‖Qm+1(t)−P‖ = O((km(t))−1) and
‖km+1(t)Qm+2(t) + A−1

1 ‖R(A) = O((km(t))−1).
(ii) If Y := D(A) is a Grothendieck space with the Dunford-Pettis property,

and if Y ⊂ D(P ), then ‖Qm+1(t)|Y − P |Y ‖ = O((km(t))−1).

Next, we consider the case that the kernel a ∈ L1
loc(R+) is Laplace trans-

formable, i.e., there is ω ≥ 0 such that â(λ) =
∫∞
0 e−λta(t)dt < ∞ for all

λ > ω. Under this and the assumption (4.1), we can take Laplace transform
of the equation in (S3) to obtain

Ŝ(λ)x =

{
1

λn+1 x + â(λ)Ŝ(λ)Ax, x ∈ D(A),
1

λn+1 x + Aâ(λ)Ŝ(λ)x, x ∈ X

for λ > ω. Thus

λn+1â(λ)Ŝ(λ)
(
(â(λ))−1 −A

)

⊂ (
(â(λ))−1 −A

)
λn+1â(λ)Ŝ(λ) = I,

(4.8)

that is, (â(λ))−1 ∈ ρ(A) and ((â(λ))−1 − A)−1 = λn+1â(λ)Ŝ(λ) for λ > ω.
Moreover, (4.1) implies

‖(â(λ))−1((â(λ))−1 −A)−1‖ = ‖λn+1Ŝ(λ)‖

= ‖λn+1

∫ ∞

0
e−λtS(t)dt‖ ≤ MΓ(r + 1).

(4.9)

If a satisfies the condition
∫∞
0 a(t)dt = ∞, we have â(λ) → ∞ and

(â(λ))−1 → 0+ as λ → 0+. It is easy to see from (4.8) and (4.9) that Aλ :=
(â(λ))−1((â(λ))−1 − A)−1 is an A-ergodic net and Bλ := −((â(λ))−1 − A)−1

is a companion net, with e(λ) = (â(λ))−1 → 0+ and φ(λ) = â(λ) → ∞ as
λ → 0+. Hence we can apply Theorems 2.1, 2.4, and 2.5 to formulate the
following strong ergodic theorem with rates.

Theorem 4.4. Soppose that
∫∞
0 a(t)dt = ∞ and â(λ) =

∫∞
0 e−λta(t)dt <

∞ for all λ > 0, and suppose ‖S(t)‖ ≤ Mtr for all t ≥ 0. Then the following
are true for 0 < β ≤ 1:

(i) For x ∈ X0, one has

‖(â(λ))−1((â(λ))−1 −A)−1x− Px‖ = O((â(λ))−β)(λ → 0+)

⇐⇒ K(λ, x, X0, D(B0), ‖ · ‖B0) = O(λβ) (λ → 0+)

⇐⇒ x ∈ [D(B0)]∼X0
(in case β = 1).
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(ii) For y ∈ D(B1) = R(A1), one has

‖((â(λ))−1 −A)−1y + B1y‖ = O((â(λ))−β) (λ → 0+)

⇐⇒ K(λ,B1y, X1, D(B1), ‖ · ‖B1) = O(λβ) (λ → 0+)

⇐⇒ x ∈ [D(B1)]∼X1
(in case β = 1).

(iii) R(A) is not closed if and only if for each (some) 0 < β < 1 there exists
an element yβ ∈ R(A) such that

‖(â(λ))−1((â(λ))−1 −A)−1yβ‖
{

= O((â(λ))−β)
6= o((â(λ))−β)

(λ → 0+).

From Theorems 2.2 and 2.3, one can deduce the following uniform ergodic
theorem.

Theorem 4.5. Under the hypothesis in Theorem 4.4, we have:
(i) ‖(â(λ))−1((â(λ))−1−A)−1−P‖ → 0 if and only if ‖((â(λ))−1−A)−1 +

A−1
1 ‖R(A) → 0, if and only if R(A) is closed, if and only if R(A2) is closed,

if and only if X = N(A)⊕R(A). In this case, we have ‖(â(λ))−1((â(λ))−1 −
A)−1 − P‖ = O((â(λ))−β) (λ → 0+) and ‖((â(λ))−1 − A)−1 + A−1

1 ‖R(A) =
O((â(λ))−β) (λ → 0+).

(ii) If Y := D(A) is a Grothendieck space with the Dunford-Pettis property,
and if Y ⊂ D(P ), then ‖(â(λ))−1((â(λ))−1−A)−1|Y−P |Y ‖ = O((â(λ))−1) (λ →
0+).

5. APPROXIMATION PROPERTIES OF r-TIMES INTEGRATED SOLUTION FAMILIES

In this section, we consider approximation properties of r-times integrated
solution families. Of concern are the convergence of Qm(t) as t → 0+ and that
of (â(λ))−1((â(λ))−1 −A)−1 as λ →∞.

Lemma 5.1. Let a ∈ L1
loc(R+) and let S(·) be an r-times integrated solu-

tion family for (V E, A, a, f) such that ‖S(t)‖ ≤ Mtn for all t ≥ 0.
(i) For m ≥ 0, ‖Qm(t)x − x‖ → 0 as t → 0+ if and only if Qm(t)x → x

weakly as t → 0+, if and only if there is a sequence {tn} such that Qm(tn)x → x
weakly for the case m ≥ 1, if and only if x ∈ X1.

(ii) If r = 0, then A is densely defined in X.

Proof. (i) It follows from (4.2), (4.3), and (4.5) that for all m ≥ 0

‖Qm(t)x− x‖≤ km(t)‖Qm+1(t)‖‖Ax‖
≤ km(t)Mn!‖Ax‖ → 0
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as t → 0+ for all x ∈ D(A), and hence Qm(t)x → x for all x ∈ X1, by (4.3).
Conversely, from the estimate:

|〈Qm+1(t)x− x, x∗〉|

=
1

am+1 ∗ jn(t)
|〈

∫ t

0
a(t− s)(am ∗ S(s)x)ds

−
∫ t

0
a(t− s)(am ∗ jn)(s)xds, x∗〉|

≤ 1
am+1 ∗ jn(t)

∫ t

0
a(t− s)(am ∗ jn)(s)|〈Qm(s)x− x, x∗〉|ds

≤ sup{|〈Qm(s)x− x, x∗〉|; 0 ≤ s ≤ t}, x ∈ X, x∗ ∈ X∗,

(5.1)

one sees that if Qm(t)x → x weakly, then Qm+1(t)x → x weakly, which
and the fact that R(Qm+1(t)) ⊂ D(A) show that x ∈ X1. When m ≥ 1,
R(Qm(tn)) ⊂ D(A), and so x = w-lim Qm(tn)x ∈ X1.

(ii) When r = 0, since Q0(t) = S(t) → I strongly as t → 0+, (5.1) implies
that

‖Q1(t)x− x‖ ≤ sup{‖S(s)x− x‖; 0 ≤ s ≤ t} → 0

for all x ∈ X. Then we have X1 = X, by the fact that Q1(t)X ⊂ D(A). That
is, A is densely defined for the case r = 0.

Thus, from (4.2), (4.4), (4.7), and Lemma 5.1(i), we see that Y is invariant
under Qm(t) for each m ≥ 0, and {Tt := Qm(t)|Y } is an A◦-regularized ap-
proximation process on Y with the regularization process {St := Qm+1(t)|Y }
and with the optimal order O(km(t))(t → 0+). In particular, D(A◦) is dense
in Y , by Lemma 3.1(ii). Moreover, we have TtD(A◦) ⊂ D(A◦) if m = 0 and
R(Tt) ⊂ D(A◦) if m ≥ 1.

Lemma 5.2. The above pair ({Tt}, {St}) satisfies (A2). If km(t) is non-
decreasing for t near 0, then (A3) with f(t) = (km(t))β (0 < β ≤ 1) also
holds.

Proof. From (5.1) one can see that ‖St− I‖Y ≤ sup{‖Ts− I‖Y ; 0 ≤ s ≤ t},
which shows (A2). Moreover, if ‖Ttx − x‖ ≤ M(km(t))β for all t ∈ [0, 1],
then ‖Stx − x‖ ≤ M sup{(km(s))β; 0 ≤ s ≤ t} ≤ M(km(t))β for all t ∈ [0, 1],
showing (A3).

From Theorem 3.2 and Lemma 5.2 we deduce the following uniform con-
vergence theorem.
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Theorem 5.3. Let a ∈ L1
loc(R+), and let S(·) be an r-times integrated

solution family for (V E,A, a, f) such that ‖S(t)‖ ≤ Mtr for all t ≥ 0.
(i) For m ≥ 0, ‖Qm(t) − I‖ → 0 as t → 0+ if and only if A ∈ B(X). In

this case, ‖Qm(t)− I‖ = O(km(t))(t → 0+).
(ii) When Y is a Grothendieck space with the Dunford-Pettis property, A

must be bounded on X, and consequently ‖S(t)−jr(t)I‖ = O(a∗jr(t)) (t → 0+).

Proof. (i) follows from Theorem 3.2 and Lemma 5.2.
(ii) Applying Theorem 3.2 to {Tt := Q1(t)|Y } yields that A◦ is bounded on

Y , so that ‖Q1(t)|Y −I|Y ‖ ≤ k1(t)‖A◦‖‖Q2(t)‖ ≤ k1(t)‖A◦‖MΓ(r+1) → 0 as
t → 0+. Hence Q1(t)|Y is invertible on Y for small t. Then by (4.5) we have
Y = R(Q1(t)|Y ) ⊂ R(Q1(t)) ⊂ D(A), which shows that D(A) is closed and
A is bounded. Due to Lemma 5.2, (i) and (ii) of Theorem 3.2 together imply
that A ∈ B(X). By (i), ‖Qm(t) − I‖ = O(km(t))(t → 0+), and in particular,
‖S(t)− jr(t)I‖ = O(a ∗ jr(t)) (t → 0+).

From Theorems 3.3, 3.4, 3.5 and Lemma 5.2, we deduce the next theorem.

Theorem 5.4. Let S(·) be as assumed in Theorem 5.3 and let m ≥ 0, 0 <
β ≤ 1, and x ∈ D(A).

(i) ‖Qm(t)x− x‖ = o(km(t)) (t → 0+) if and only if x ∈ N(A◦) = N(A).
(ii) ‖Qm(t)x − x‖ = O(km(t))(t → 0+) if and only if x ∈ [D(A◦)] Ỹ

(= D(A◦), if X is reflexive).
(iii) If K(km(t), x, X,D(A), ‖·‖D(A)) = O((km(t))β)(t → 0+), then ‖Qm(t)x−

x‖ = O((km(t))β)(t → 0+). The converse is also true if km(t) is nondecreasing
for t near 0.

(iv) A is unbounded if and only if for some (each) 0 < β < 1 and m ≥ 0,
there exists x∗m,β ∈ Y = D(A) such that

‖Qm(t)x∗m,β − x∗m,β‖
{

= O((km(t))β)
6= o((km(t))β)

(t → 0+).

When a is Laplace transformable, it is easy to see that â(λ) → 0 as λ →∞.
Then it can be verified that {Tλ := (â(λ))−1((â(λ))−1 − A◦)−1} is an A◦-
regularized approximation process on Y with the regularization process {Sλ :=
(â(λ))−1((â(λ))−1 − A◦)−1} and with the optimal order O(â(λ))(λ → ∞).
They satisfy conditions (A1), (A2) and (A3). Hence we can deduce from the
theorems in Section 3 the following theorems.

Theorem 5.5. Let a ∈ L1
loc(R+) be Laplace transformable and let S(·) be

an r-times integrated solution family for (V E, A, a, f) such that ‖S(t)‖ ≤ Mtr

for all t ≥ 0.
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(i) ‖(â(λ))−1((â(λ))−1 −A)−1x− x‖ → 0 as λ →∞ if and only if x ∈ Y .
(ii) ‖(â(λ))−1((â(λ))−1−A)−1−I‖ → 0 as λ →∞ if and only if A ∈ B(X).

In this case, ‖(â(λ))−1((â(λ))−1 −A)−1 − I‖ = O(â(λ))(λ →∞).
(iii) For x ∈ Y, ‖(â(λ))−1((â(λ))−1−A)−1x−x‖ = o(â(λ))(λ →∞) if and

only if x ∈ N(A).
(iv) For 0 < β ≤ 1 and x ∈ Y, ‖(â(λ))−1((â(λ))−1 − A)−1x − x‖ =

O((â(λ))β) as λ → ∞ if and only if K(t, x, X, D(A), ‖ · ‖D(A)) = O(tβ)(t →
0+), if and only if x ∈ [D(A◦)] Ỹ in the case that β = 1, if and only if
x ∈ D(A◦) in the case that β = 1 and X is reflexive.

(v) A is unbounded if and only if for each 0 < β < 1, there exists x∗β ∈ Y
such that

‖(â(λ))−1((â(λ))−1 −A)−1x∗β − x∗β‖
{

= O((â(λ))β)
6= o((â(λ))β)

(λ →∞).

Remarks. (i) For the case r = 0,m = 0, 1, direct proofs for Theorems
5.3(i) and 5.4 have been given in [9].

(ii) Theorem 5.3(ii) implies in particular that every resolvent family S(·)
(i.e., the case n = 0) on a Grothendieck space with the Dunford-Pettis property
satisfies ‖S(t) − I‖ = O(

∫ t
0 a(s)ds) (t → 0+). Specialization for the cases

a ≡ 1 and a(t) = t yields the same assertion for C0-semigroups [16] and cosine
operator functions [21].

(iii) If one takes a ≡ 1 and a(t) = t, then S(·) becomes respectively an
r-times integrated semigroup and an r-times integrated cosine function, and
the theorems in Sections 4 and 5 reduce to their ergodic theorems [29] and
approximation theorems [10], respectively. When r = 0, they reduce further
to results in [6].

REFERENCES

1. W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J.
Math. 59 (1987), 327-352.

2. W. Arendt and H. Kellerman, Integrated solutions of Volterra integrodiffer-
ential equations and applications, in: Volterra Integrodifferential Equations in
Banach Spaces, Pitman Res. Notes in Math., Vol. 190, 1989, pp. 21-51.

3. W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic
behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), 412-
448.

4. H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen
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