
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 4, No. 2, pp. 297-306, June 2000

THE POINT SPECTRUM OF THE LINEARIZED
BOLTZMANN OPERATOR WITH AN EXTERNAL

POTENTIAL IN AN UNBOUNDED DOMAIN

Minoru Tabata and Nobuoki Eshima

Abstract. We will investigate the point spectrum on the imaginary axis
of the linearized Boltzmann operator with an external-force potential
in an unbounded domain. The boundary condition considered is the
perfectly reflective boundary condition. We suppose that the boundary
surface is sufficiently smooth, but is not cylindrical. In this case, the
point spectrum on the imaginary axis is only equal to {0}.

1. Introduction

The nonlinear Boltzmann equation with an external-force potential φ =
φ(x) has the form,

∂f/∂t + Λf = Q(f, f).(1.1)

This equation describes the time evolution of rarefied gas acted upon by the
external force F = −∇φ. f = f(t, x, ξ) is the unknown function denoting the
density of gas particles at time t ≥ 0, at a point x ∈ Ω, and with a velocity
ξ ∈ R3. Ω is a domain of R3 in which the rarefied gas is confined. Λ and
Q(·, ·) are the following operators (see [1, 2]):

Λ ≡ ξ · ∇x −∇xφ · ∇ξ,

Q(g, h) ≡ (1/2)
∫

ξ′∈R3,s∈S2
B(θ, |ξ − ξ′|)

×{g(η)h(η′) + g(η′)h(η)− g(ξ)h(ξ′)− g(ξ′)h(ξ)}dξ′ds,
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where g(η) = g(t, x, η), etc., η = ξ−((ξ−ξ′)·s)s, η′ = ξ′+((ξ−ξ′)·s)s, and cos
θ = (ξ− ξ′) · s/|ξ− ξ′|, s ∈ S2. S2 denotes the unit sphere whose center is the
origin. B(θ, V ) is a nonnegative known function of (θ, V ) ∈ [0, π] × [0, +∞).
We will impose the following (see [1, 2]):

Assumption 1.1. B(θ, V )/| sin θ cos θ| ≤ c1.1(V + V ε−1), where c1.1 > 0
and 0 < ε < 1 are constants independent of (θ, V ).

Under this assumption, we linearize (1.1) around the absolute Maxwellian
state M ≡ exp(−E(x, ξ)), where E(x, ξ) ≡ φ(x) + |ξ|2/2. Substituting f =
M +M1/2u in (1.1), and dropping the nonlinear term, we obtain the linearized
Boltzmann equation,

∂u/∂t = Bu,(1.2)

where B ≡ A + e−φ(x)K, and A ≡ −Λ + e−φ(x)(−ν). The operator B is the
linearized Boltzmann operator. ν = ν(ξ) is a multiplication operator, and K
is an integration operator with a symmetric kernel. ν and K act on ξ only.
These operators satisfy the following (see [1, 2]):

Lemma 1.2. (i) There exists a positive constant c1.2 such that for any
ξ ∈ R3, 0 < ν(ξ) ≤ c1.2(1 + |ξ|).

(ii) K is a self-adjoint compact operator on L2(R3
ξ).

(iii) (−ν + K) is a self-adjoint nonpositive operator on L2(R3
ξ).

(iv) The point spectrum of −ν+K contains 0, and the null space is spanned
by ξj exp(−|ξ|2/4), j = 1, 2, 3, exp(−|ξ|2/4), and |ξ|2 exp(−|ξ|2/4), where ξj is
the jth component of ξ, j = 1, 2, 3, i.e., ξ = (ξ1, ξ2, ξ3).

It is important to investigate the decaying of solutions of (1.2) (see [3,
p. 768], [4, p. 241], and [5, p. 1827]). For this purpose we need to first in-
spect the point spectrum of B on the imaginary axis and the corresponding
eigenspaces, because we can obtain estimates for the decaying of solutions of
(1.2) only in function spaces perpendicular to the eigenspaces corresponding
to eigenvalues of B on the imaginary axis (cf. [1, 2]).

In [6], we have already investigated this subject when Ω = R3, and by
making use of the result in [6], we have obtained decay estimates for solutions
of (1.2) (cf. [3-5]). In the present paper, we will study that subject when
Ω is an unbounded domain whose boundary is sufficiently smooth, but is
not cylindrical. The main result is Theorem 4.1. The boundary condition
considered is the perfectly reflective boundary condition. We assume that the
traces upon ∂Ω of functions contained in the domain of B are square-integrable
with respect to some measure on ∂Ω×R3.
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In [6], the eigenvalues of B and the corresponding eigenfunctions have only
to satisfy the following:

µv = Bv.(1.3)

In this paper, we obtain µ and v which satisfy (1.3), and moreover we need
to examine whether v satisfies the perfectly reflective boundary condition or
not. The forms of eigenfunctions of B are heavily restricted by this fact, and
hence we have to perform more complicated calculations than those in [6].

However, for the same reason, some eigenvalues of B in [6] are not eigenval-
ues of B in the present paper. As a result, the structure of the point spectrum
is simplified; the point spectrum is only equal to {0} in the present paper.

This paper consists of 4 sections. §2 presents preliminaries. In §3, we
obtain necessary conditions for the point spectrum of B and the corresponding
eigenspaces. In §4, we prove the main theorem.

Remark 1.3. We can also investigate, by the method developed in this
paper, the case where ∂Ω is cylindrical. However, if ∂Ω is cylindrical, then the
point spectrum and the corresponding eigenspaces exhibit more complicated
structures than those when ∂Ω is not cylindrical. We will study this subject
in another paper.

2. Preliminaries

We impose the following on Ω and φ = φ(x):

Assumption 2.1. (i) Ω is an unbounded domain of R3.
(ii) ∂Ω is a sufficiently smooth surface.
(iii) ∂Ω is not cylindrical.

Assumption 2.2. (i) φ = φ(x) is sufficiently smooth and real-valued in
Ω, and is continuous in ∂Ω ∪ Ω.

(ii) L2(∂Ωx) contains e−φ(x)/2, φ(x)e−φ(x)/2, and |x|e−φ(x)/2.
(iii) L2(∂Ωx) contains e−φ(x)/2, φ(x)e−φ(x)/2, and |x|e−φ(x)/2.
(iv) There exists a constant c2.2 such that for any x ∈ Ωφ(x) ≥ c2.2.

Remark 2.3. (i) Assumption 2.1(ii) and Assumption 2.2(i) are strong
conditions. In fact, it is sufficient to assume, in place of them, that ∂Ω and
φ = φ(x) belong to the C2-class. However, to fully argue conditions on the
regularity of ∂Ω and φ = φ(x) would carry us far away from the main subject
in this paper. Hence we accept them for simplicity.

(ii) Assumption 2.2(iii-iv) will be discussed in §4.
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We define Sj ≡ {(x, ξ) ∈ ∂Ω × R3; (−1)jn(x) · ξ < 0}, j = 1, 2, where
n = n(x) denotes the outer unit normal of ∂Ω at x ∈ ∂Ω.

We consider our problem in the complex Hilbert space L2(Ωx × R3
ξ). By

L2(Sj ; ρ), we denote the space of square-integrable functions of (x, ξ) ∈ Sj

with respect to ρ(x, ξ)dσxdξ, j = 1, 2, where ρ = ρ(x, ξ) ≡ |n(x) · ξ|. dσx

denotes an infinitesimal surface element of ∂Ωx

By D(L) we denote the domain of an operator L. We define D(Λ) ≡ {v =
v(x, ξ) ∈ L2(Ωx×R3

ξ); Λv ∈ L2(Ωx×R3
ξ), and v = v(x, ξ) satisfies the following

boundary conditions:

(γjv(·, ·))(x, ξ) ∈ L2(Sj ; ρ), j = 1, 2,(SI)

(γ1v(·, ·))(x, ξ) = (γ2v(·, ·))(x, ξ − 2(n(x) · ξ)n(x)),(PRBC)

for any (x, ξ) ∈ S1}. γj , j = 1, 2, denote the trace operators along the char-
acteristic curves of Λ, which are defined by the following system of ordinary
differential equations:

dx/dt = ξ, dξ/dt = −∇φ(x).(2.1)

γj , j = 1, 2, make functions defined in Ωx×R3
ξ correspond to those defined in

Sj , j = 1, 2, respectively.
We similarly define D(A) ≡ {v = v(x, ξ) ∈ L2(Ωx×R3

ξ); Av ∈ L2(Ωx×R3
ξ),

and v = v(x, ξ) satisfies (SI) and (PRBC)}. It follows from Assumption 2.2(iv)
and Lemma 1.2(ii) that e−φK is a bounded operator in L2(Ωx×R3

ξ). By virtue
of this fact, we can define D(B) ≡ D(A).

By a(φ) (a(Ω), respectively) we denote the set of all axes of symmetry of
φ = φ(x) (Ω, respectively).

Remark 2.4. (i) It is well-known that if v, ξ · ∇xv ∈ L2(Ωx ×R3
ξ), then

v = v(x, ξ) is absolutely continuous along the characteristic lines of ξ · ∇x.
We can construct the trace operators along the characteristic lines of ξ · ∇x.
Performing calculations similar to those in obtaining these facts, we can deduce
that if

v, Λv ∈ L2(Ωx ×R3
ξ),(2.2)

then v = v(x, ξ) is absolutely continuous along the characteristic curves of Λ.
We can construct the trace operators γj , j = 1, 2. In addition, combining (SI)
and (PRBC), we see that if v ∈ D(Λ), then

(v, Λv) + (Λv, v) = I1(v)− I2(v) = 0,(2.3)
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where the brackets denote the inner product in L2(Ωx ×R3
ξ), and

Ij(v) ≡
∫

Sj

v(x, ξ)v(x, ξ)ρ(x, ξ)d σxdξ, j = 1, 2.

(2.3) will play an important role in the next section.
(ii) By imposing (SI), we heavily restrict the domains of the operators.

However, we immediately find it nearly impossible to obtain (SI) from only
(2.2), without imposing additional assumptions on Ω. Moreover it is very
difficult to obtain (2.3) from only (PRBC) without (SI), because there is a
possibility that Ij(v) = +∞, j = 1, 2. For these reasons, we will accept (SI)
in this paper.

3. Necessary Conditions

Let us obtain necessary conditions for µ and v ∈ D(B) to satisfy (1.3).

Lemma 3.1. Suppose that v = v(x, ξ) ∈ D(B) is not identically equal to
0, and that Re µ ≥ 0. If µ and v satisfy (1.3), then

µ = 0,(3.1)

Λv = 0,(3.2)

and v has the form,

v =




3∑

j=1

ajξj + a4|ξ|2 + a5


 exp(−E(x, ξ)/2),(3.3)

where E(x, ξ) ≡ φ(x) + |ξ|2/2. The coefficients aj = aj(x), j = 1, . . . , 5, are
complex-valued functions of x ∈ Ω which satisfy the following (3.4-6):

aj = αj +
3∑

k=1

αjkxk, j = 1, 2, 3,(3.4)

a4 is a complex constant,(3.5)

a5 = 2aφ(x) + β0,(3.6)

where β0 is a complex constant. The coefficients αj , αjk, j, k = 1, 2, 3, are
complex constants which satisfy the following (3.7-8):

αjk + αkj = 0, j, k = 1, 2, 3,(3.7)
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(3.8) Define

(α, β) ≡
(
((Reα1,Reα2,Reα3), (Reα23, Reα31, Reα12)),

((Imα1, Imα2, Imα3), (Imα23, Imα31, Imα12))
)
.

If a(φ) ∩ a(Ω) is empty, then (α, β) = (0, 0). If φ = φ(x) and Ω have only
one common axis of symmetry, i.e., if a(φ) ∩ a(Ω) = {`}, then (α, β) satisfies
β//` and α = −γ × β for any γ ∈ `. If both φ = φ(x) and Ω are spherically
symmetric with respect to a point γ ∈ R3, then (α, β) satisfies α = −γ × β.

Remark 3.2. From Assumption 2.1(iii) and Assumption 2.2(ii), we easily
see that if a(φ)∩a(Ω) is nonempty, then only the following two cases may occur:
(1) φ = φ(x) and Ω have only one common axis of symmetry. (2) φ = φ(x)
and Ω are spherically symmetric with respect to only one point.

Proof of Lemma 3.1. Let us prove (3.1-3) and (3.5). Calculate the L2-inner
products of v and both sides of (1.3), and take their real parts. Recalling that
Re µ ≥ 0, and applying (2.3) and Lemma 1.2, we obtain (3.3) and the following:

Re µ = 0,(3.9)

µv = −Λv.(3.10)

Substituting (3.3) in (3.10), and comparing the coefficients of ξj , ξjξk, ξj |ξ|2,
j, k = 1, 2, 3, we obtain (3.5) and the following (cf. [6, p. 187]):

µa5 −
3∑

j=1

aj∂φ/∂xj = 0,(3.11)

µaj + ∂a5/∂xj − 2a4∂φ/∂xj = 0, j = 1, 2, 3,(3.12)

∂aj/∂xk + ∂ak/∂xj = 0, j 6= k, j, k = 1, 2, 3,(3.13)

µa4 + ∂aj/∂xj = 0, j = 1, 2, 3,(3.14)

where the derivatives are those in the sense of distribution. (3.5) and (3.11-14)
are necessary conditions for (3.3) to satisfy (1.3).

By substituting (3.3) in (PRBC), we obtain the following necessary condi-
tion for (3.3) to satisfy (PRBC):

∇ψ · a = 0 in ∂Ω,(3.15)

where a ≡ (aj)j=1,2,3 ·ψ = ψ(x) is a real-valued function of x ∈ R3 representing
∂Ω in such a way that ∂Ω = {x ∈ R3; ψ(x) = 0}. The existence of ψ = ψ(x)
follows from Assumption 2.1 immediately.
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Let us prove (3.1) by contradiction. Assume that µ 6= 0. (3.5) and (3.12)
give

∂aj/∂xk − ∂ak/∂xj = 0, j, k = 1, 2, 3.

It follows from these equalities and (3.13) that

∂aj/∂xk = 0, j 6= k, j, k = 1, 2, 3.

These equalities and (3.14) give

aj = −µa4xj + βj , j = 1, 2, 3,(3.16)

where βj = 1, 2, 3 are complex constants. Let a4 = 0. Substituting (3.16)
with a4 = 0 in (3.15), and solving the equation thus obtained with respect
to ψ = ψ(x), we see that ∂Ω is an unbounded cylindrical surface. This is
contradictory to Assumption 2.1(iii). Let a4 6= 0. Substituting (3.16) with
a4 6= 0 in (3.15), and solving the equation thus obtained with respect to
ψ = ψ(x), we conclude that ∂Ω is an unbounded conical surface. This is
contradictory to Assumption 2.1(ii). Hence we obtain (3.1). (3.2) follows
from (3.1) and (3.10) immediately.

Let us prove (3.4) and (3.6-7). Write (3.k.0) as (3.k) with µ = 0, k =
11, 12, 14. (3.5) and (3.12.0) give (3.6). From (3.13) and (3.14.0) we have

∂2aj/∂x2
k = 0, j, k = 1, 2, 3.(3.17)

Combining (3.17) and (3.14.0), we deduce that aj , j = 1, 2, 3, have the follow-
ing forms:

aj = αj + αjkxk + αj`x` + γjxkx`, {j, k, `} = {1, 2, 3},(3.18)

where αj , αjk, αj`, and γj are complex constants. Substituting (3.18) in (3.13),
and comparing the coefficients of xj , j = 1, 2, 3, we obtain (3.4) and (3.7).

Let us prove (3.8). Substituting (3.4) with (3.7) in (3.11.0) and in (3.15),
and noting that φ = φ(x) and ψ = ψ(x) are real-valued, we conclude that
φ = φ(x) and ψ = ψ(x) satisfy equations of the same form,

∇φ · (α + x× β) = 0,(3.19)

∇ψ · (α + x× β) = 0,(3.20)

where (α, β) is that in (3.8). Let β = 0 in (3.19). Suppose that α 6= 0. Then,
φ = φ(x) is constant on any lines parallel to α. This fact and Assumption
2.2(ii) lead us to a contradiction. Hence, we have α = 0. However, (α, β) =
(0, 0) satisfies (3.8).
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Let β 6= 0 in (3.19). Suppose that α is not perpendicular to β. Then, α is
decomposed as follows: α = α0 + α⊥, α0//β, α⊥ ⊥ β. Since there exists a γ
such that

α⊥ = −γ × β,(3.21)

(3.19) can be rewritten as follows:

∇ψ · (α0 + (x− γ)× β) = 0.(3.22)

The characteristic curves of this equation are helixes. In addition, those helixes
have a unique common axis which is parallel to β and passes through γ ·
φ = φ(x) is constant on those characteristic curves. However, this fact and
Assumption 2.2(ii) lead us to a contradiction. Hence, α ⊥ β, i.e., α = α⊥.
Therefore, (3.21 ) gives

α = −γ × β.(3.23)

Substituting (3.23) in (3.19-20), we have

∇φ · ((x− γ)× β) = 0, ∇ψ · ((x− γ)× β) = 0.(3.24)

It follows from (3.24) that if β 6= 0, then both φ = φ(x) and ψ = ψ(x) are
symmetric with respect to a line which is parallel to β and passes through γ.
Making use of this fact and (3.23), and recalling Remark 3.2, we can obtain
(3.8).

4. The Main Theorem

By σp we denote the point spectrum of B.

Theorem 4.1. (i) σp ∩ {µ ∈ C; Re µ ≥ 0} = {0}.
(ii) If a(φ) ∩ a(Ω) is empty, then the null space of B is spanned by

e−E(x,ξ)/2, E(x, ξ)e−E(x,ξ)/2,(4.1)

where E(x, ξ) ≡ (x) + |ξ|2/2.
(iii) If φ = φ(x) and Ω have only one common axis of symmetry, i.e., if

a(φ) ∩ a(Ω) = {`}, then the null space of B is spanned by

e−E(x,ξ)/2, E(x, ξ)e−E(x,ξ)/2, ((x− γ)× ξ)`e−E(x,ξ)/2, γ ∈ `,(4.2)

where by ((x−γ)× ξ)`, we denote the projection of (x−γ)× ξ upon the line `.
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(iv) If φ = φ(x) and Ω are spherically symmetric with respect to a point
γ ∈ R3, then the null space of B is spanned by

e−E(x,ξ)/2, E(x, ξ)e−E(x,ξ)/2, ((x− γ)× ξ)je
−E(x,ξ)/2, j = 1, 2, 3,(4.3)

where by ((x−γ)×ξ)j , we denote the jth component of (x−γ)×ξ, j = 1, 2, 3.

Proof. Write V as the set of all functions of the form (3.3) whose aj =
aj(x), j = 1, . . . , 5, satisfy (3.4-8). Making use of Lemma 3.1, we see that
σp ∩ {µ ∈ R; Re µ ≥ 0} ⊆ {0} and that the null space is contained in V .

It follows from Assumption 2.2(ii) that V ⊆ L2(Ω×R3). From Assumption
2.2(iii), we see that all elements of V satisfy (SI). Moreover, we easily deduce
that if v ∈ V , then v satisfies (PRBC) and (1.3) with µ = 0. Hence, we deduce
that 0 ∈ σp and that V is contained in the null space of B.

It follows from (3.4-8) that if φ and Ω satisfy the conditions of (ii-iv) of
the present theorem respectively, then V is spanned by (4.1-3) respectively.
Hence, we obtain the theorem.

Remark 4.2. (i) We note that the null space of B varies with the common
axes of symmetry of the external-force potential φ = φ(x) and the domain Ω.
The existence of the eigenfunctions (4.1-3) is closely related to the law of
conservation of energy, to that of mass, and to that of angular momentum
around the common axes of symmetry of φ and Ω (cf. [2, p. 159]).

(ii) If we do not accept Assumption 2.2(ii-iii), then the null space of B van-
ishes or its dimension decreases. For example, if

(∑3
j=1 βjxj + β4φ(x) + β5

)

e−φ(x)/2 is not contained in L2(Ω) for any (β1, . . . , β5) 6= (0, . . . , 0), then B has
no eigenvalues on {µ ∈ C; Re µ ≥ 0}.

(iii) If ∂Ω is bounded, then Assumption 2.2(iii) is derived from Assumption
2.2 (i).
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