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UNCONDITIONAL CONVERGENT SERIES ON
LOCALLY CONVEX SPACES

Wu Junde and Li Ronglu

Abstract. A characterization of unconditional convergent series is given
for the case of sequentially complete locally convex spaces. From it we
show that if E is a barrelled space with continuous dual E′, then (E′,
β(E′, E)) contains no copy of (c0, ‖ · ‖∞) if and only if every continuous
linear operator T : E → l1 is both compact and sequentially compact.

Bessaga and Pelczynski [2] proved that a Banach space X contains no copy
of (c0, ‖ · ‖∞) if and only if every weakly unconditional Cauchy series in X is
unconditional convergent. Li Ronglu [5] proved that this is equivalent to every
continuous linear operator T : c0 → X being both compact and sequentially
compact. Li Ronglu and Bu Qingying showed in [6] that these properties are
valid for sequentially complete locally convex spaces.

In this paper, by using the Basic Matrix Theorem due to Antosik and
Mikusinski [7], we present a characterization of unconditional convergent series
on a sequentially complete locally convex space. From it we show that if E is
a barrelled space with continuous dual E′ , then (E′, β(E′, E)) contains no
copy of (c0, ‖ · ‖∞) if and only if every continuous linear operator T : E → l1
is both compact and sequentially compact, i.e., for every bounded subset B of
E, T (B) is both compact and sequentially compact in l1.

Let E be a sequentially complete locally convex space. A series
∑

n xn in
E is said to be unconditional convergent if for every permutation π of N , the
series

∑∞
n=1 xπ(n) is convergent. It is easy to see that the following conditions

are equivalent [8]:
(1) The series

∑
n xn is unconditional convergent.

(2) The series
∑

n xn is subseries convergent.
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(3) For every neighbourhood V of 0 in E there exists an integer n such
that for every finite subset σ of N which satisfies min {i ∈ σ} > n we have∑

i∈σ xi ∈ V .
(4) The series

∑
n tnxn is convergent for every {tn} ∈ l∞.

A series
∑

n xn in E is said to be weakly unconditional Cauchy if for every
f ∈ E′ we have

∑
n |f(xn)| < ∞.

Now, we present a characterization of unconditional convergent series which
is the analogue of condition (H) in [9].

Theorem 1. Let E be a sequentially complete locally convex space with
continuous dual E′. Then the series

∑
n xn is unconditional convergent in E

if and only if for every equicontinuous subset A of E′ and ε > 0, there exists
nε ∈ N such that

sup
f∈A

∞∑

n=nε+1

|f(xn)| < ε.(5)

Proof. “⇐”: For any neighbourhood V of 0 in E, there exist a continuous
seminorm p of E and ε > 0 such that {x|p(x) ≤ ε} ⊆ V . Let A = {f |f ∈ E′,
supp(x)≤1 |f(x)| ≤ 1}. Then A is an equicontinuous subset of E′ and from (5)
it follows that there exists an nε ∈ N such that

sup
f∈A

∞∑

n=nε+1

|f(xn)| ≤ ε.

Let σ be a finite subset of N which satisfies min{n ∈ σ} > nε. By the Hahn-
Banach Theorem we can find an f ∈ A such that

p

(∑
n∈σ

xn

)
= f

(∑
n∈σ

xn

)
≤

∑

n=nε+1

|f(xn)| ≤ sup
f∈A

∞∑

n=nε+1

|f(xn)| ≤ ε.

That is,
∑

n∈σ xn ∈ V . This proves (5) ⇒ (3). So the series
∑

n xn is uncon-
ditional convergent.

“⇒”: Assume that the series
∑

n xn is unconditional convergent but (5)
is not valid. Since

∑
n xn must be weakly unconditional Cauchy, it is easily

seen that there exist ε0 > 0, an equicontinuous sequence {fk} and an integer
sequence n1 < m1 < n2 < m2 < . . . such that

mk∑
n=nk

|fk(xn)| ≥ ε0, k ∈ N.
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Let σk = {n|n ∈ N, nk ≤ n ≤ mk}, σ =
⋃∞

k=1 σk and

t0n =





fk(xn)
|fk(xn)| if n ∈ σk and fk(xn) 6= 0,

0 otherwise.

Then {t0n} ∈ l∞ and
∑mk

n=nk
|fk(xn)| = ∑

n∈σk
|fk(xn)| = ∑

n∈σk
fk(t0nxn) ≥ ε0.

This shows that for every k ∈ N we have

∑
n∈σk

fk(t0nxn) = fk

( ∑
n∈σk

t0nxn

)
≥ ε0.(a)

Let S = Span{xn}. Since the series
∑

n xn is unconditional convergent, for
every {tn} ∈ l∞ the series

∑
n tnxn is convergent and

∑
n tnxn ∈ S.

Let A1 be the σ(E′, E) closure of {fk}. Then A1 is a σ(E′, E) compact
subset of E′ by the Banach-Alaoglu Theorem [4, 20.9 (4)]. Note that S ⊆ E
and, therefore, A1 is also a σ(E′, S) compact subset of E′, and is metrizable
since S is separable [4, 21.3(4)]. Therefore, {fk} has a subsequence {fki} which
is σ(E′, S)-convergent to an f0 ∈ A1. That is, for every x ∈ S we have

lim
i

fki (x) = f0(x).(b)

Now consider the infinite matrix
[
fki

(∑
n∈σkj

t0nxn

)]
ij

. From (b) it follows

that for every j ∈ N,

lim
i

fki


 ∑

n∈σkj

t0nxn


 = f0


 ∑

n∈σkj

t0nxn


 .

Moreover, if {jk} is an increasing sequence of N and σ0 =
⋃∞

l=1 σkjl
, then∑

n∈σ0
t0nxn ∈ S. Thus, we have

lim
i

fki

( ∑
n∈σ0

t0nxn

)
= f0

( ∑
n∈σ0

t0nxn

)
.

From the Basic Matrix Theorem of Antosik and Mikusinski [7] it follows that
limi fki

(∑
n∈σki

t0nxn

)
= 0. This contradicts (a) and the theorem is obtained.

Let E be a barrelled space with continuous dual E′, β(E′, E) be the strong
topology on E′ and E′′ be the continuous dual of (E′, β(E′, E)). It is clear
that E ⊆ E′′ and every bounded subset B of E is an equicontinuous set on
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(E′, β(E′, E)). Since E is a barrelled space, it follows that (E′, β(E′, E)) is
sequentially complete [10].

Theorem 2. Let E be a barrelled space. Then the following conditions
are equivalent:

(1◦) (E′, β(E′, E)) contains no copy of (c0, ‖ · ‖∞).
(2◦) Every weakly unconditional Cauchy series

∑
n fn in (E′, β(E′, E)) is

unconditional convergent.
(3◦) Let

∑
n fn be a series in (E′, β(E′, E)). If for every x ∈ E we have∑

n |fn(x)| < ∞, then for every bounded subset B of E and ε > 0, there exists
an nε ∈ N such that

sup
x∈B

∞∑

n=nε+1

|fn(x)| < ε.

(4◦) Every continuous linear operator T : E → l1 is both compact and
sequentially compact.

(5◦) (E′, β(E′, E)) contains no copy of (l∞, ‖ · ‖∞).

Proof. Since (E′, β(E′, E)) is sequentially complete, from [6, Th.4] it fol-
lows that (1◦) ⇔ (2◦).

If for every x ∈ E,
∑∞

n=1 |fn(x)| < ∞, then the series
∑

n fn must be weakly
unconditional Cauchy. Indeed, for any F ∈ E′′, denote

an =





F (fn)
|F (fn)| if F (fn) 6= 0,

0 if F (fn) = 0.

Then it is easily seen that {∑m
n=1 anfn}∞m=1 is pointwise bounded on E. Since

E is a barrelled space, {∑m
n=1 anfn}∞m=1 is equicontinuous and therefore is a

bounded subset of (E′, β(E′, E)). That is, there exists M > 0 such that for
every m ∈ N we have

F

(
m∑

n=1

anfn

)
=

m∑

n=1

|F (fn)| ≤ M.

This shows that
∑

n fn is a weakly unconditional Cauchy series in (E′, β(E′, E)).
From (2◦) it follows that

∑
n fn is unconditional convergent and by Theorem

1 we obtain (3◦). That is, (2◦) ⇒ (3◦).
If (3◦) holds, let T : E → l1 be a continuous linear operator and T (x) =

(f1(x), f2(x), . . . , fn(x), . . .). Since |fn(x)| ≤ ∑
n |fn(x)| = ‖T (x)‖, therefore,

for every n ∈ N , we have fn ∈ E′ and
∑

n |fn(x)| = ‖Tx‖ < ∞. This shows
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that the series
∑

n fn satisfies condition (3◦) and therefore, for every bounded
subset B of E, T (B) is a bounded subset of l1 and for any ε > 0, there exists
an nε ∈ N such that

sup
x∈B

∞∑

n=nε+1

|fn(x)| < ε.

Thus, T (B) is both a compact and sequentially compact subset of l1 [3]. That
is, (3◦) ⇒ (4◦).

We now show (4◦) ⇒ (2◦). If (2◦) is not valid, there exists a series
∑

n fn in
(E′, β(E′, E)) which is weakly unconditional Cauchy but is not unconditional
convergent. Now we define an operator T : E → l1 by T (x) = {fn(x)} for
every x ∈ E. It is easily seen that T is a linear operator. We show that T is
also continuous.

At first, for any {tn} ∈ Bl∞ , the unit ball of l∞, and m ∈ N , denote∑m
n=1 tnfn = Fm,t. Then for every x ∈ E, {tn} ∈ Bl∞ and m ∈ N , we have

|Fm,t(x)| = |
m∑

n=1

tnfn(x)| ≤
m∑

n=1

|tnfn(x)| ≤
∞∑

n=1

|fn(x)|.

This shows that {Fm,t} is pointwise bounded on E and, therefore, is equicon-
tinuous.

For every neighbourhood V of 0 in l1, there exists ε > 0 such that {y|y ∈
l1, ‖y‖ ≤ ε} ⊆ V . Since {Fm,t} is equicontinuous, there exists a neighbour-
hood U of 0 in E such that for every Fm,t we have supx∈U |Fm,t(x)| ≤ ε. From
the definition of Fm,t it follows that supx∈U ‖T (x)‖ ≤ ε. Thus, T is continuous.

Finally, we show that T is not compact. Indeed, since
∑

n fn is not un-
conditional convergent, there exists a neighbourhood W of 0 in (E′, β(E′, E))
and a sequence of finite subsets {σn} of N such that for every n ∈ N , we have
max σn < min σn+1 and

∑
k∈σn

fk 6∈ W . So there exist a bounded subset B
of E and ε > 0 such that {f |f ∈ E′, |f(x)| ≤ ε, x ∈ B} ⊆ W . Thus, we can
obtain a sequence {xn} of B such that

|
∑

k∈σn

fk(xn)| ≥ ε

2
, n ∈ N.

Moreover, ∑

k∈σn

|fk(xn)| ≥ ε

2
, n ∈ N.

From [3, Prop. 6.11], it follows that {T (xn)} is not a compact subset of l1 and,
therefore, is not a sequentially compact subset of l1. That is, (4◦) ⇒ (2◦).

Since (c0, ‖ · ‖∞) ⊆ (l∞, ‖ · ‖∞), it follows that (1◦) ⇒ (5◦). If (1◦) is
not valid, from (1◦) ⇔ (2◦) it follows that there exists a weakly unconditional
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Cauchy series
∑

n fn in (E′, β(E′, E)) which is not unconditional convergent.
Since E is a barrelled space, (E′, σ(E′, E)) and (E′, β(E′, E)) are sequentially
complete. Therefore, it is easily seen that the series

∑
n fn is subseries σ(E′, E)

convergent. Define µ : 2N → E′ by µ(σ) =
∑

n∈σ fn. Note that
∑

n fn is not
β(E′, E) unconditional convergent and, therefore, is not subseries β(E′, E)
convergent. From the sequential completeness of β(E′, E), it follows that there
exists a disjoint sequence {σj} ⊆ 2N such that {µ(σj)} does not converge to
0 in β(E′, E). As proved in [1, Th. 10.7 and Cor. 10.8] that (E′, β(E′, E))
contains a copy of (l∞, ‖ ·‖∞). This contradicts (5◦). The proof is completed.

Corollary 3 [11]. Let X be a Banach space with continuous dual X ′. Then
(X ′, ‖ · ‖) contains no copy of (c0, ‖ · ‖) if and only if every continuous linear
operator T : E → l1 is compact.
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