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GENERAL FORMULAE FOR THE LOWER BOUND
OF THE FIRST TWO DIRICHLET EIGENVALUES

Feng-Yu Wang

Abstract. This note presents general formulae for the lower bound of
the first two Dirichlet eigenvalues on a regular domain. As applications,
the positivity of top spectrum and the gap between these two Dirichlet
eigenvalues are studied.

1. Introduction

Let M be a complete Riemannian manifold of dimension d, and let Ω ⊂M
be a regular domain. Next, let L = ∆ +∇V for some V ∈ C2(M). Consider
the Dirichlet eigenvalue problem on Ω:

Lu = −λu, u|∂Ω = 0.

Denote by λ1 and λ2 the first two Dirichlet eigenvalues. We have 0 < λ1 < λ2.
The purpose of this note is to present general formulae for the lower bound

of λi(i = 1, 2). The motivation of the study comes from [4] and [5] in which a
general lower bound formula was presented for the spectral gap of an elliptic
operator. We first recall the formula for the first Neumann eigenvalue due to
[4], which will be used later on to study the lower bound of λ2.

Let K(V ) = inf{r : (HessV − Ric)(X,X) ≤ r|X|, X ∈ TΩ}, and simply
denote K(0) = K. Define

a(r) = sup{〈∇ρ(x, ·)(y),∇V (y)〉+〈∇ρ(·, y)(x),∇V (x)〉 :
x, y ∈ Ω, ρ(x, y) = r, y /∈ cut(x)}

0Received February 25, 1997; revised June 20, 1998.
Communicated by S.-Y. Shaw.
1991 Mathematics Subject Classification: 35P15, 58G32.
Key words and phrases: Dirichlet eigenvalue, Riemannian manifold.
Research support in part by NSFC(19631060), Fok Ying-Tung Educational Foundation and
Scientific Research Foundation for Returned Overseas Chinese Scholars.

235



236 Feng-Yu Wang

for r ∈ (0, D], where ρ is the Riemannian distance and D is the diameter of
Ω, and set a(0) = 0.

Next, choose γ ∈ C[0, D] such that

γ(r) ≥ min
{
K(V )r, 2

√
K+(d− 1) tanh

[
r
2

√
K+/(d− 1)

]
−2
√
K−(d− 1) tan

[
r
2

√
K−/(d− 1)

]
+ a(r)

}
.

For simplicity, one may take γ(r) = K(V )r.
Finally, let C(r) = exp[ 1

4

∫ r
0 γ(s)ds], r ∈ [0, D].

Theorem 1.1 (Chen-Wang[4]). Suppose that Ω is convex. Let n1 denote
the first Neumann eigenvalue of L on Ω. We have

n1 ≥ 4 inf
r∈(0,D)

f(r)
{∫ r

0
C(s)−1ds

∫ D

s

C(u)f(u)du
}−1

(1.1)

for any f ∈ C[0, D] with f > 0 in (0, D).

Theorem 1.1 provides a formula for the lower bound of n1 in the sense that
for each test function, one has a nontrival lower bound estimate. We will try
to present formulae for the lower bound of λ1 and λ2 in the same spirit.

For the study of the lower bound of λ1, a very famous tool is Barta’s
inequality, which says that (see also [9])

λ1 ≥ inf
Ω

(−f−1Lf)(1.2)

for any f ∈ C2(Ω̄) with f > 0 in Ω and f |∂Ω = 0. But the lower bound may be
negative for some test function. In Section 2, we will establish the exact form
of the formula such that the lower bound is nontrivial for each test function.
Furthermore, by comparing λ2 with the first Neumann eigenvalue, we obtain
the lower bound formula for λ2 in Section 3. Consequently, the positivity of
the top spectrum and the lower bound estimates of λ2−λ1 are also considered.

2. The Formula for the Lower Bound of λ1

In this section, we assume that Ω = B(p,R), the open geodesic ball with
centre p and radius R. Let ρ(x) = ρ(p, x), and let i(p) be the injectivity radius
of p.

Theorem 2.1. Suppose that i(p) > R. Let γ ∈ C[0, R] be such that
Lρ(x) ≥ γ(ρ(x)), 0 < ρ(x) < R. For any positive f ∈ C[0, R], we have

λ1 ≥ inf
r∈(0,R)

f(r)
{∫ R

r

exp
[
−
∫ s

0
γ(u)du

]
ds
∫ s

0
exp

[ ∫ t

0
γ(u)du

]
f(t)dt

}−1

,
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where λ1 denotes the first Dirichlet eigenvalue of L on B(p,R).

Proof. Let δ denote the lower bound given by Theorem 2.1, and take

h(x) =
∫ R

ρ(x)
exp

[
−
∫ s

0
γ(u)du

]
ds
∫ s

0
exp

[ ∫ t

0
γ(u)du

]
f(t)dt, x ∈ B(p,R).

Then h > 0 in B(p,R), h|∂B(p,R) = 0, and

Lh(x) ≤ −f(ρ(x)) ≤ −δh(x), x ∈ B(p,R).

By (1.2) we prove the theorem.

Suppose that the sectional curvatures of Ω are not larger than k. We have
(see, e.g., [2, pp.69–96])

∆ρ ≥ (d− 1)K ′(ρ)/K(ρ), 0 < r ≤ R,

where

K(r) =


sin
√
kr, if k > 0,

r, if k = 0,
sinh
√
−kr, if k < 0.

Then, by taking γ(r) = min{n, (d−1)K ′(r)/K(r)} and f = 1 in Theorem 2.1,
and letting n→∞, we obtain

λ1 ≥
{∫ R

0
K(r)1−ddr

∫ r

0
K(s)d−1ds

}−1

,

which is exactly the first estimate of [9, Theorem 1.2].
Now, let σ(V ) be the top spectrum of −L on M . We have λ1 ↓ σ(V ) as

R ↑ ∞. Then the following is a direct consequence of Theorem 2.1.

Corollary 2.2. Suppose that p is a pole, i.e., i(p) =∞. If limρ→∞Lρ > 0,
then σ(V ) > 0.

Proof. If limρ(x)→∞Lρ(x) > 0, then there exist r0, c0 > 0 such that γ(r) ≥
c0 for r ≥ r0. Next, we know that Lρ → ∞ as ρ → 0 for d > 1, and Lρ is
locally bounded for d = 1. Hence Lρ is bounded from below, i.e., Lρ ≥ −N0

for some N0 ≥ 0. Choose nondecreasing function γ ∈ C([0,∞); [−N0, c0]) such
that Lρ ≥ γ(ρ) and γ|[0,r0] ≡ −N0, γ|[r0+1,∞) ≡ c0. Taking f(r) = e−c0r/2, we
have ∫ ∞

r

exp
[
−
∫ s

0
γ(u)

]
ds
∫ s

0
exp

[ ∫ t

0
γ(u)

]
f(t)dt

≤
∫ ∞
r

exp [(r0 + 1)(N0 + c0)− c0s]ds
∫ s

0
ec0t/2dt

≤ 4
c2

0
e(r0+1)(N0+c0)f(r), r ≥ 0.
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By Theorem 1.1, we obtain σ(V ) ≥ c20
4 e−(r0+1)(N0+c0) > 0.

A very interesting problem is to seek for good geometric conditions on
M such that σ(0) > 0. The well-known result of McKean [8] implies that
σ(0) > 0 provided M is a CH-manifold with sectional curvatures uniformly
negative. More recently, Kifer [6] proved that if M is simply connected with
hyperbolic metric (see his paper for the definition) and without focal points,
then σ(0) > 0. Here, by using Corollary 2.2, we provide some sufficient condi-
tions on curvatures. Let

Kp(x) = −Ric(∇ρ(x),∇ρ(x)) and
kp(r) = infρ(x)=r

{
− 〈R(Y,∇ρ(x))Y,∇ρ(x)〉 : Y ∈ TxM, |Y | = 1, 〈∇ρ(x), Y 〉 = 0

}
.

Corollary 2.3. We have σ(0) > 0 provided one of the following holds:

1) M has no focal points and limρ(x)→∞Kp(x) > 0.

2) There exists r0 > 0 such that kp(r) ≥ 0 for r ≥ r0 and π2

4r2
0
≥ − infr≥0 kp(r),

and limr→∞kp(r) > 0.

Proof. a) Suppose that 1) holds. For any ξ ∈ TpM with |ξ| = 1, let
X(t) = d

dte
tξ, t ≥ 0. Let U(t) be the operator of the second fundamental form

of ∂B(p, t) at point etξ. We have (see [2, p. 72]) ∆ρ(etξ) = trU(t) and

U ′(t) + U(t)2 + 〈R(·, X)·, X〉(t) = 0, t > 0.

Since M has no focal points, (trU(t))2 ≥ trU(t)2 by the proof of [6, Lemma
2.11]. Let φ(t) = ∆ρ(etξ). We obtain

φ′(t) ≥ Kp(etξ)− φ2(t), t > 0.(2.1)

By 1), there exist t0,K0 > 0 such that Kp(x) ≥ K0 for ρ(x) ≥ t0. Once again,
since there are no focal points, c0 := inf |ξ|=1 φ(t0) > 0 (see [6, (2.5)]). We
conclude from (2.1) that φ(t) ≥ c1 := min{c0,

√
K0} for t ≥ t0. Actually, if

there exists t1 > t0 such that φ(t1) < c1, there exists t2 ∈ (t0, t1] such that
φ(t2) = min[t0,t1] φ. By (2.1) we have φ′(t2) > 0. Then there exists t3 ∈ (t0, t2)
such that φ(t3) < φ(t2). This is a contradiction. Therefore ∆ρ(x) ≥ c1 for
ρ(x) ≥ t0, and hence by Corollary 2.2 we obtain σ(0) > 0.

b) Suppose that 2) holds. For x ∈ M , let l : [0, ρ(x)]→ M be the regular
geodesic from p to x with unit tangent vector field X. Choose parallel vector
fields ei(2 ≤ i ≤ d) along l such that {X, e2, · · · , ed} is an orthonormal basis.
Let Ji be the Jacobi field along l with Ji(0) = 0, Ji(ρ(x)) = ei, 2 ≤ i ≤ d. We
have (see [3])

∆ρ(x) =
d∑
i=2

∫ ρ(x)

0
(|∇XJi|2 − 〈R(Ji, X)Ji, X〉).(2.2)
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Let fi(s) = |Ji(s)|, s ∈ [0, ρ(x)], 2 ≤ i ≤ d. Since cut(p) = ∅, fi > 0 in
(0, ρ(x)]. Note that f ′i = f−1

i 〈∇TJi, Ji〉. We have |∇TJi| ≥ |f ′i |. Hence

∆ρ(x) ≥
d∑
i=2

∫ ρ(x)

0
[f ′i

2(s) + kp(s)f2
i (s)]ds.(2.3)

Consider the mixed eigenvalue problem of d2/dr2 on [0, r0], with Dirichlet
condition at 0 and Neumann condition at r0. We see that the first eigenvalue
is π2/4r2

0 with eigenfunction sin[πs/2r0]. Hence, for ρ(x) ≥ r0,∫ r0

0
f ′i

2(s)ds ≥ π2

4r2
0

∫ r0

0
f2
i (s)ds.

Noting that π2

4r2
0
≥ − inf kp, we obtain

∫ r0

0
[f ′i

2(s) + kp(s)f2
i (s)]ds ≥

∫ r0

0

( π2

4r2
0

+ inf kp
)
f2(s)ds ≥ 0.(2.4)

Next, since limr→∞kp(r) > 0, there exist r1 > r0 and c2 > 0 such that
kp(r) ≥ c2 for r ≥ r1. By (2.3) and (2.4), for ρ(x) ≥ r1 + 1, we have

∆ρ(x) ≥
d∑
i=2

∫ ρ(x)

r1

[f ′i
2(s) + c2f

2
i (s)]ds.(2.5)

If
∫ ρ(x)
r1

f ′i
2(s)ds ≤ 1/2, then, for s ∈ [ρ(x)− 1, ρ(x)], we have

f(s)= 1−
∫ ρ(x)

s

f ′i(s)ds ≥ 1−
√
ρ(x)− s

(∫ ρ(x)

s

f ′i
2(s)ds

)1/2

≥ 1−
√

2
2
.

Therefore,

∆ρ(x) ≥ (d− 1) min
{1

2
,
(
√

2− 1)2

2
c2

}
, ρ(x) ≥ r1 + 1.

Hence we have σ(0) > 0.

3. The Formula for the Lower Bound of λ2

We first extend Barta’s inequality (1.2) to the second eigenvalue λ2 of L
on Ω. For any φ ∈ C2(Ω̄) with φ > 0 in Ω, let n1(φ) be the first Neumann
eigenvalue of Lφ := L+ 2∇ log φ on Ω.
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Theorem 3.1. For any φ ∈ C2(Ω̄) with φ > 0 in Ω, we have

λ2 ≥ inf(−φ−1Lφ) + n1(φ).(3.1)

Proof. Without loss of generality, we assume that infΩ φ > 0. If µ(dx) =
eV (x)dx, then Lφ is symmetric on L2(Ω, φ2dµ) with Neumann boundary con-
dition. By the variational formula, we have

n1(φ) ≤
∫

Ω |∇f |2φ2dµ∫
Ω f

2φ2dµ
(3.2)

for any f ∈ C1(Ω̄) with
∫

Ω fφ
2dµ = 0.

Next, let ui denote the ith Dirichlet eigenfunction of L on Ω with µ(u2
i ) =

1(i = 1, 2) such that u1 > 0 in Ω and
∫

Ω u2φdµ ≤ 0. Let c ≥ 0 be such that∫
Ω(u2 + cu1)φdx = 0. Take f = (u2 + cu1)/φ. We have

∫
Ω fφ

2dµ = 0 and

−fLφf = (λ2 + φ−1Lφ)f2 + (λ2 − λ1)cu1fφ
−1.

Let δ = inf(−φ−1Lφ). We have

−
∫

Ω
(fLφf)φ2dµ≤

∫
Ω

(λ2 − δ)f2φ2dµ+ (λ2 − λ1)c
∫

Ω
(u1u2 + cu2

1)dµ

≤
∫

Ω
(λ2 − δ)f2φ2dµ

(3.3)

since
∫

Ω u1u2dµ = 0. Let N be the outward unit normal vector field of ∂Ω. We
have φ2eV fNf |∂Ω = 0. By Green’s formula, we obtain

−
∫

Ω
(fLφf)φ2dµ=

∫
Ω
{〈∇f,∇(fφ2eV )〉 − fφ2eV 〈∇V + 2∇ log φ,∇f〉}dx

=
∫

Ω
|∇f |2φ2dµ.

By combining this with (3.2) and (3.3), we complete the proof.
Now, by simply taking γ(r) = K(V + log φ)r in Theorem 1.1 for the lower

bound of n1(φ), and then combining with Theorem 3.1, we obtain the following
result.

Corollary 3.2. Suppose that Ω is convex. We have

λ2 ≥ inf(−φ−1Lφ)

+4 inf
r∈(0,D)

f(r)
{∫ r

0
e−K(V+log φ)s2/8ds

∫ D

s

eK(V+log φ)u2/8f(u)du
}−1
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for any φ ∈ C2(Ω̄) with φ > 0 in Ω and positive f ∈ C[0, D].

Remarks 1) By taking φ = 1 in Theorem 3.1, we obtain λ2 ≥ n1(0), which
is well-known by the domain monotonicity of eigenvalues (see [2, p.18]).

2) By taking φ = u1 in Theorem 3.1, we obtain λ2 − λ1 ≥ n1(u1), which
gives a general formula for the lower bound esetimate of λ2 − λ1 by Corollary
3.2 when Ω is convex. Especially, when V = 0 and M = Rd or Sd, we know
that u1 is log-concave (see [1] and [7]). Then K(log u1) ≤ 0 for M = Rd and
≤ 1− d for M = Sd. By taking f(r) = sin[πr/(2D)], we have (see [4])

4f(r)
{∫ r

0
e−Ks

2/8ds
∫ D

s

eKu
2/8f(u)du

}−1

≥ π2

D2
− π − 2

π
K

for K ≤ 0. Therefore, by Corollary 3.2,

λ2 − λ1 ≥


π2

D2 , if M = Rd,
π2

D2 + π−2
π

(d− 1), if M = Sd.

This recovers Yu-Zhong’s estimate [11] (M = Rd) and improves Lee-Wang’s
estimate [7] (M = Sd). Refer to [10] for further research in this direction.
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