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ANALYSIS OF LARGE DEFORMATION OF A
NONPRISMATIC BEAM

Shin-Feng Hwang and Li-Rong Yeh

Abstract. This paper studies the mathematical model that describes the
deformation of a nonprismatic beam by its own weight. The nonprismatic
beam is considered to be with circular or rectangular cross-section. We
fix the density and hold an angle α at one end but free at the other
end. The shape of the beam depends on the angle α, the density and the
length to that of flexural rigidity. We analyze the bifurcation phenomena
for the vertical case, α = π. Several numerical results are presented.

1. Introduction

The deformation of a cantilever by its own weight is of interest both prac-
tically due to its engineering significance and theoretically its nonlinearity. We
assume that a tapered cantilever (nonprismatic beam) of circular or rectangu-
lar cross-section and density is held fixed with an angle α at one end and free at
the other end. If the tapered cantilever is thin enough, then its deformed shape
can be described by the elastic theory. For the prismatic beam (cross-section
shape is fixed), Wang [7] studied the bifurcation phenomena numerically, and
Hsu and Hwang [3] gave the complete global bifurcation results for the pris-
matic vertical cantilever mathematically. In this paper, we consider two types
of nonprismatic beam with circular cross-section and rectangular cross-section.
We first give the uniqueness for the solutions of the governing equation, and
then give the complete bifurcation results for the vertical case, α = π, in the
spirit of [3], [5]. Finally, for α 6= π, we give the global bifurcation phenomenon
of numerical results.
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2. Formulation

We assume a tapered beam with length L, uniform density ρ and con-
tracted circular cross-section, the circular cross-section area given by [δ(L −
s′)]2π, which is held fixed at an angle α at one end, say, the origin, and is free
at the other end. Let us consider a small segment of the tapered beam. A
moment balance gives (see Fig. 1)

m− gρ
∫ L

s′
π [δ(L− ξ)]2 dξ sin θ ds′ = m+ dm,(2.1)

where m = m(s′) is the local moment, s′ is the arc length from the origin,
θ = θ(s′) is the local angle of inclination, and δ is a small constant such that
the cantilever is thin enough so that its deformed shape can be described by
the elastic theory. According to Euler, the local moment is proportional to
the curvature dθ/ds′, i.e.,

m = −EI dθ
ds′

,(2.2)

where E is the modulus of elasticity, and for the circular cross-section I is the
moment of inertia πδ4(L− s′)4/4. From (2.1), (2.2), we obtain

1
3
gρπδ2(L− s′)3 sin θ =

1
4
πEδ4(L− s′)4 d

2θ

ds′2
− πEδ4(L− s′)3 dθ

ds′
(2.3)

and the boundary condition is

θ(0) = α,
dθ

ds′
(L) = 0.(2.4)

Let s = s′/L. Then (2.3), (2.4) become (1− s)4d
2θ

ds2
= 4(1− s)3dθ

ds
+K (1− s)3 sin θ, K > 0, 0 ≤ s ≤ 1;

θ(0) = α, θ′(1) = 0, −π ≤ α ≤ π.
(2.5)

The parameter K = 4Lgρ/3Eδ2 represents the relative importance of density
and length to that of flexural rigidity. The main concern of this paper is to
determine the multiplicities of solutions of (2.5) provided that K > 0, −π ≤
α ≤ π are given. The reformulated mathematical problem is as follows:

Let
ψ(s) = θ(1− s), 0 ≤ s ≤ 1.
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FIG. 1.

Then (2.5) becomes{
(s4ψ′(s))′ = K s3 sinψ(s), K > 0, 0 ≤ s ≤ 1;
ψ(1) = α, ψ′(0) = 0, −π ≤ α ≤ π.(Pc)α)

Since ψ(s), 0 ≤ s ≤ 1, is a solution of (Pc)α if and only if −ψ(s) is a solution

91



92 Shin-Feng Hwang and Li-Rong Yeh

of (Pc)−α, we only consider the problem with 0 ≤ α ≤ π. We may also reduce
the problem (Pc)α, 0 ≤ α ≤ π, by the following rescaling:

φ(s) = ψ(s/K).

Then φ(s) satisfies{
(s4φ(s))′ = s3 sinφ(s), 0 ≤ s ≤ K;
φ′(0) = 0, φ(K) = α, 0 ≤ α ≤ π.(2.6)

For a tapered cantilever of the rectangular cross-section, the cross-section area
is given by δb(L− s′), with width b and height δ(L− s′), and the moment of
inertia I = bδ3(L − s′)3/12, where the fixed b and δ are small constants such
that the cantilever is thin enough so that its deformed shape can be described
by the elastic theory. Then we have{

(s3ψ′(s))′ = K s2 sinψ(s), K > 0, 0 ≤ s ≤ 1;
ψ(1) = α, ψ′(0) = 0, −π ≤ α ≤ π,(Pr)α)

where K = 6Lgρ/Eδ2. Since ψ(s), 0 ≤ s ≤ 1, is a solution of (Pr)α if and only
if −ψ(s) is a solution of (Pr)−α, we only consider the problem with 0 ≤ α ≤ π.
We may also reduce the problem (Pr)α, 0 ≤ α ≤ π, by the following scaling:

φ(s) = ψ(s/K).

Then φ(s) satisfies{
(s3φ(s))′ = s2 sinφ(s), 0 ≤ s ≤ K;
φ′(0) = 0, φ(K) = α, 0 ≤ α ≤ π.(2.7)

3. Uniqueness of Solutions of (Pc)α and (Pr)α

In this section, we present some results concerning the uniqueness of solu-
tions of the boundary value problems (Pc)α and (Pr)α:{

(s4ψ′(s))′ = K s3 sinψ(s), K > 0, 0 ≤ s ≤ 1;
ψ(1) = α, ψ′(0) = 0, −π ≤ α ≤ π,(Pc)α)

and {
(s3ψ′(s))′ = K s2 sinψ(s), K > 0, 0 ≤ s ≤ 1;
ψ(1) = α, ψ′(0) = 0, −π ≤ α ≤ π.(Pr)α)
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Theorem 3.1. The solution of (Pc)0 (resp. (Pr)0) is unique, namely,

ψ(s) = 0, 0 ≤ s ≤ 1, for any K > 0.

Proof. Obviously ψ(s) = 0 is a solution of (Pc)0. Multiplying the equation
in (Pc)0 by ψ′/s2 and integrating the resulting equation from 0 to 1, we obtain∫ 1

0
s2 ψ′′(s)ψ′(s)ds+

∫ 1

0
4s(ψ′(s))2ds =

∫ 1

0
Ks(sin ψ(s))ψ′(s)ds.

Then we obtain

1
2

(ψ′(1))2 +
∫ 1

0
3s(ψ′(s))2ds = K

[∫ 1

0
cos ψ(s)ds− 1

]
≥ 0.

However, [∫ 1

0
cosψ(s)ds− 1

]
≤ 0.

Hence we have ψ′(1) = 0. Since ψ(1) = 0 and ψ′(1) = 0, the conclusion
ψ(s) = 0 follows directly from the uniqueness of solutions of ordinary differ-
ential equations. The proof is similar for the (Pr)0 case, if we multiply the
equation in (Pr)0 by ψ′/s with the same discussion. So we omit it.

The existence of solutions of problems (Pc)α and (Pr)α follows directly from
the results in [4] since the right-hand side of (Pc)α and (Pr)α, Ks3 sin ψ and
Ks2 sin ψ, are bounded for 0 ≤ s ≤ 1. Hence, one can present a uniqueness
property of (Pc)α and (Pr)α.

Theorem 3.2. If K <
√

35, then (Pc)α has a unique solution for every
α ∈ [0, π].

Proof. Let ψ(s) be a solution of (Pc)α. Then

ψ(s) = α−
∫ 1

0
Kξ3 sin ψ(ξ)G(s, ξ) dξ,

where
G(s, ξ) = ((max(s, ξ))−3 − 1)/3.

Let ψ1(s), ψ2(s) be solutions of (Pc)α. Then

|ψ1(s)− ψ2(s)|≤ K
∫ 1

0
G(s, ξ) ξ3|ψ1(ξ)− ψ2(ξ)| dξ

≤ K
[∫ 1

0
G2(s, ξ) ξ6 dξ

]1/2

‖ψ1 − ψ2‖2
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or

‖ψ1 − ψ2‖22 =
∫ 1

0
|ψ1(s)− ψ2(s)|2 ds

≤ K2
(∫ 1

0

∫ 1

0
G2(s, ξ) ξ6 dξ ds

)
‖ψ1 − ψ2‖22,

since ∫ 1

0

∫ 1

0
G2(s, ξ) ξ6 dξ ds = 1/35.

If K <
√

35, then we must have

ψ1 = ψ2.

Theorem 3.3. If K <
√

20, then (Pr)α has a unique solution for every
α ∈ [0, π].

The proof of Theorem 3.3 is similar to that of Theorem 3.2 by considering
the Green’s function G(s, ξ) = ((max(s, ξ))−2 − 1)/2.

4. The Multiplicities of the Solutions of (Pc)α
and (Pr)α for α = π

In this section, we shall present the analytic results for the vertical case,
α = π. The discussions for circular cross-section and rectangular cross-section
are similar; we only consider the tapered cantilever of circular cross-section.
The analytic results for this special case will help us to understand the bifur-
cation phenomena for the general problem (Pc)α, 0 < α < π. In the remainder
of this section, we shall restrict our attention to the vertical case α = π. So
by (Pc)α we have

d

ds

(
s4dψ(s)

ds

)
= Ks3 sin ψ(s), ψ′(0) = 0, ψ(1) = π.(4.1)

Let s = x and v(x) = ψ(x/K)− π. Then (4.1) takes the form

(x4v′(x))′ + x3 sin v(x) = 0, v′(0) = 0, v(K) = 0, ′ = d/dx.(4.2)

We shall study the boundary value problem (4.2) by the shooting method and
consider the following initial value problem

(x4v′(x))′ + x3 sin v(x) = 0, v′(0) = 0, v(0) = a, a ∈ R.(4.3)
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We denote the solution of (4.3) by v(x, a). From the uniqueness of solutions
of ordinary differential equations, it follows that

v(x, 2π + a) = 2π + v(x, a),
v(x, 2π − a) = 2π − v(x, a),
v(x, a) = −v(x,−a),
v(x, 0) = 0, v(x, π) = π.

(4.4)

From (4.4), we shall consider v(x, a) only for 0 < a < π.

Lemma 4.1. Let 0 < a < π. Then

( i ) −π/2 < v(x, a) < π/2 for 0 < a < π/2, 0 ≤ x.
(ii) −π < v(x, a) < π for π/2 ≤ a < π, 0 ≤ x.
(iii) v(x, a) is oscillatory over [0,∞) for all 0 < a < π.

Proof. Multiply (4.3) by v′(x)/x2 and integrate the resulting equation from
0 to x. We obtain∫ x

0
ξ2v′′(ξ)v′(ξ)dξ +

∫ x

0
4ξ(v′(ξ))2dξ =

∫ x

0
−ξv′(ξ) sin v(ξ) dξ.

Then, we have

1
2
x2(v′(x))2 +

∫ x

0
3ξ(v′(ξ))2dξ = x cos v(x)−

∫ x

0
cos v(ξ) dξ ≥ 0.(4.5)

If 0 < a < π/2, then cos a = cos v(0) > 0. We claim that cos v(x) > 0 for
all x ≥ 0. If not, then there exists x0 > 0 such that cos v(x) > 0 for all
0 ≤ x < x0 and cos v(x0) = 0. This contradicts (4.5) with x = x0 and we
complete the proof for (i).

If π/2 ≤ a < π, then cos a = cos v(0) ∈ (−1, 0]. We claim that cos v(x) 6=
−1 for all x ≥ 0. If not, then there exists x0 > 0 such that cos v(x0) = −1 and
cos v(x) > −1 for 0 ≤ x < x0. Again from (4.5), we obtain a contradiction.
Hence −π < v(x, a) < π for all x ≥ 0 and we have established (ii).

We next show that v(x, a) is oscillatory over [0,∞) for any 0 < a < π. Let

V (x) = (1− cos v(x)) +
x (v′(x))2

2
.

It is easy to verify that

V ′(x) = −7
2

(v′(x))2 ≤ 0.
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Then we have

1− cos v(x) ≤ V (x) ≤ V (0) = 1− cos a.

Since −π < v(x) < π, we then have |v(x)| ≤ a for all x ≥ 0. We rewrite the
equation in (4.3) as

(x4v′(x))′ + x3 sin v(x)
v(x)

v(x) = 0.(4.6)

Let 0 < δ < min0≤v≤a(sin v/v). Using Sturm’s comparison theorem, we com-
pare (4.6) with

(x4v′(x))′ + δ x3 v(x) = 0.(4.7)

Since the Bessel function x−3/2J3(2
√
δx) is the solution of (4.7), which is oscil-

latory over [0,∞), v(x) is oscillatory over [0,∞), too. Thus we complete the
proof for (iii).

Next, let us define:

∆(x, a) =
dv

da
(x, a), φ(x) = ∆(x, 0).

Differentiating (4.3) with respect to a yields

(x4∆′(x))′ + x3 ∆(x) cos v(x, a) = 0, ∆(0) = 1, ∆′(0) = 0.(4.8)

Setting a = 0 in (4.8) yields

(x4φ′(x))′ + x3φ(x) = 0, φ(0) = 1, φ′(0) = 0.(4.9)

The equation in (4.9) is oscillatory over [0,∞). Let λn and γn be the nth zero
of φ(x) and φ′(x), respectively, for n = 1, 2, . . .. We note that

λ1 ≈ 10.1765, λ2 ≈ 23.8194, λ3 ≈ 42.3488,
λ4 ≈ 65.8002, λ5 ≈ 94.1813, etc.

(4.10)

From Lemma 4.1 (iii), v(x, a) is oscillatory over [0,∞) for any 0 < a < π.
Let yn(a) and zn(a) be the nth zero of v(x, a) and v′(x, a), respectively, for
n = 1, 2, . . . , 0 < a < π.

Lemma 4.2. (i) lima→0+ yn(a) = λn, lima→0+ zn(a) = γn for n =
1, 2, . . . . (ii) lima→π− yn(a) = +∞ for n = 1, 2, . . ..

The proof of Lemma 4.2 follows directly from [3].
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In addition to the properties (i), (ii) in Lemma 4.2, we shall show that, for
all 0 < a < π, yn(a) satisfies

dyn(a)
da

> 0 for all n = 1, 2, . . . and 0 < a < π.(4.11)

Assume that (4.11) holds, then we may plot the following graph for yn(a), n =
1, 2, . . .. (See Fig. 2.) Then we conclude from (4.2) and (4.4) the following:

If 0 < K < λ1, then (4.2) has the unique solution v(x) = 0.
If λ1 < K < λ2, then (4.2) has three distinct solutions.
If λn < K < λn+1, then (4.2) has 2n+ 1 distinct solutions.

Since

v(yn(a), a) = 0, 0 < a < π,(4.12)

FIG. 2.
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differentiating (4.12) with respect to a yields

v′(yn(a), a)
dyn(a)
da

+
dv

da
(yn(a), a) = 0

or
dyn(a)
da

= −∆(yn(a), a)
v′(yn(a), a)

.(4.13)

We now state our main result.

Theorem 4.1. Let 0 < a < π.

( i ) The solution v(x, a) of (4.3) has an infinite number of isolated zeros
yn(a), with y1 < y2 < · · · < yn and yn →∞ as n→∞; likewise v′(x, a)
has an infinite number of isolated zeros, zn(a), with z1 < z2 < · · · < zn,
interlacing the yn; furthermore

lim
a→0+

yn(a) = λn, lim
a→0+

zn(a) = γn,

and
lim
a→π−

yn(a) =∞ for n = 1, 2, . . . .

(ii) yn(a) is a differentiable function of a and
dyn
da

> 0 for n = 1, 2, . . . .

We have shown part (i) in the above lemmas. The proof of (ii) follows
directly from (4.13) and Lemma 4.3 below.

Lemma 4.3. Let 0 < a < π. Then ∆(x, a) has an infinite number of
isolated zeros αn, 0 < α1 < α2 < · · · < αn < · · ·. ∆′(x, a) satisfies the
following:

( i ) If 0 < a < π/2, then ∆′(x, a) has an infinite number of isolated zeros
βn(a), 0 = β1 < β2 < · · · < βn < · · ·. Furthermore β1 = z1 = 0 < y1 <
α1 < z2 < β2 < y2 < α2 < · · · < yn < αn < zn+1 < βn+1 < yn+1 < · · ·.

(ii) If π/2 ≤ a < π, then ∆′(x, a) has an infinite number of isolated zeros
βn(a), 0 = β0 < β1 < · · · < βn < · · ·. Furthermore, β0 = z1 = 0 < β1 <
y1 < α1 < z2 < β2 < y2 < · · · < yn < αn < zn+1 < βn+1 < yn+1 < · · · .

Before we prove Lemma 4.3, we consider (4.3) and (4.8). Let

(A): (x4v′)′ + x3 sin v = 0, v(0) = a, v′(0) = 1,
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(B): (x4∆′)′ + x3 ∆ cos v = 0, ∆(0) = 1, ∆′(0) = 0.

In addition to (A) and (B), we form the following equations satisfied by ∆′

and w = (x2 − 3xyn)v′, respectively:

(C): (x4∆′′)′ + (4x3∆′)′ + (x3 ∆ cos v)′ = 0,

(D): (x4w′)′ + x3w cos v = −3x3(x− yn) sin v − 2x4v′.

Multiplying (A) by ∆ and multiplying (B) by v, subtracting the resulting
equations from each other and integrating the final expression from α to β,
we obtain

(a): x4(v′∆− v∆′)|βα =
∫ β

α

x3∆ v(cos v − v−1 sin v) dx.

Multiplying (A) by ∆′ and multiplying (C) by v, subtracting the resulting
equations from each other and integrating the final expression from α to β,
we obtain

(b): x4(v′∆′ − v∆′′)|βα = 4x3∆′v|βα −
∫ β

α

4x3∆′ v′ dx

+x3∆ v cos v|βα − x3∆ sin v|βα

+
∫ β

α

3x2∆ sin v dx.

Multiplying (D) by ∆ and multiplying (B) by w, subtracting the resulting
equations from each other and integrating the final expression from α to β,
we obtain

(c): x4(w′∆− w∆′)|βα = −
∫ β

α

3x3(x− yn) ∆ sin v dx−
∫ β

α

2x4v′∆ dx.

Finally, since v′(0) = 0, v(0) = a, ∆(0) = 1, ∆′(0) = 0, 0 < a < π, we have

sg v = (−1)n for yn < x < yn+1,
sg v′ = (−1)n for zn < x < zn+1,
sg ∆ = (−1)n for αn < x < αn+1,
sg ∆′ = (−1)n for βn < x < βn+1,

Proof of Lemma 4.3. We shall prove the lemma by induction on m.
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If π/2 ≤ a < π, then we claim that β1 < y1. Otherwise if β1 ≥ y1, then
∆′(x) > 0 for all 0 ≤ x ≤ y1. We specialize (α, β) in (b) to (0, y1). Then we
obtain

x4(v′∆′ − v∆′′)|y1
0 =4x3∆′v|y1

0 −
∫ y1

0
4x3∆′ v′ dx+ x3∆ v cos v|y1

0

−x3∆ sin v|y1
0 +

∫ y1

0
3x2∆ sin v dx.

(4.14)

Since v(y1) = 0, (4.14) becomes

y4
1v
′(y1)∆′(y1) = −

∫ y1

0
4x3∆′v′dx+

∫ y1

0
3x2∆ sin v dx.

It is easy to verify y4
1v
′(y1)∆′(y1) < 0,

∫ y1

0
4x3∆′v′dx < 0, and

∫ y1

0
3x2∆ sin v dx >

0. Thus we obtain a contradiction.
We shall now show that α1 > y1 for 0 < a < π. If not, then there exists

α∗ ∈ (0, y1) such that ∆(α∗) = 0,∆′(α∗) < 0 and ∆(x) > 0 for 0 ≤ x < α∗.
We specialize (α, β) in (a) to (0, α∗). That is

x4(v′∆−∆′v)|α
∗

0 =
∫ α∗

0
x3∆ v(cos v − v−1 sin v) dx.(4.15)

Since ∆(α∗) = 0, (4.15) becomes

− (α∗)4 v(α∗)∆′(α∗) =
∫ α∗

0
x3∆ v(cos v − v−1 sin v) dx.(4.16)

Since cos v ≤ (sin v)/v for −π < v < π and ∆(x) > 0, v(x) > 0 for 0 ≤ x < α∗,
it follows that the right-hand side of (4.16) is negative. However, the left-hand
side of (4.16) is positive. This leads to a contradiction.

Now, we want to complete the induction by assuming the truth of the
statement us to m. For 0 < a < π, we want to show the following:

(i) ym < αm < zm+1. By the induction hypothesis ym < αm, we want to
show that αm < zm+1. For a = 0, it is obvious that αm(0) = λm. From Lemma
4.2, we have

lim
a→0+

zm+1(a) = γm+1 > λm.

By continuous dependence on parameter a, we have that αm(a) < zm+1(a) for
a > 0 sufficiently small. We claim that αm(a) < zm+1(a) for all 0 < a < π.
If not, then there exists a∗ ∈ (0, π) such that αm(a∗) = zm+1(a∗). We now
specialize (α, β) in (c) to (zm(a∗), zm+1(a∗)) and n = m. Then we obtain

x4(w′∆− w∆′)|zm+1
zm

=−
∫ zm+1

zm

3x3(x− ym)∆ sin v dx

−
∫ zm+1

zm

2x4∆ v′ dx.

(4.17)
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Since w(zm+1) = w(zm) = 0, zm+1 = αm, w
′(zm) = (z2

m − 3zmym)v′′(zm),
(4.17) becomes

−z5
m(zm − 3ym)v′′(zm)∆(zm) =−

∫ zm+1

zm

3x3(x− ym) sin v∆ dx

−
∫ zm+1

zm

2x4∆ v′ dx.

(4.18)

Since (zm−3ym)v′′(zm)∆(zm) > 0,
∫ zm+1

zm

3x3(x−ym)∆ sin v < 0 and
∫ zm+1

zm

2x4

∆ v′dx < 0, the left-hand side of (4.18) is negative while the right-hand
side of (4.18) is positive. This is the desired contradiction. Hence, we have
αm(a) < zm+1(a) for all 0 < a < π.

(ii) zm+1 < βm+1 < ym+1 < αm+1. First we show that zm+1 < βm+1. If
not, then αm < βm+1 ≤ zm+1. We specialize (α, β) in (a) to (αm, βm+1). Then
we obtain

x4(v′∆− v∆′)|βm+1
αm

=
∫ βm+1

αm

x3∆ v(cos v − v−1 sin v) dx.(4.19)

Since ∆(αm) = 0, ∆′(βm+1) = 0, (4.19) becomes

β4
m+1v

′(βm+1)∆(βm+1) + α4
mv(αm)∆′(αm)

=
∫ βm+1

αm

x3∆ v(cos v − v−1 sin v) dx.
(4.20)

It is easy to verify that the left-hand side of (4.20) is positive while the right-
hand side is negative. This is the desired contradiction.

Next we show that βm+1 < ym+1. If not, then βm+1 ≥ ym+1. We specialize
(α, β) in (b) to (zm+1, ym+1). Follow similar arguments in the case β1 < y1.
Since v(ym+1) = 0, v′(zm+1) = 0, we deduce that

y4
m+1v

′(ym+1)∆′(ym+1) + z4
m+1∆′′(zm+1)v(zm+1)

= −4z3
m+1∆′(zm+1)v(zm+1)−

∫ ym+1

zm+1

4x3∆′v′dx

+
∫ ym+1

zm+1

3x2∆ sin v dx− z3
m+1 cos v(zm+1)∆(zm+1)v(zm+1)

+z3
m+1∆(zm+1) sin v(zm+1).

(4.21)

Because z4
m+1∆′′(zm+1)+4z3

m+1∆′(zm+1)+z3
m+1 cos v(zm+1)∆(zm+1) = 0, (4.21)

becomes
y4
m+1v

′(ym+1)∆′(ym+1) =z3
m+1∆(zm+1) sin v(zm+1)

+
∫ ym+1

zm+1

3x2∆ sin v dx−
∫ ym+1

zm+1

4x3∆′v′dx.
(4.22)
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It is easy to verify y4
m+1v

′(ym+1)∆′(ym+1) ≤ 0, z3
m+1∆(zm+1) sin v(zm+1) >

0,
∫ ym+1

zm+1

4x3∆′v′dx < 0, and
∫ ym+1

zm+1

3x2∆ sin v dx > 0. Thus we obtain a

contradiction.
Finally, we want to show that ym+1 < αm+1. If not, then ym+1 ≥ αm+1.

We specialize (α, β) in (a) to (βm+1, αm+1). Then we have

−α4
m+1v(αm+1)∆′(αm+1)− β4

m+1v
′(βm+1)∆(βm+1)

=
∫ αm+1

βm+1

x3∆ v(cos v − v−1 sin v) dx.
(4.23)

It is easy to verify that the left-hand side of (4.23) is positive while the
right-hand side is negative. This is a contradiction.

For the tapered cantilever of rectangular cross-section, in the vertical case,
we study the following boundary value problem (Pr)π:

d

ds

(
s3dψ(s)

ds

)
= Ks2 sin ψ(s),

ψ′(0) = 0, ψ(1) = π.

(4.24)

Let x = s, v(x) = ψ(s/K)− π. Then (4.24) takes the form{
(x3v′(x))′ + x2 sin v(x) = 0, ′ = d/dx,
v′(0) = 0, v(K) = 0.

(4.25)

If we take the same function V (x) = (1 − cos v(x)) + x(v′(x))2/2, the initial
value problem {

(x3v′(x))′ + x2 sin v(x) = 0, ′ = d/dx,
v(0) = a, v′(0) = 0, a ∈ R,(4.26)

with the same results as Lemma 4.1 and Lemma 4.2, then Lemma 4.3 also
holds if we introduce the following equations,

(A) : (x3v′)′ + x2 sin v = 0, v(0) = a, v′(0) = 1,

(B) : (x3∆′)′ + x2 ∆ cos v = 0, ∆(0) = 1, ∆′(0) = 0,

(C) : (x3∆′′)′ + (3x2∆′)′ + (x2 ∆ cos v)′ = 0,

(D) : (x3w′)′ + x2w cos v = −3x2(x− yn) sin v − x3v′,

where w = (x2 − 3xyn)v′. Hence the bifurcation phenomena of (4.24) is the
same as the bifurcation phenomena of (4.1).
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5. Numerical Studies for α 6= π and Discussions

In this section, we present our numerical studies for the multiplicities of
the solutions for 0 < α < π. (Pc)α and (Pr)α will have the same bifurcation
phenomena, so we only consider the problem of (Pc)α. From (2.6), we consider
the following bifurcation problem,{

(s4φ(s))′ = s3 sinφ(s), 0 ≤ s ≤ K,
φ′(0) = 0, φ(K) = α, 0 < α < π.

(5.1)

Let φ(s, a) be the solution of the following initial value problem:

(s4φ(s))′ = s3 sinφ(s), φ(0) = a, φ′(0) = 0.(5.2)

It is easy to verify the following relations:

φ(s, a+ 2π) = φ(s, a) + 2π,
φ(s, a− 2π) = φ(s, a)− 2π,

so we only consider −π < a < π. For any 0 < α < π, the maps

a 7→ yu1 (a;α),
a 7→ yln(a;α), n = 2, 3, 4, · · · ,
a 7→ yun(a;α), n = 2, 3, 4, · · · ,

satisfy φ(yu1 (a;α)) = π − α = φ(yln(a;α)) = φ(yun(a;α)). We have yu1 (a;α) <
yl3(a;α) < yu3 (a;α) < yl5(a;α) < yu5 (a;α) < · · · < yl2n+1(a;α) < yu2n+1(a;α) and
yl2(a;α) < yu2 (a;α) < yl4(a;α) < yu4 (a;α) < · · · < yl2n(a;α) < yu2n(a;α) for 0 <
a < π, and −π < a < 0, respectively. Moreover yu1 (a1;α) = yu1 (π − α;α) = 0,
yun(an;α) = yln(an;α) with 0 < a1 = π − α < a3 < · · · < a2n+1 < · · · < π, and
−π < · · · < a2n < · · · < a4 < a2 < 0. (See Fig. 3.)

From the numerical computation, we conjecture that the following hold:

d

da
yu2n+1(a;α) > 0 for a ∈ (a2n+1, π),

d

da
yu2n(a;α) < 0 for a ∈ (−π, a2n),

d2

da2
yl2n+1(a;α) > 0 for a ∈ (a2n+1, π),

d2

da2
yl2n(a;α) > 0 for a ∈ (−π, a2n);
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FIG. 3.
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FIG. 4.

moreover, yl2n(η2n;α) and yl2n+1(η2n+1;α) take the global minimum value in
the open interval (−π, a2n) and (a2n+1, π), n = 1, 2, 3, . . ., respectively, where
0 < η3 < η5 < · · · < η2n+1 < · · · < π and −π < · · · < η2n < · · · < η4 < η2 < 0.
Let λn = yln(ηn;α), n = 2, 3, 4, . . . . We have 0 < λ2 < λ3 < λ4 < · · · < λn <
· · · .

Then we conclude from the above conjecture the following:

If 0 < K < λ2, then (5.1) has a unique solution.
If K = λ2, then (5.1) has exactly two distinct solutions.
If λ2 < K < λ3, then (5.1) has three distinct solutions.
If K=λn, then (5.1) has exactly 2n−2 distinct solutions, for n=2, 3, . . . .
If λn < K < λn+1, then (5.1) has 2n− 1 distinct solutions, for
n = 2, 3, . . . .

Here we used the ODE Solver DGEAR of the IMSL Library to compute the
bifurcation phenomena and the values of λn, n = 2, 3, . . .. For α = π − 0.01,
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we have (see Fig.4)

λ2 ≈ 10.961, λ3 ≈ 26.857, λ4 ≈ 49.812, λ5 ≈ 80.311, λ6 ≈ 118.628, etc.
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