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SUBMANIFOLDS OF CONSTANT SCALAR CURVATURE IN
A HYPERBOLIC SPACE FORM

Zhong Hua Hou

Abstract. Let Mn be a closed submanifold immersed into a real hy-
perbolic space form Hn+p of constant curvature −1. Denote by R the
normalized scalar curvature of Mn and by H the mean curvature of Mn.
Suppose that R is constant and bigger than or equal to −1. We first
extend Cheng-Yau’s technique to higher codimensional cases. Then, for
Mn with parallel normalized mean curvature vector field, we show that,
if H satisfies a certain inequality, then Mn is totally umbilical or the
equality part holds. We describe all Mn whose H satisfies this equality.

0. Introduction

Let Mn be an oriented, connected submanifold immersed into a space form
M

n+p
c of constant curvature c. We say that Mn is closed if it is compact and

without boundary. Denote by σ the second fundamental form and by ξ the
mean curvature vector field of Mn. Denote by H the length of ξ which we call
the mean curvature of Mn. We denote by Hn+p(c) the real hyperbolic space
form of constant curvature c (< 0). We simply denote Hn+p(−1) by Hn+p.

As far as we know, there is a lot of results obtained on the rigidity problem
for minimal submanifolds and for submanifolds with parallel mean curvature
vector field immersed into a sphere or a Euclidean space, but less of that
were obtained for submanifolds immersed into a hyperbolic space form, even
for hypersurfaces. Walter [11] gave a classification for non-negatively curved
compact hypersurfaces in a space form under the assumption that the rth mean
curvature is constant, where the rth mean curvature is defined to be the rth
elementary symmetric function of the principal curvatures. Morvan–Wu [7],
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Wu [12] also proved some rigidity theorems for a complete hypersurface Mn
0 in

a hyperbolic space form Hn+1(c) under the assumption that the Ricci curvature
tensor is positive semi-definite and the mean curvature is constant. Moreover,
they proved that Mn

0 is a geodesic distance sphere in Hn+p(c) provided that it
is compact.

Cheng-Yau [2] constructed a second order differential operator and used it
to classify compact hypersurfaces with non-negative sectional curvature and
constant scalar curvature in a space form. They also classified complete non-
compact convex hypersurfaces with constant scalar curvature in a Euclidean
space.

In this paper, we first extend Cheng-Yau’s technique to higher codimen-
sional cases and then study the rigidity problem for closed submanifolds with
constant scalar curvature in Hn+p.

In Section 3, we will prove the following:

Proposition 3.1. Let Mn be a connected submanifold immersed into
M

n+p
c . Suppose that the normalized scalar curvature R of Mn is constant and

greater than or equal to c. Then

|∇σ|2 ≥ n2|∇H|2(3.1)

and the symmetric tensor T defined by (1.14) is negative semi-definite. More-
over, suppose that the equality in (3.1) holds everywhere on Mn. Then

( i ) if R− c > 0, then H is constant and T is negative definite;

(ii) if R − c = 0, then either H is constant or Mn lies in a totally geodesic
subspace M

n+1
c of M

n+p
c . In the latter case, if H is not constant on Mn,

then r(Ln+1) ≤ 1 on Mn, where r(Ln+1) denotes the rank of Ln+1.

Remark 0.1. It should be noted that, in Proposition 3.1, if we denote
σξ = 〈σ, ξ〉, then we have T = σξ− (nH)g, where g denotes the induced metric
of Mn. Moreover, Ln+1 is nothing but the coefficient matrix of σξ under an
orthonormal frame field of T (Mn).

In Section 4, we will prove the following:

Theorem 4.1. Let Mn (n ≥ 3) be a closed submanifold in Hn+p with
parallel normalized mean curvature vector field. Suppose that the normalized
scalar curvature R is constant and greater than or equal to −(n− 2)/(n− 1).
Let h be defined by (4.10). If the normal bundle of Mn is flat and H ≤ h, then
R > 0 and either

( i ) H =
√
R+ 1 and Mn is a geodesic distance sphere Sn(1/

√
R) in Hn+p;

or
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(ii) H = h and one of the following cases occurs:

(a) H =
√

(n− 1)R/(n− 2) + 1 and Mn is a Clifford hypersurface

Sn−1(r0

√
(n− 1)/n)× S1(r0

√
1/n)

in a geodesic distance sphere Sn+1(r0) of Hn+p, where
r0 =

√
(n− 2)/(n− 1)R;

(b)
√
R+ 1 +R/n(n− 2) < H <

√
(n− 1)R/(n− 2) + 1 and Mn is

a pythagorean product of the form Sn−1(r) × S1(
√
r2

1 − r2) in a
geodesic distance sphere Sn+1(r1) of Hn+p, where r−2

1 = nR/(n− 2)−
R2/(n− 2)2(H2 −R− 1) and r =

√
(n− 2)/nR.

Theorem 4.2. Let Mn be a closed submanifold in Hn+p with parallel
normalized mean curvature vector field. Suppose that the normalized scalar
curvature R is constant and greater than or equal to −(3n− 5)/(3n− 3). Let
h̃ be defined by (4.18). If H ≤ h̃, then R > 0 and either

( i ) H =
√
R+ 1 and Mn is a geodesic distance sphere Sn(1/

√
R) in Hn+p;

or

(ii) H =
√

3R+ 1 and M2 is a Veronese surface in a totally geodesic sphere
S4(1/

√
3R) of a geodesic distance sphere S5(1/

√
3R) in H2+p.

Remark 0.2. It should be pointed out that the assumption that the
normalized mean curvature vector field ξ/H of Mn is parallel is different from
that the mean curvature vector field ξ of Mn is parallel. It is significant to
consider the difference between these two assumptions. H. Li proved that, if
Mn is a closed and oriented pseudo-umbilical submanifold in M

n+p
c and H is

nowhere zero, then H is constant if and only if ξ/H is parallel.

Acknowledgements. The author would like to express the deep gratitude
to the Okazaki Kaheita International Scholarship Foundation which afforded
him such a good opportunity for study in Japan and gave him very precious
support while he was staying in Tokyo.

1. Preliminaries

Let Mn be a connected submanifold immersed into a space form M
n+p
c .

We always assume that Mn is oriented and identify Mn with its immersed
image in M

n+p
c .

Choose a local orthonormal frame field {eA}n+p
A=1 of T (M

n+p
c ) over Mn

such that {ei}ni=1 lies in the tangent bundle T (Mn) and {eα}n+p
α=n+1 in the
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normal bundle N(Mn) of Mn. Let {ωA}n+p
A=1 denote the dual coframe field

and (ωAB)n+p
A,B=1 the Riemannian connection matrix associated with {eA}n+p

A=1.
Then (ωij)ni,j=1 defines a Riemannian connection in T (Mn) associated with
{ei}ni=1 and (ωαβ)n+p

α,β=n+1 defines a normal connection in N(Mn) associated
with {eα}n+p

α=n+1.
Throughout this paper, we agree on the following index ranges:

1 ≤ i, j, k, . . . ≤ n; n+ 1 ≤ α, β, γ, . . . ≤ n+ p; 1 ≤ A,B,C, . . . ≤ n+ p.

We know that the second fundamental form of Mn can be expressed as

σ =
∑
(i,α)

ωi ⊗ ωiα ⊗ eα =
∑

(i,j,α)

hαijωi ⊗ ωj ⊗ eα,

where ωiα =
∑

(j) h
α
ijωj for all i and α. It is well-known that hαij = hαji for all

i, j and α.
Denote Lα = (hαij)n×n and Hα = (1/n)

∑
(i) h

α
ii for every α. The mean

curvature vector field ξ, the mean curvature H and the square of the length
of the second fundamental form, say S, are expressed as

ξ =
∑
(α)

Hαeα, H = |ξ|, S =
∑

(α,i,j)

(hαij)
2.

The Riemannian curvature tensor {Rijkl}, the normal curvature tensor {Rαβkl},
the Ricci curvature tensor {Rik} and the normalized scalar curvature R are
expressed as

Rijkl= (δikδjl − δilδjk) c+ hαikh
α
jl − hαilhαjk,

Rαβkl= hαkmh
β
ml − hαlmh

β
mk,

Rik = (n− 1) c δik + (nHα)hαik − hαijhαjk,

R=
1

n(n− 1)

∑
(i)

Rii = c+
1

n(n− 1)
(n2H2 − S).

(1.1)

We define the first and the second covariant derivatives of {hαij} by

∇hαij = hαijkωk ≡ dhαij + hαmjωmi + hαimωmj + hβijωβα,(1.2)

∇hαijk = hαijklωl ≡ dhαijk + hαmjkωmi + hαimkωmj + hαijmωmk + hβijkωβα.(1.3)

It follows from Ricci’s identity that

hαijk = hαikj , hαijkl − hαijlk = hαmjRmikl + hαimRmjkl + hβijRβαkl.(1.4)
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The Laplacian of hαij is defined by ∆hαij =
∑

(k) h
α
ijkk. Using (1.4), we obtain

∆hαij =nHα,ij + n c hαij − n cHαδij + nHβh
α
imh

β
mj − Sαβh

β
ij

+2hβikhαkmh
β
mj − hαimh

β
mkh

β
kj − h

β
ikh

β
kmh

α
mj ,

where Sαβ =
∑

(i,j) h
α
ijh

β
ij for all α and β. For a real matrix A = (aij)n×n, we

define N(A) =
∑

(i,j) a
2
ij. Then we have∑

(i,j)

hαij∆h
α
ij =n

∑
(i,j)

Hα,ijh
α
ij + n cSα − c n2H2

α

+nHTr(L2
αLn+1)− S2

n+1α −N(LαLn+1 − Ln+1Lα)

−
∑

(β>n+1)

S2
αβ −

∑
(β>n+1)

N(LαLβ − LβLα),

(1.5)

where we denote Sα = Sαα =
∑

(i,j)(h
α
ij)

2, for all α.
Suppose that en+1 has the same direction as ξ. Then ξ = Hen+1 and

Hn+1 = H, Hα = 0, for α > n+ 1.(1.6)

It follows from (1.2) and (1.6) that

Hn+1,kωk = dH = Hkωk, Hα,kωk = Hωn+1α, for α > n+ 1.(1.7)

We define a real function εH on Mn as follows:

εH =

{
1/H if H 6= 0,
0 if H = 0.

It follows from (1.3), (1.6) and (1.7) that

Hn+1,kl = Hkl − εH
∑

(β>n+1)

Hβ,kHβ,l,(1.8)

where we denote ∇Hk = Hklωl ≡ dHk +Hlωlk for all k.
From (1.5) and (1.8), we have

∑
(i,j)

hn+1
ij ∆hn+1

ij = n
∑
(i,j)

Hijh
n+1
ij − n ε

H

∑
(i,j)

∑
(β>n+1)

Hβ,iHβ,jh
n+1
ij

+n cSn+1 − c n2H2 + nHfn+1 − S2
n+1 −

∑
(β>n+1)

S2
n+1β

−
∑

(β>n+1)

N(Ln+1Lβ − LβLn+1),

(1.9)
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where fn+1 = Tr(Ln+1)3. We define L̃n+1 and S̃n+1 by

L̃n+1 = Ln+1 −H In, S̃n+1 = N(L̃n+1) = Sn+1 − nH2,(1.10)

where In denotes the identity matrix of degree n.
By using the same arguments as in [4, pp. 1194], we obtain

n cSn+1−c n2H2 + nHfn+1 − S2
n+1

≥ S̃n+1

n c− (S̃n+1 − nH2)− n(n− 2)H

√
S̃n+1

n(n− 1)

 .
(1.11)

It follows from (1.2) that

∑
(β>n+1)

(Sn+1β)2 =
∑

(β>n+1)

∑
(i,j)

(hn+1
ij −Hδij)hβij


2

.(1.12)

Denote SI =
∑

(β>n+1) Sβ. From (1.12), we have∑
(β>n+1)

(Sn+1β)2 ≤ S̃n+1SI ,(1.13)

and the equality in (1.13) holds if and only if there exists a real function cβ
such that Lβ = cβ L̃n+1, for every β > n+ 1.

Let T =
∑

(i,j) Tijωiωj be a symmetric tensor on Mn defined by

Tij = hn+1
ij − nHδij, i, j = 1, · · · , n.(1.14)

Associated to T , we define a second order differential operator � on C2(M)
by

�f =
∑
(i,j)

Tijfij =
∑
(i,j)

hn+1
ij fij − (nH)∆f, f ∈ C2(M).(1.15)

Since (Tij) is divergence-free, it follows from [2, Proposition 1] that � is a self-
adjoint operator relative to the L2-inner product of C2(Mn). Setting f = H
in (1.15), we have∑

(i,j)

hn+1
ij Hij = �H + nH∆H = �H +

n

2
∆(H2)− n|∇H|2.(1.16)

Denote S̃ = S̃n+1 + SI . Substituting (1.11), (1.13) and (1.16) into (1.9), we
get
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∑
(i,j)

hn+1
ij ∆hn+1

ij ≥ n�H + 1
2∆(n2H2)− n2|∇H|2

−n εH
∑

(β>n+1)

∑
(i,j)

Hβ,iHβ,jh
n+1
ij

−
∑

(β>n+1)

N(Ln+1Lβ − LβLn+1)

+S̃n+1

n c+ nH2 − S̃ − n(n− 2)H

√
S̃n+1

n(n− 1)

 .
(1.17)

2. Umbilical Hypersurfaces in a Hyperbolic Space Form

In this section, we consider some special hypersurfaces in a hyperbolic
space form that will play an important role in our latter discussions.

We propose to give a description of the real hyperbolic space form Hn+1(c)
of constant curvature c (< 0). For any two vectors X and Y in Rn+2, we set

g(X,Y ) =
n+1∑
i=1

X iY i −Xn+2Y n+2.

(Rn+2, g) is the so-called Minkowski space-time. Denote R =
√
−1/c. We

define
Hn+1(c) =

{
x ∈ Rn+2 | xn+2 > 0, g(x, x) = −R2} .

Then Hn+1(c) is a connected simply-connected hypersurface of Rn+2. It is not
hard to check that the restriction of g to the tangent space of Hn+1(c) yields a
complete Riemanian metric of constant curvature c. Hence we obtain a model
of a real hyperbolic space form.

We are interested in those complete hypersurfaces with at most two con-
stant distinct principal curvatures in Hn+1(c). This kind of hypersurfaces was
described by Lawson [5] and completely classified by Ryan [8].

Lemma 2.1(Ryan[8]). Let Mn be a complete hypersurface in Hn+1(c).
Suppose that, under a suitable choice of a local orthonormal tangent frame field
of T (Mn), the shape operator over T (Mn) is expressed as a matrix A. If Mn

has at most two distinct constant principal curvatures, then it is congruent to
one of the following:

(1) M1 = {x ∈ Hn+1(c) | x1 = 0}. In this case, A = 0, and M1 is totally
geodesic. Hence M1 is isometric to Hn(c);
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(2) M2 = {x ∈ Hn+1(c) | x1 = r > 0}. In this case, A =
1/R2√

1/R2 + 1/r2
In,

where In denotes the identity matrix of degree n, and M2 is isometric to
Hn(−1/(r2 +R2));

(3) M3 = {x ∈ Hn+1(c) | xn+2 = xn+1 +R}. In this case, A = (1/R) In, and
M3 is isometric to a Euclidean space En;

(4) M4 =
{
x ∈ Hn+1(c) |

∑n+1
i=1 x

2
i = r2 > 0

}
. In this case, A =

√
1/R2 + 1/r2

In, and M4 is isometric to a round sphere Sn(r) of radius r;

(5) M5 =
{
x ∈ Hn+1(c) |

∑k+1
i=1 x

2
i = r2 > 0,

∑n+1
j=k+2 x

2
j − x2

n+2 = −R2 − r2
}

.

In this case, A = λ Ik ⊕ µ In−k, where λ =
√

1/R2 + 1/r2 and µ =
1/R2√

1/R2 + 1/r2
, and M5 is isometric to Sk(r)× Hn−k(−1/(r2 +R2)).

Remark 2.1. M1, · · · ,M5 are often called the standard examples of com-
plete hypersurfaces in Hn+1(c) with at most two distinct constant principal
curvatures. It is obvious that M1, · · · ,M4 are totally umbilical. In the sense
of Chen [1], they are called the hypersphere of Hn+1(c). M3 is called the
horosphere and M4 the geodesic distance sphere of Hn+1(c).

Remark 2.2. Ryan [8] stated that the shape operator of M2 is A =√
1/r2 − 1/R2In, and M2 is isometric to Hn(−1/r2), where r ≤ R. This is

incorrect and we have it corrected here.
After a similar discussion as in the proof of Proposition 4.2 in [1, pp. 133],

we get

Lemma 2.2. Let Mn be a complete submanifold immersed into a hyper-
bolic space form Hn+p(c). Assume that there is a globally defined unit normal
vector field ξ on Mn such that ξ is parallel and the second fundamental form
in the direction of ξ has constant equal eigenvalues everywhere on Mn. Then
Mn lies in a hypersphere of Hn+p(c). Moreover, if ξ is the normalized mean
curvature vector field of Mn, then the immersion is minimal.

3. An Extension of Cheng-Yau’s Technique

Cheng-Yau [2] gave a lower bound estimate for the square of the length
of the covariant derivative ∇σ of σ, which plays an important role in their
discussion. They proved that, for a hypersurface Mn in M

n+1
c , if the normal-

ized scalar curvature R of Mn is constant and greater than or equal to c, then
|∇σ|2 ≥ n2|∇H|2. In this section, we propose to extend this inequality to
higher codimensional cases. Namely, we want to prove the following:
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Proposition 3.1. Let Mn be a connected submanifold immersed into
M

n+p
c . Suppose that the normalized scalar curvature R is constant and greater

than or equal to c. Then

|∇σ|2 ≥ n2|∇H|2(3.1)

and the symmetric tensor T defined by (1.14) is negative semi-definite. More-
over, suppose that the equality in (3.1) holds everywhere on Mn. Then

( i ) if R− c > 0, then H is constant and T is negative definite;

(ii) if R − c = 0, then either H is constant or Mn lies in a totally geodesic
subspace M

n+1
c of M

n+p
c . In the latter case, if H is not constant on Mn,

then r(Ln+1) ≤ 1 on Mn, where r(Ln+1) denotes the rank of Ln+1.

Proof. It is known that n2H2−S = n(n−1)(R− c) ≥ 0. Taking covariant
derivative on both sides of this equality, we get n2HHk =

∑
(i,j,α) h

α
ij h

α
ijk for

every k. It follows from Cauchy-Schwarz’s inequality that

n4H2H2
k ≤ S

∑
(i,j,α)

(hαijk)
2(3.2)

for all k. Moreover, the equality in (3.2) holds if and only if there exists a real
function ck on Mn such that

hαijk = ck h
α
ij, i, j = 1, · · · , n, α = n+ 1, · · · , n+ p,(3.3)

for every k.
Taking sum with respect to k on both sides of (3.2), we obtain n4H2|∇H|2 ≤

S|∇σ|2, where |∇σ|2 =
∑

(i,j,k,α)(h
α
ijk)

2. It follows that

0 ≤ n3(n− 1)(R− c)|∇H|2 ≤ S
(
|∇σ|2 − n2|∇H|2

)
.(3.4)

Therefore (3.1) holds on Mn since S is continuous on Mn.
Denote the eigenvalues of Ln+1 by {λn+1

i }ni=1. Then (λn+1
i )2 ≤ Sn+1 ≤ S ≤

n2H2 for all i. Thus |λn+1
i | ≤ nH for all i. Therefore T = (Tij) = Ln+1−nHIn

is negative semi-definite.
Let |∇σ|2 = n2|∇H|2 on Mn. It follows from (3.4) that (R− c)|∇H|2 = 0

on Mn. If R− c > 0, then |∇H|2 = 0 on Mn. In this case, none of |λn+1
i |’s is

equal to nH. Hence T is negative definite. Thus (i) follows.
Suppose R − c = 0. Then S = n2H2 on Mn. In this case, the equality in

(3.2) holds for all k. From (3.3), we have

hn+1
ijk = ck h

n+1
ij ; hαijk = ck h

α
ij, α > n+ 1; i, j, k = 1, · · · , n.(3.5)
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Taking sum on both-sides of equations in (3.5) with respect to i = j, we get

Hk = ckH; Hα,k = 0, α > n+ 1; k = 1, · · · , n.(3.6)

From (1.7) and the second equation in (3.6) we can see that en+1 is parallel.
Multiplying both-sides of the first equation in (3.5) by H and using (3.6),

we have

Hhn+1
ijk = Hkh

n+1
ij , i, j, k = 1, · · · , n.(3.7)

Taking sum on both-sides of (3.7) with respect to j = k, we have

(nH)Hi = Hjh
n+1
ij , i = 1, · · · , n.(3.8)

From (3.7) and the fact |∇σ|2 = n2|∇H|2, we have H2|∇SI |2 = 0 on Mn.
From (3.8) and the fact S = n2H2, we have SI |∇H|2 = 0 on Mn.

Denote M1 = {x ∈ Mn | SI(x) > 0} and M2 = {x ∈ Mn | |∇H|(x) > 0}.
Then M1 and M2 are open in Mn. It follows from the equality SI |∇H|2 = 0
that M1 ∩M2 = ∅.

We assert that at least one of M1 and M2 is empty. In fact, if both of them
are not empty, then |∇H|2 = 0 in M1 and SI = 0 in M2. Hence H is constant
in M1. It follows from the equality S = n2H2 that H > 0 in M1. Thus we
have from the equality H2|∇SI |2 = 0 that |∇SI |2 = 0 in M1. Therefore SI
is constant in M1. This is contradictory to the fact SI = 0 in M2 since SI is
continuous on Mn. Our assertion follows.

If M1 6= ∅, then M2 = ∅. Hence H is constant on Mn. On the other hand,
if M2 6= ∅, then M1 = ∅. So SI = 0 on Mn. Therefore we proved the first part
of (ii).

Suppose that SI = 0 on Mn and M2 6= ∅. Then it follows from (3.8) that
λn+1
i0 = nH for some i0 in M2. Using the fact that Sn+1 = S = n2H2, we can

see that λn+1
i = 0 for all i 6= i0 in M2. From the continuity of λn+1

i ’s, we have
that λn+1

i = 0 for all i 6= i0 on the closure cl(M2) of M2. If M \ cl(M2) 6= ∅,
it follows from (3.7) that all of λn+1

i ’s are constant in M \ cl(M2). Since all
of λn+1

i ’s are continuous, we have that λn+1
i = 0 for all i 6= i0 on Mn. Hence

r(Ln+1) ≤ 1 on Mn. The second part of (ii) follows. 2

Remark 3.1. It is significant to classify all of Mn on which the equality
in (3.1) holds.

4. The Rigidity of Submanifolds in a Hyperbolic Space Form

In this section, we propose to study the rigidity problem for submanifolds
in Hn+p with constant scalar curvature. We continue to use the same notation
as in Section 1.
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Let Mn be a closed submanifold with parallel normalized mean curvature
vector field immersed into Hn+p. Assume that R is constant and greater than
and equal to −(n− 2)/(n− 1).

Choose en+1 to have the same direction as ξ. Then ξ = Hen+1. From the
fact that en+1 is parallel, it follows that ωn+1α = 0, which implies

Ln+1Lα − LαLn+1 = 0(4.1)

for all α. From (1.2) and (1.7), we have

Hα,k = 0, Hα,kl = 0(4.2)

for all k, l and α > n+ 1. Substituting (4.1) and (4.2) into (1.17), we have∑
(i,j)

hn+1
ij ∆hn+1

ij ≥ n�H +
1
2
n2∆(H2)− n2|∇H|2

+S̃n+1

−n+ nH2 − S̃ − n(n− 2)H

√
S̃n+1

n(n− 1)

 .
(4.3)

Taking sum on both-sides of (1.5) with respect to α > n + 1 and using
(4.1) and (4.2), we have∑

(i,j,α>n+1)

hαij∆h
α
ij = (−n+ nH2)SI + (nH)

∑
(α>n+1)

Tr(L2
αL̃n+1)

−
∑

(α>n+1)

S2
n+1α −

∑
(α,β>n+1)

{
S2
αβ +N(LβLα − LαLβ)

}
.

(4.4)

To estimate the right hand-side of (4.4), we need the following

Lemma 4.1 (Santos[9]). Let A and B be n × n symmetric matrices
satisfying TrA = 0, TrB = 0 and AB −BA = 0. Then

− n− 2√
n(n− 1)

(TrA2)(TrB2)1/2 ≤ TrA2B ≤ n− 2√
n(n− 1)

(TrA2)(TrB2)1/2,(4.5)

and the equality on the right (resp. left) hand side of (4.5) holds if and only
if n − 1 many eigenvalues xi of A and the corresponding eigenvalues yi of B
satisfy

|xi| =
(TrA2)1/2√
n(n− 1)

, xi xj ≥ 0; yi = − (TrB2)1/2√
n(n− 1)

(
resp. yi =

(TrB2)1/2√
n(n− 1)

)
.

Using the left hand side of (4.5) to every Tr(L2
αL̃n+1), we have

Tr(L2
αL̃n+1) ≥ −(n− 2)Sα

√
S̃n+1

n(n− 1)
.
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Substituting this and (1.13) into (4.4), we have

∑
(i,j,α>n+1)

hαij∆h
α
ij≥ SI

n(−1 +H2)− n(n− 2)H

√
S̃n+1

n(n− 1)
− S̃n+1


−

∑
(α,β>n+1)

{
S2
αβ +N(LβLα − LαLβ)

}
.

(4.6)
Note that ∆S = ∆(n2H2) and

1
2

∆S = |∇σ|2 +
∑
(i,j)

hn+1
ij ∆hn+1

ij +
∑

(i,j,α>n+1)

hαij∆h
α
ij.

It follows from (4.3) and (4.6) that

0 ≥n�H + |∇σ|2 − n2|∇H|2 + S2
I

+S̃

(−n+ nH2)− n(n− 2)H

√
S̃n+1

n(n− 1)
− S̃


−

∑
(α,β>n+1)

{
S2
αβ +N(LβLα − LαLβ)

}
.

(4.7)

Let us now prove the main results of this section. We will reduce our
consideration to the following two cases. Each of them is interesting in its
own right.

Case 1. Submanifold with flat normal bundle. Suppose in addition that
Mn is with flat normal bundle. Then Ωαβ = 0 for all α and β, which is
equivalent to

LαLβ − LβLα = 0(4.8)

for all α and β.
Since the matrix (Sαβ)α,β>n+1 is symmetric, under a suitable choice of

{eβ}n+p
β=n+2, we can assume that Sαβ = 0 for all α, β > n+1 and α 6= β. Hence∑

(α,β>n+1)

S2
αβ =

∑
(β>n+1)

S2
β ≤ S2

I ,(4.9)

where the equality holds if and only if at most one of Sα’s is not zero.
Denote φn+1 =

√
S̃n+1/n(n− 1) and define

h = 2C
(
φn+1 +

√
φ2
n+1 + 4C

)−1

,(4.10)
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where C = (n − 1)R/(n − 2) + 1 > 0. Note that S̃ = n(n − 1)(H2 − R − 1).
Then

S̃

(−n+ nH2)− n(n− 2)H

√
S̃n+1

n(n− 1)
− S̃

 = Φ (H −
√
R+ 1)(h−H),

where Φ = n2(n− 1)(n− 2)(H +
√
R+ 1)(H +Ch−1). Hence (4.7) turns into

0 ≥ n�H + |∇σ|2 − n2|∇H|2 + S2
I

−
∑

(β>n+1)

S2
β + Φ (H −

√
R+ 1)(h−H).

(4.11)

If H ≤ h, then Φ > 0 and Φ (H −
√
R+ 1)(h − H) ≥ 0. Integrating

both-sides of (4.11) on Mn, we have from (3.1) and (4.9) that

|∇σ|2 = n2|∇H|2,
∑

(β>n+1)

S2
β = S2

I , (H −
√
R+ 1)(h−H) = 0(4.12)

on Mn. So we can prove the following:

Theorem 4.1. Let Mn (n ≥ 3) be a closed submanifold in Hn+p with
parallel normalized mean curvature vector field. Suppose that the normalized
scalar curvature R is constant and greater than or equal to −(n− 2)/(n− 1).
Let h be defined by (4.10). If the normal bundle of Mn is flat and H ≤ h, then
R > 0 and either

( i ) H =
√
R+ 1 and Mn is a geodesic distance sphere Sn(1/

√
R) in Hn+p;

or

(ii) H = h and one of the following cases occurs:

(a) H =
√

(n− 1)R/(n− 2) + 1 and Mn is a Clifford hypersurface

Sn−1(r0

√
(n− 1)/n)× S1(r0

√
1/n)

in a geodesic distance sphere Sn+1(r0) of Hn+p, where
r0 =

√
(n− 2)/(n− 1)R;

(b)
√
R+ 1 +R/n(n− 2) < H <

√
(n− 1)R/(n− 2) + 1 and Mn is

a pythagorean product of the form Sn−1(r) × S1(
√
r2

1 − r2) in a
geodesic distance sphere Sn+1(r1) of Hn+p, where r−2

1 = nR/(n− 2)−
R2/(n− 2)2(H2 −R− 1) and r =

√
(n− 2)/nR.
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Proof. From the first equality in (4.12) and Proposition 3.1, we have that
H is constant. It follows from the third equality in (4.12) that H =

√
R+ 1

or H = h.
If H =

√
R+ 1, then S = n(R + 1). So Mn is umbilically immersed into

a totally geodesic subspace Hn+1 of Hn+p. Since Mn is closed, it follows from
Lemma 2.1 that R > 0 and Mn is a geodesic distance sphere Sn(1/

√
R) of

Hn+p.
If H = h, then S̃ = n(−1 +H2)−n(n−2)H

√
S̃n+1/n(n− 1). In this case,

all of the inequalities concerned become equalities. It follows from (4.9) and
the second equality in (4.12) that Mn lies in a totally geodesic subspace Hn+2

of Hn+p. Without loss of generality, we assume that Sβ ≡ 0 for all α ≥ n+ 3.
From the equality on the left hand side of (4.5), we can assume that, under a
suitable choice of {ei}ni=1, L̃n+1 and Ln+2 are of the form:
L̃n+1 = a1 Un, a1 =

√
S̃n+1

n(n− 1)

Ln+2 = a2 Un, a2 =

√
Sn+2

n(n− 1)

, where Un =


1 0 0. . .

...
0 1 0

0 · · · 0 1− n

 .
It is easy to see that a1 = φn+1 and

a2
1 + a2

2 =
S̃

n(n− 1)
= H2 − (R+ 1).(4.13)

If φn+1 = 0, then H =
√

(n− 1)R/(n− 2) + 1 and Ln+1 = HIn. There-
fore Mn is pseudo-umbilical and hence can be minimally immersed into a
hypersphere Sn+1(r0) of Hn+2, where r−2

0 = (n − 1)R/(n − 2). Since Mn is
closed with two distinct constant principal curvatures, it follows from Lemma
2.1 that r0 < +∞. Therefore R > 0 and Mn is a Clifford hypersurface
Sn−1(r0

√
(n− 1)/n)× S1(r0

√
1/n) in a geodesic distance sphereSn+1(r0).

Suppose that φn+1 > 0 on Mn. It is easy to see that en+1 = ξ/H and
en+2(⊥ en+1) are globally defined and parallel on Mn. Take the transformation
of normal frame fields as follows:

ên+1 =
a2√
a2

1 + a2
2

en+1 −
a1√
a2

1 + a2
2

en+2,

ên+2 =
a1√
a2

1 + a2
2

en+1 +
a2√
a2

1 + a2
2

en+2.

Then the second fundamental forms with respect to ên+1 and ên+2 turn into

L̂n+1 =
H a2√
a2

1 + a2
2

In, L̂n+2 =
√
a2

1 + a2
2 Un +

H a1√
a2

1 + a2
2

In.(4.14)
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From (4.14), we have that ên+1 is an umblical unit normal vector of Mn. From
Lemma 2.2 we have that Mn lies in a hypersphere Sn+1(r1) of Hn+2, where
r−2

1 = −1 +H2a2
2/(a

2
1 + a2

2). It is easy to check that

r−2
1 =

nR

n− 2
− 1
H2 − (R+ 1)

(
R

n− 2

)2

.(4.15)

Since Mn is closed with two distinct constant pricipal curvatures, it follows
from Lemma 2.1 that r1 < +∞. Hence R > 0 and Mn lies in a geodesic
distance sphere Sn+1(r1) of Hn+2. It follows from (4.15) that H = h >√
R+ 1 +R/n(n− 2).

It is obvious that the second fundamental form of Mn in Sn+1(r1) is just
L̂n+2. Thus Mn = Sn−1(r)× S1(

√
r2

1 − r2) ⊂ Sn+1(r1), where

r−2 = r−2
1 +

(√
a2

1 + a2
2 +

Ha1√
a2

1 + a2
2

)2

=
nR

n− 2
.

Therefore we complete the proof. 2

Remark 4.1. It is very interesting that in the case (b) of (ii) of The-
orem 4.1, the radius r of the (n − 1)-dimension leaf of Mn = Sn−1(r) ×
S1(

√
r2

1 − r2) depends only on n and the normalized scalar curvature R. More-
over, from (ii) of Theorem 4.1 we can see that if

√
R+ 1 < H ≤ h, then

H >
√
R+ 1 +R/n(n− 2).

Case 2. Submanifold with parallel normalized mean curvature vector field.
Suppose that Mn is one with parallel normalized mean curvature vector field.
When p = 2, Mn is in fact with flat normal bundle which has been discussed
in Case 1. We assume p ≥ 3 in the following discussion.

We propose to estimate the last term in (4.7). At first, we need the fol-
lowing:

Lemma 4.2 (Li’s [6]). Let A1, A2, · · · , Aq be symmetric n× n matrices,
where q ≥ 2. Denote Sαβ = TrATα Aβ, Sα = Sαα = N(Aα) and S = S1 + · · ·+
Sq. Then

∑
(α,β)

S2
αβ +

∑
(α,β)

N(AβAα −AαAβ) ≤ 3
2
S2,(4.16)

and the equality holds if and only if one of the following conditions holds:

( i ) A1 = · · · = Aq = 0;
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(ii) Only two of the matrices A1, A2, · · · , Aq are different from zero. More-
over, if we assume A1 6= 0, A2 6= 0 and A3 = · · · = Aq = 0, then S1 = S2

and there exists an orthogonal n× n matrix U such that

U A1 U
T =

√
S1

2


1 0

0
0 −1

0 0

 , U A2 U
T =

√
S1

2


0 1

0
1 0

0 0

 .
Setting Aα−(n+1) = Lα in (4.16) for α = n+ 2, · · · , n+ p, we have∑

(α,β>n+1)

{
S2
αβ +N(LβLα − LαLβ)

}
≤ 3

2
S2
I .

Substituting this inequality into (4.7), we obtain

0 ≥ n�H + |∇σ|2 − n2|∇H|2 +
1
2
S̃n+1(S̃ + SI)

+S̃

n(−1 +H2)− n(n− 2)H

√
S̃n+1

n(n− 1)
− 3

2
S̃

 .
(4.17)

Denote φn+1 =
√
S̃n+1/n(n− 1) and define

h̃ = (C1R+ 1)
(
C2φn+1 +

√
C2

2φ
2
n+1 + C1R+ 1

)−1

,(4.18)

where C1 = (3n− 3)/(3n− 5) and C2 = (n− 2)/(3n− 5). Then

S̃
{
n(−1 +H2)− n(n− 2)Hφn+1 − (3/2)S̃

}
= Ψ(H −

√
R+ 1)(h̃−H),

where Ψ = n2(n − 1)(3n − 5)(H +
√
R+ 1)[H + (C1R + 1)h̃−1]/2. So (4.17)

turns into

0 ≥ n�H+|∇σ|2−n2|∇H|2+
1
2
S̃n+1(S̃+SI)+Ψ(H−

√
R+ 1)(h̃−H).(4.19)

Suppose (3n− 3)R/(3n− 5) + 1 ≥ 0. Then h̃ ≥ 0. If H ≤ h̃, then Ψ > 0.
Integrating both-sides of (4.19) on Mn and using (3.1), we obtain

S̃n+1(S̃ + SI) = 0, (H −
√
R+ 1)(h̃−H) = 0, |∇σ|2 = n2|∇H|2(4.20)

on Mn. Then we can prove the following theorem:

Theorem 4.2. Let Mn be a closed submanifold in Hn+p with parallel
normalized mean curvature vector field. Suppose that the normalized scalar
curvature R is constant and greater than or equal to −(3n− 5)/(3n− 3). Let
h̃ be defined by (4.18). If H ≤ h̃, then R > 0 and either
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( i ) H =
√
R+ 1 and Mn is a geodesic distance sphere Sn(1/

√
R) in Hn+p;

or

(ii) H =
√

3R+ 1 and M2 is a Veronese surface in a totally geodesic sphere
S4(1/

√
3R) of a geodesic distance sphere S5(1/

√
3R) in H2+p.

Proof. It follows from the third equality in (4.20) and Lemma 3.1 that
H is constant. From the second equality in (4.20), we have H =

√
R+ 1 or

h̃ = H.
If H =

√
R+ 1, then S̃ = 0. Thus Mn is umbilically immersed into

a subspace Hn+1 of Hn+p. Since Mn is closed, it follows that R > 0 and
Mn = Sn(1/

√
R) ⊂ Hn+p. Hence (i) of Theorem 4.2 follows.

If H = h̃ >
√
R+ 1, then

S̃ = (2/3)
{
n(−1 +H2)− n(n− 2)H

√
S̃n+1/n(n− 1)

}
.

In this case, all of the inequalities concerned become equalities. From the first
equality of (4.20), we have S̃n+1 = 0. Hence Mn is pseudo-umbilical. It follows
from Lemma 2.2 that Mn lies minimally in a hypersphere Sn+p−1(r2) of Hn+p,
where r−2

2 = 3(n−1)R/(3n−5). The equalities in (4.5) and (4.16) imply that
n = 2. Under a suitable choice of tangent frame fields, we can assume that

L4 =

√
S4

2

(
1 0
0 −1

)
, L5 =

√
S5

2

(
0 1
1 0

)
; Lβ = 0, for all β > 5,

where S4 = S5. As SI = S̃ = (4/3)(−1 + H2) = 4R and Mn is not a
sphere, we have R > 0. Therefore Mn lies minimally in a geodesic distance
sphere S4(1/

√
3R) of H2+p. From the same arguments as in Chern-do Carmo-

Kobayashi [3], we have that M 2 is a Veronese surface in S4(1/
√

3R) of Hp+2.
Therefore (ii) of Theorem 4.2 follows. 2
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