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A SURVEY ON p-ADIC NEVANLINNA THEORY AND
ITS APPLICATIONS TO DIFFERENTIAL EQUATIONS

Chung-Chun Yang and Pei-Chu Hu∗

Abstract. In this paper, we will give a brief survey on Nevanlinna theory
of p-adic meromorphic functions and some of its applications. Also we
will study p-adic meromorphic solutions of differential equations, and
show that some differential equations have no admissible transcendental
p-adic meromorphic solutions as in the complex-valued function cases.

1. Introduction

Recently, p-adic Nevanlinna theory has become one of active mathemat-
ical fields. For example, Khóai [19], Khóai-Quang [22], and Boutabaa [3]
proved p-adic analogues of two “main theorems” and defect relations of clas-
sical Nevanlinna theory. Khóai [20] and Cherry-Ye [6] studied several-variable
p-adic Nevanlinna theory, and proved the defect relation of hyperplanes in gen-
eral position. Hu-Yang [12]-[14] proved p-adic analogues of the defect relation
for moving targets, the second main theorem for differential polynomials and
unique range sets with finite elements. Cherry-Yang [5] characterized some
unique range sets with finite elements for p-adic entire functions. Bézivin-
Boutabaa [2] studied decomposition of p-adic meromorphic functions. Also
there are some results in several variables and hyperbolicity (see, e.g., [20],
[21]). In [24], p-adic valued distributions in mathematical physics were
studied.

There are a lot of results on meromorphic solutions, in particular, on
Malmquist-type theorems, of algebraic differential equations. For example,
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see [7], [11], [15]-[17], and [25]-[37]. In this paper, we will give a brief survey
on the p-adic Nevanlinna theory and the results mentioned in the previous
paragraph, and will prove p-adic analogues related to Malmquist-type the-
orems, and show that some p-adic algebraic differential equations have no
admissible transcendental meromorphic solutions.

2. Nevanlinna Theory of p-adic Meromorphic Functions

Let p be a prime number, let Qp be the field of p-adic numbers, and let Cp
be the p-adic completion of the algebraic closure of Qp. The absolute value
| |p in Cp is normalized so that | p |p= p−1. We further use the notation ordp
for the additive valuation on Cp.

Recall that in a complete metric space whose metric comes from a non-
Archimedean norm, an infinite sum converges if and only if its general term
approaches zero. Then expressions of the form

f(z) =
∞∑
n=0

anz
n (an ∈ Cp)

is well-defined whenever
| anzn |p→ 0.

Define the “radius ρ of convergence” by

1
ρ

= lim
n→∞

sup | an |
1
n
p .

Then the series converges if | z |p< ρ and diverges if | z |p> ρ. Also the
function f(z) is said to be p-adic analytic on B(ρ), where

B(ρ) = {z ∈ Cp | | z |p< ρ}.

If ρ =∞, the function f(z) is said to be p-adic entire on Cp.
Let f be a nonconstant p-adic analytic function on B(ρ) (0 < ρ ≤ ∞).

The essence of the Wiman-Valiron method is the analysis of the behaviour of
the function by means of the maximum term:

µ(r, f) = max
n≥0
| an |p rn (0 < r < ρ)

together with the central index:

ν(r, f) = max
n≥0
{n | | an |p rn = µ(r, f)}.
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Define
ν(0, f) = lim

r→0
ν(r, f).

Further, we note that if h is another p-adic analytic function on B(ρ), then

µ(r, fh) = µ(r, f)µ(r, h).(1)

Lemma 2.1 ([12]). The central index ν(r, f) increases as r → ρ, and
satisfies the formula:

logµ(r, f) = log | aν(0,f) |p +
∫ r

0

ν(t, f)− ν(0, f)
t

dt+ν(0, f) log r (0 < r < ρ).

The following technical lemma can be found in [6]:

Lemma 2.2 (Weierstrass Preparation Theorem). There exists a
unique monic polynomial P of degree ν(r, f) and a p-adic analytic function g
on B[r] such that f = gP , where

B[r] = {z ∈ Cp | | z |p≤ r}.

Furthermore, g does not have any zero inside B[r], and P has exactly ν(r, f)
zeros, counting multiplicity, on B[r].

Let n(r, 1
f
) denote the number of zeros (counting multiplicity) of f with

absolute value ≤ r and define the valence function of f for 0 by

N

(
r,

1
f

)
=
∫ r

0

n(t, 1
f
)− n(0, 1

f
)

t
dt+ n

(
0,

1
f

)
log r (0 < r < ρ).

Lemma 2.2 shows that
n

(
r,

1
f

)
= ν(r, f).

Then Lemma 2.1 implies the Jensen formula:

N

(
r,

1
f

)
= logµ(r, f)− log | an(0, 1

f ) |p .(2)

We also denote the number of distinct zeros of f on B[r] by n̄(r, 1
f
) and define

N̄

(
r,

1
f

)
=
∫ r

0

n̄(t, 1
f
)− n̄(0, 1

f
)

t
dt+ n̄

(
0,

1
f

)
log r (0 < r < ρ).

For each n we draw the graph γn(t) which depicts ordp(anzn) as a function
of t = ordp(z). Then γn(t) is a straight line with slope n. Let γ(t, f) denote

3
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the boundary of the intersection of all of the half-planes lying under the lines
γn(t). This line is what we call the Newton polygon of the function f(z) (see
[22]). The points t at which γ(t, f) has vertices are called the critical points
of f(z). A finite segment [α, β] contains only finitely many critical points. It
is clear that if t is a critical point, then ordp(an) + nt attains its minimum at
least at two values of n. Obviously, we have

µ(r, f) = p−γ(t,f),

where r = p−t. A basic property of the Newton polygon is that, if t = ordp(z)
is not a critical point, then

| f(z) |p= p−γ(t,f),

which implies
| f(z) |p= µ(r, f).

By a meromorphic function f on B(ρ) we will mean the quotient g
h

of two
p-adic analytic functions g and h such that g and h have no common factors in
the ring of p-adic analytic functions on B(ρ). Because the function µ satisfies
(1) and because greatest common divisors of any two p-adic analytic functions
exist, we can uniquely extend µ to a meromorphic function f = g

h
by defining

µ(r, f) =
µ(r, g)
µ(r, h)

.

Also set
γ(t, f) = γ(t, g)− γ(t, h).

It is clear that, if t = ordp(z) is not a critical point for f(z), i.e., t is not a
critical point for either g(z) or h(z), then

| f(z) |p= p−γ(t,f) = µ(r, f).

Define
|Cp| = {|z|p | z ∈ Cp}.

Note that {pw | w ∈ Q} ⊆ |Cp|. Then |Cp| is dense in R[0,+∞).
If a : R[0,+∞) −→ R and b : Cp −→ R are real-valued functions, then

‖ a(r) ≤ b(z)

means that for any finite positive number 0 < R < ρ, there is a finite set E in
|Cp| ∩ [0, R] such that

a(r) ≤ b(z), r = |z|p ∈ |Cp| ∩ [0, R]− E.
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By using this notation, we have

‖ µ(r, f) = |f(z)|p

for a p-adic meromorphic function f on B(ρ).
Define the counting function n(r, f) and the valence function N(r, f) of f

for poles respectively by

n(r, f) = n

(
r,

1
h

)
, N(r, f) = N

(
r,

1
h

)
.

Then applying (2) for g and h, we obtain the Jensen formula:

N

(
r,

1
f

)
−N(r, f) = log µ(r, f)− Cf ,(3)

where Cf is a constant depending only on f . Define

m(r, f) = log+ µ(r, f) = max{0, logµ(r, f)}.

Finally, we define the characteristic function:

T (r, f) = m(r, f) +N(r, f).

Here we exhibit some basic facts which will be used in the following sections.

Lemma 2.3 (First Main Theorem; cf. [3], [22]). Let f be a non-
constant meromorphic function in B(ρ). Then for every a ∈ Cp we have

m

(
r,

1
f − a

)
+N

(
r,

1
f − a

)
= T (r, f) +O(1) (r → ρ).

Lemma 2.4 (Lemma of Logarithmic Derivative; cf. [3], [6], [22]). Let
f be a nonconstant meromorphic function in B(ρ). For any positive integer
n,

m

(
r,
f (n)

f

)
= O(1) (r → ρ).

Lemma 2.5 (Second Main Theorem; cf. [3], [6], [22]). Let f be
a nonconstant meromorphic function in B(ρ) and let a1, . . . , aq be distinct
numbers in Cp. Then

(q − 1)T (r, f) ≤ N(r, f) +
q∑
j=1

N

(
r,

1
f − aj

)
−N1(r, f)− log r +O(1),

5
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where
N1(r, f) = 2N(r, f)−N(r, f ′) +N

(
r,

1
f ′

)
.

Furthermore, we have

N(r, f)+
q∑
j=1

N

(
r,

1
f − aj

)
−N1(r, f) ≤ N̄(r, f)+

q∑
j=1

N̄

(
r,

1
f − aj

)
−N0

(
r,

1
f ′

)
,

∑
a∈Cp∪{∞}

Θf (a) ≤ 2,

where N0(r, 1
f ′

) is the valence function of the zeros of f ′ where f does not take
one of the values a1, . . . , aq, and where

Θf (a) = 1− lim sup
r→∞

N̄(r, 1
f−a)

T (r, f)
.

3. A Defect Relation for Moving Targets

Let Pn(Cp) denote the projective n-space over Cp. By a holomorphic curve

f : Cp −→ Pn(Cp),

we mean an equivalence class of (n+ 1)-tuples of p-adic entire functions

f̃ = (f0, . . . , fn) : Cp −→ Cn+1
p

such that f0, . . . , fn have no common factors in the ring of p-adic entire func-
tions on Cp and such that not all of the fj are identically zero. Here f̃ is also
called a reduced representation of f . Write

‖ f̃(z) ‖= max
k
| fk(z) |p .

Then the characteristic function

T (r, f) = log ‖ f̃(z) ‖ (| z |p= r)

is well-defined up to O(1).
Let g : Cp −→ Pn(Cp) be another holomorphic curve with a reduced repre-

sentation g̃ = (g0, ..., gn). The pair (f, g) is said to be free if

〈f̃ , g̃〉 = g0f0 + · · ·+ gnfn 6≡ 0.
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Assume that the pair (f, g) is free and put

Nf (r, g) = N

(
r,

1
〈f̃ , g̃〉

)
, mf (r, g) = − log

µ(r, 〈f̃ , g̃〉)
‖ f̃(z) ‖‖ g̃(z) ‖

,

where | z |p= r. Then the Jensen formula implies the first main theorem:

Nf (r, g) +mf (r, g) = T (r, f) + T (r, g) +O(1).

The defect of f for g is defined by

δf (g) = 1− lim
r→∞

sup
Nf (r, g)

T (r, f) + T (r, g)
.

For q ≥ n, let
gj : Cp −→ Pn(Cp), j = 0, . . . , q,

be q + 1 holomorphic curves with reduced representations

g̃ = (gj0, . . . , gjn) : Cp −→ Cn+1
p .

The family {gj} is said to be in general position if det(gjkl) 6≡ 0 for any
j0, . . . , jn with 0 ≤ j0 < · · · < jn ≤ q. If so, we may assume that

gj0 6≡ 0, j = 0, . . . , q,

by changing the homogeneous coordinate system of Pn(Cp) if necessary. Then
put

ζjk =
gjk
gj0

with ζj0 = 1. Let G be the smallest subfield containing

{ζjk | 0 ≤ j ≤ q, 0 ≤ k ≤ n} ∪ Cp

of the meromorphic function field on Cp. The holomorphic curve f is said to
be non-degenerate over G if f0, ..., fn are linearly independent over G. We have
the following defect relation:

Theorem 3.1 (Hu-Yang [12]). Given holomorphic curves

f, gj : Cp −→ Pn(Cp), j = 0, ..., q.

with q ≥ n. If the family {gj} is in general position such that

T (r, gj) = o(T (r, f)), r →∞, j = 0, ..., q,

7
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and if f is non-degenerate over G, then
q∑
j=0

δf (gj) ≤ n+ 1.

Theorem 3.2 (Hu-Yang [14]). Let V be a vector space of dimension
n+ 1 over Cp. Let G = {gj}qj=0 be a finite family of p-adic holomorphic curves
gj : Cp −→ P(V ∗) in general position with q ≥ n. Take an integer k with
1 ≤ k ≤ n. Let f : Cp −→ P(V ) be a p-adic holomorphic curve which is k-flat
over R such that each pair (f, gj) is free for j = 0, ..., q. Assume that gj grows
slower than f for each j. Then we have

q∑
j=0

δf (gj) ≤ 2n− k + 1.

For the case of constant targets, see Khóai-Tu [23], Cherry-Ye [6].

4. Uniqueness of p-adic Meromorphic Functions

For a nonconstant meromorphic function f on C and a set S ⊂ C ∪ {∞}
we define

Ef (S) =
⋃
a∈S
{mz | f(z) = a with multiplicity m},

and
Ēf (S) =

⋃
a∈S
{z | f(z) = a ignoring multiplicities }.

A set S ⊂ C ∪ {∞} is called a unique range set for meromorphic functions
(URSM) if for any pair of nonconstant meromorphic functions f and g on
C, the condition Ef (S) = Eg(S) implies f = g. A set S ⊂ C ∪ {∞} is
called a unique range set for entire functions (URSE) if for any pair of non-
constant entire functions f and g on C, the condition Ef (S) = Eg(S) implies
f = g. Classical theorems of Nevanlinna show that f = g if Ēf (aj) = Ēg(aj)
for distinct values a1, ..., a5, and that f is a Möbius transformation of g if
Ef (aj) = Eg(aj) for distinct values a1, ..., a4. Gross and Yang [10] showed
that the set

S = {z ∈ C | z + ez = 0}
is a URSE. Recently, URSE and also URSM with finitely many elements have
been found by Yi ([38], [39]), Li-Yang ([27], [28]), Mues-Reinders [31], and
Frank-Reinders [9]. Li-Yang [27] introduced the notation

λM = inf{#S | S is a URSM },
λE = inf{#S | S is a URSE },
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where #S is the cardinality of the set S. The best lower and upper bounds
known so far are

5 ≤ λE ≤ 7, 6 ≤ λM ≤ 11.

For a p-adic meromorphic (or entire) function f on Cp, we can similarly define
Ef (S) and Ēf (S) for a set S ⊂ Cp ∪ {∞}, and introduce the notation λM and
λE. We recall the following useful fact (see [6]):

Lemma 4.1. If f is a p-adic entire function on Cp that is never zero,
then f is constant.

Theorem 4.1 (Hu-Yang [12]). Let f, g be nonconstant p-adic meromor-
phic functions on Cp. Let a1, a2, a3, a4 be four different points in Cp ∪ {∞}.
Assume

Ēf (aj) = Ēg(aj), j = 1, ..., 4.

Then f ≡ g.

Theorem 4.2 (Hu-Yang [12]). Assume that f, g are nonconstant p-
adic meromorphic functions on Cp for which there exist three distinct values
a1, a2, a3 ∈ Cp ∪ {∞} such that

Ef (aj) = Eg(aj), j = 1, 2, 3.

Then f ≡ g.

Adams-Strauss [1] showed that if f and g are two nonconstant p-adic entire
functions on Cp for which there exist two distinct values a1, a2 ∈ Cp such that

Ef (aj) = Eg(aj), j = 1, 2,

then f ≡ g.

Theorem 4.3 (Hu-Yang [12]). If f is a nonconstant p-adic analytic
function on Cp, then there is no a ∈ Cp such that Ef (a) = Ef ′(a).

Theorem 4.4 (Hu-Yang [12]). Take an integer n ≥ 4 and choose a, b ∈
Cp − {0} such that the set

S = {z ∈ Cp | zn + azn−1 + b = 0}

contains n distinct elements. If f and g are nonconstant p-adic analytic func-
tions on Cp such that Ef (S) = Eg(S), then f ≡ g.

9
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Theorem 4.5 (Hu-Yang [12]). Take an integer n ≥ 12 and choose
a, b ∈ Cp − {0} such that the set

S = {z ∈ Cp | zn + azn−2 + b = 0}

contains n distinct elements. If f and g are nonconstant p-adic meromorphic
functions on Cp such that Ef (S) = Eg(S), then f ≡ g.

Of course, a URSE must have at least three points, because given two
points a, b, there does exist an affine function of the form h(z) = cz + d with
c 6= 0 such that h(a) = b, h(b) = a, and therefore, putting S = {a, b}, it is
easily seen that for every entire function f , we have Ef (S) = Eh◦f (S).

In the same way, a URSM must have at least 4 points, because given 3
points a, b, c, there does exist a bilinear function h that permutes the set S =
{a, b, c} (in a nontrivial way) and therefore, for every meromorphic function
f , we have Ef (S) = Eh◦f (S).

Boutabaa, Escassut and Haddad [4] announced recently that they have
characterized the URS’s for polynomials in any algebraically closed field, and
proved that in non-Archimedean analysis, there exist URS’s of n elements for
entire functions for any n ≥ 3. When n = 3, they characterized the sets of
three elements that are URSE.

Theorem 4.6 (Hu-Yang [13]). Take an integer n ≥ 10 and let b ∈
Cp − {0,−1}. Then the polynomial P (z) defined by

P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)
2

zn−2 + b

has only simple zeros, and if f and g are nonconstant p-adic meromorphic
functions on Cp such that Ef (S) = Eg(S), then f ≡ g, where

S = {z ∈ Cp | P (z) = 0}.

5. Growth Estimates of p-adic Meromorphic Functions

Let M(Cp) be the space of p-adic meromorphic functions on Cp. Define

A(z, w) =
k∑
j=0

aj(z)wj,(4)

where aj ∈M(Cp) with ak 6≡ 0.
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Lemma 5.1. If w ∈M(Cp), then

N(r,A) = kN(r, w) +O

 k∑
j=0

(
N(r, aj) +N

(
r,

1
aj

)) .(5)

Proof. For a ∈ Cp ∪ {∞}, let µaw(z) denote the a-valued multiplicity of w
at z. Obviously, we have

µ∞A ≤ kµ∞w +
k∑
j=0

µ∞aj ,

and hence

N(r,A) ≤ kN(r, w) +
k∑
j=0

N(r, aj).(6)

Now we prove the following inequality

µ∞A ≥ kµ∞w − k
k∑
j=0

(µ∞aj + µ0
aj

).(7)

Define
bj(z) = aj(z)w(z)j, j = 0, ..., k.

Now fix z ∈ Cp. If µ∞w (z) = 0, it clearly holds. Assume that µ∞w (z) > 0. If

µ∞bj (z) < µ∞bk(z) (j < k),

then

µ∞A (z) = µ∞bk(z) ≥ kµ
∞
w (z) + µ∞ak(z)− µ

0
ak

(z) ≥ kµ∞w (z)− µ0
ak

(z).

If there exists l < k such that

µ∞bj (z) < µ∞bl (z) (j 6= l),

then for j = k we have

kµ∞w (z) + µ∞ak(z)− µ
0
ak

(z) < lµ∞w (z) + µ∞al (z)− µ
0
al

(z),

which implies
µ∞w (z) ≤ (k − l)µ∞w (z) ≤ µ∞al (z) + µ0

ak
(z).

If µ∞bj (z) = µ∞bl (z) for some j > l, then

µ∞w (z) ≤ (j − l)µ∞w (z) ≤ µ∞al (z) + µ0
aj

(z).

11
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Hence (7) follows, and consequently

N(r,A) ≥ kN(r, w)− k
k∑
j=0

(
N(r, aj) +N

(
r,

1
aj

))
.(8)

Now clearly (5) follows from (6) and (8).

Lemma 5.2. If w ∈M(Cp), then

m(r,A) = km(r, w) +O

 k∑
j=0

(
m(r, aj) +m

(
r,

1
aj

)) .(9)

Proof. Note that

‖ µ(r,A) = |A(z, w(z))|p ≤ max
0≤j≤k

{|aj(z)|p|w(z)|jp}

= max
0≤j≤k

{µ(r, aj)µ(r, w)j},

and consequently
µ(r,A) ≤ max

0≤j≤k
{µ(r, aj)µ(r, w)j}

holds for all r > 0 by continuity of the µ functions. Thus we obtain

m(r,A) ≤ km(r, w) + max
0≤j≤k

m(r, aj).(10)

Take z ∈ Cp with

w(z) 6= 0,∞; aj(z) 6= 0,∞ (0 ≤ j ≤ k),

and define

A(z) = max
0≤j<k

{
1,
( |aj(z)|p
|ak(z)|p

) 1
k−j
}
.

If |w(z)|p > A(z), we see

|aj(z)|p|w(z)|jp ≤ |ak(z)|pA(z)k−j|w(z)|jp < |ak(z)|p|w(z)|kp.

Hence
|A(z, w(z))|p = |ak(z)|p|w(z)|kp.

Setting r = |z|p, we obtain

µ(r, w)k =
µ(r,A)
µ(r, ak)

.
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If |w(z)|p ≤ A(z), we have

µ(r, w)k ≤ max
0≤j<k

{
1,
(
µ(r, aj)
µ(r, ak)

) k
k−j
}
.

Therefore we obtain

‖ µ(r, w)k ≤ max
0≤j<k

{
1,
µ(r,A)
µ(r, ak)

,

(
µ(r, aj)
µ(r, ak)

) k
k−j
}
.

Thus by continuity of the µ functions, we have

km(r, w) ≤ m(r,A) + km

(
r,

1
ak

)
+ k max

0≤j<k
m(r, aj).(11)

Thus (9) follows from (10) and (11).

Now Lemmas 5.1 and 5.2 yield the following result:

Theorem 5.1. If w ∈M(Cp), then

T (r,A) = kT (r, w) +O

 k∑
j=0

T (r, aj)

 .(12)

Take {b0, ..., bq} ⊂ M(Cp) with bq 6≡ 0 and define

B(z, w) =
q∑
j=0

bj(z)wj.(13)

Assume that A(z, w) and B(z, w) are coprime polynomials in w. Define

R(z, w) =
A(z, w)
B(z, w)

.(14)

Theorem 5.2. If w ∈M(Cp), then

T (r,R) = max{k, q}T (r, w) +O

 k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj)

 .(15)

Proof. W.l.o.g, we may assume deg(A) = k ≥ q = deg(B). By using the
algorithm of division, we have

A(z, w) = P1(z, w)B(z, w) +Q1(z, w),
deg(P1) = k − q, deg(Q1) = t1 < q,

13
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B(z, w) = P2(z, w)Q1(z, w) +Q2(z, w),
deg(P2) = q − t1, deg(Q2) = t2 < t1,

... ...

Qm−2(z, w) = Pm(z, w)Qm−1(z, w) +Qm(z),
deg(Pm) = tm−2 − tm−1, deg(Qm) = tm = 0.

Since A(z, w) and B(z, w) are coprime, then Qm(z) 6≡ 0, and

A(z, w)Q(z, w) +B(z, w)P (z, w) = 1,(16)

where P (z, w) and Q(z, w) are polynomials in w such that

deg(P ) ≤ k − 1, deg(Q) ≤ q − 1,

and such that coefficients are rational functions of {aj(z)} and {bj(z)}. Note
that

k + deg(Q) = q + deg(P ), k ≥ q.
We also have deg(Q) ≤ deg(P ). By Theorem 5.1 and the first main theorem,
we see

T (r,R)=T

(
r,
A

B

)
≤ T (r, P1) + T

(
r,
Q1

B

)
=T (r, P1) + T

(
r,
B

Q1

)
+O(1)

≤T (r, P1) + · · ·+ T (r, Pm) + T

(
r,
Qm−1

Qm

)
+O(1)

=(k − q)T (r, w) + (q − t1)T (r, w) + · · · (tm−1 − tm)T (r, w)

+ O

 k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj)


=kT (r, w) +O

 k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj)

 .

(17)

Now we use induction. If q = 0, Theorem 5.2 follows from Theorem 5.1.
Assume Theorem 5.2 holds for rational functions of w with the degree of
denominators ≤ q − 1. By (16), we have

T

(
r,
Q

P
+
B

A

)
=T

(
r,

1
AP

)
= T (r,AP ) +O(1)

=(k + deg(P ))T (r, w) +O

 k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj)

 .
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By the assumption of the induction, we see

T

(
r,
Q

P
+
B

A

)
≤ T

(
r,
P

Q

)
+ T (r,R) +O(1)

≤ deg(P )T (r, w) + T (r,R)

+ O

 k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj)

 .
Therefore we obtain

kT (r, w) ≤ T (r,R) +O

 k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj)

 ,
which combines (17) to imply (15).

For meromorphic functions on the complex plane C, Theorem 5.2 was
proved by Gackstatter and Laine [7], and Mokhon’ko [30]. Also see He-Xiao
[8]. For several variables, see Hu-Yang [16], [17].

Theorem 5.3. If w is a nonconstant p-adic entire function and if f ∈
M(Cp)− Cp(z), then

lim
r→∞

T (r, f ◦ w)
T (r, w)

= +∞.

Proof. Since f ∈ M(Cp) − Cp(z), there exists some c ∈ Cp such that
f − c = 0 has infinitely many zero points a1, a2, ... with |aj − al|p > 1 (j 6= l).
Set

f(z)− c = (z − aj)gj(z), j = 1, 2, ... .

Then for any positive integer ν, there exist positive constants K and δ(< 1
2)

such that
|gj(z)|p ≤ K, |z − aj|p ≤ δ, j = 1, ..., ν.

Hence we have

log+ 1
|f(z)− c|p

≥
ν∑
j=1

log+ δ

|z − aj|p
− log+(δK), z ∈ Cp,

which yields

m

(
r,

1
f ◦ w − c

)
≥

ν∑
j=1

m

(
r,

1
w − aj

)
− ν log+ 1

δ
− log+(δK).

15
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Note that
ν∑
j=1

N

(
r,

1
w − aj

)
≤ N

(
r,

1
f ◦ w − c

)
.

Adding up the two inequalities above and using the first main theorem, we
have

νT (r, w) ≤ T (r, f ◦ w) +O(1).

Since T (r, w)→∞ as r →∞, the theorem follows.

Corollary 5.1. A p-adic meromorphic function f on Cp is a rational
function of degree d if and only if, for any nonconstant p-adic entire function
w on Cp, we have

lim
r→∞

T (r, f ◦ w)
T (r, w)

= d.

Corollary 5.2. A p-adic meromorphic function f on Cp is a rational
function of degree d if and only if

lim
r→∞

T (r, f)
log r

= d.

Traditionally, p-adic meromorphic functions in M(Cp) − Cp(z) are called
transcendental. Obviously, a p-adic meromorphic function f on Cp is tran-
scendental if and only if

lim
r→∞

T (r, f)
log r

= +∞.

6. Malmquist-type Theorems (I)

We talk of a p-adic algebraic differential equation if it is of the form

Ω(z, w,w′, ..., w(n)) = R(z, w),(18)

where

Ω(z, w,w′, ..., w(n)) =
∑
i∈I

ciw
i0(w′)i1 · · · (w(n))in(19)

and i = (i0, i1, ..., in) are nonnegative integer indices, I is a finite set, ci ∈
M(Cp), and R(z, w) is a p-adic meromorphic function on C2

p. Define

deg(Ω) = max
i∈I

{
n∑
α=0

iα

}
, Γ(Ω) = max

i∈I

{
n∑
α=0

(α+ 1)iα

}
, γ(Ω) = max

i∈I

{
n∑
α=1

αiα

}
.
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We first give some properties of the differential operator Ω. For w ∈
M(Cp), we abbreviate

Ω(z) = Ω(z, w(z), w′(z), ..., w(n)(z)).

Note that

N(r, w(α)) = N(r, w) + αN̄(r, w) ≤ (α+ 1)N(r, w).

We have

N(r,Ω) ≤ deg(Ω)N(r, w) + γ(Ω)N̄(r, w) +
∑
i∈I

N(r, ci),(20)

and

N(r,Ω) ≤ Γ(Ω)N(r, w) +
∑
i∈I

N(r, ci).(21)

Obviously, we have

m(r,Ω) ≤ deg(Ω)m(r, w) + max
i∈I

{
m(r, ci) +

n∑
α=1

iαm

(
r,
w(α)

w

)}
.(22)

Thus we obtain from the Logarithmic Derivative Lemma

T (r,Ω) ≤ deg(Ω)T (r, w) + γ(Ω)N̄(r, w) +
∑
i∈I

T (r, ci) +O(1)(23)

and

T (r,Ω) ≤ Γ(Ω)T (r, w) +
∑
i∈I

T (r, ci) +O(1).(24)

Next, we will keep the notations in §5 and consider the equation (18)
with R(z, w) defined by (14). The following Clunie-type theorem will play an
important role in the proof of Malmquist-type theorems.

Lemma 6.1. Let w ∈M(Cp) be a solution of (18). If q ≥ k, then

m(r,Ω) ≤
∑
i∈I

m(r, ci) +
k∑
j=0

m(r, aj) +O

m(r, 1
bq

)
+

q∑
j=0

m(r, bj)

 ,(25)

N(r,Ω) ≤
∑
i∈I

N(r, ci) +
k∑
j=0

N(r, aj) +O

 q∑
j=0

N

(
r,

1
bj

) .(26)

17



18 Chung-Chun Yang and Pei-Chu Hu

Proof. Take z ∈ Cp with

w(z) 6= 0,∞; aj(z) 6= 0,∞ (0 ≤ j ≤ k);

ci(z) 6= 0,∞ (i ∈ I); bj(z) 6= 0,∞ (0 ≤ j ≤ q),

and define

B(z) = max
0≤j<q

{
1,
( |bj(z)|p
|bq(z)|p

) 1
q−j
}
.

If |w(z)|p > B(z), we see

|bj(z)|p|w(z)|jp ≤ |bq(z)|pB(z)q−j|w(z)|jp < |bq(z)|p|w(z)|qp.

Hence
|B(z, w(z))|p = |bq(z)|p|w(z)|qp.

Then

|Ω(z)|p =
|A(z, w(z))|p
|B(z, w(z))|p

≤ 1
|bq(z)|p

max
0≤j≤k

|aj(z)|p.

If |w(z)|p ≤ B(z), then

|Ω(z)|p ≤ B(z)deg(Ω) max
i∈I
|ci(z)|p

∣∣∣∣w′(z)w(z)

∣∣∣∣i1
p

· · ·
∣∣∣∣∣w(n)(z)
w(z)

∣∣∣∣∣
in

p

.

Therefore

‖µ(r,Ω) ≤ max
0≤j≤k,i∈I

{
µ(r, aj)
µ(r, bq)

, µ(r, ci)µ
(
r,
w′

w

)i1
· · ·

µ

(
r,
w(n)

w

)in
max
0≤j<q

{
1, µ

(
r,
bj
bq

) deg(Ω)
q−j

}}
,

which also holds for all r > 0 by continuity of the µ functions. Thus (25)
follows from this inequality and the lemma of logarithmic derivative.

Now we prove (26). Take a point z0 ∈ Cp with w(z0) =∞. Then

µ∞A (z0) ≤ kµ∞w (z0) +
k∑
j=0

µ∞aj (z0),

µ∞B (z0) ≥ qµ∞w (z0)−
q∑
j=0

µ0
bj

(z0).
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If qµ∞w (z0)−
∑q
j=0 µ

0
bj

(z0) > 0, then

µ∞Ω (z0) ≤ µ∞A (z0)− µ∞B (z0) ≤
k∑
j=0

µ∞aj (z0) +
q∑
j=0

µ0
bj

(z0),

since q ≥ k. If qµ∞w (z0)−
∑q
j=0 µ

0
bj

(z0) ≤ 0, i.e.,

µ∞w (z0) ≤ 1
q

q∑
j=0

µ0
bj

(z0),

then

µ∞Ω (z0) ≤ Γ(Ω)µ∞w (z0) +
∑
i∈I

µ∞ci (z0) ≤ Γ(Ω)
q

q∑
j=0

µ0
bj

(z0) +
∑
i∈I

µ∞ci (z0).

Therefore,

µ∞Ω ≤
k∑
j=0

µ∞aj + max
{

1,
Γ(Ω)
q

} q∑
j=0

µ0
bj

+
∑
i∈I

µ∞ci .

Hence (26) follows.

Definition 6.1. A solution w of (18) with R(z, w) defined by (14) is said
to be admissible if w ∈M(Cp) satisfies (18) with

∑
i∈I

T (r, ci) +
k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj) = o(T (r, w)).

Theorem 6.1. If R is of the form (14) and if (18) has an admissible
solution w, then

q = 0, k ≤ min{Γ(Ω), deg(Ω) + γ(Ω)(1−Θw(∞))}.

Proof. The equation (18) can be rewritten as follows

Ω(z, w,w′, ..., w(n)) = A1(z, w) +
A2(z, w)
B(z, w)

,

where deg(A1) = k − q if k ≥ q, and deg(A2) = k2 < q. By Lemma 6.1, we
have

T (r,Ω−A1) = o(T (r, w)).

Theorem 5.2 implies

T (r,Ω−A1) = T

(
r,
A2

B

)
= qT (r, w) + o(T (r, w)).

19
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Thus we obtain q = 0, and (18) becomes

Ω(z, w,w′, ..., w(n)) = A(z, w).

By using Theorem 5.1, we have

T (r,Ω) = T (r,A) = kT (r, w) + o(T (r, w)).

Our result follows from this, (23) and (24).

For meromorphic functions on the complex plane C, this theorem is well-
known, called Malmquist-type theorem; see Malmquist [29], Gackstatter-Laine
[7], Laine [26], Toda [34] and Yosida [37]. Also see He-Xiao [8]. For several
variables, see Hu-Yang [16] and [17]. Theorem 6.1 implies the following result
of Boutabaa [3].

Corollary 6.1. Let Ω(z, w,w′, ..., w(n)) be a differential polynomial with
coefficients in Cp(z) and let R(z, w) ∈ Cp(z, w). If (18) has a p-adic meromor-
phic solution w = w(z) 6∈ Cp(z), then R(z, w) is a polynomial in w of degree
≤ Γ(Ω).

Finally, we study (18) for more general R(z, w).

Theorem 6.2. Take R ∈M(Cp). If the following differential equation

Ω(z, w,w′, ..., w(n)) = R(w)

has a nonconstant solution w ∈M(Cp) satisfying∑
i∈I

T (r, ci) = o(T (r, w)),

then R is a polynomial with

deg(R) ≤ min{Γ(Ω), deg(Ω) + γ(Ω)(1−Θw(∞))}.

Proof. Note that

lim
r→∞

T (r,R ◦ w)
T (r, w)

= lim
r→∞

T (r,Ω)
T (r, w)

≤ Γ(Ω).

Hence R is a rational function. Now the theorem follows from Theorem 6.1.

For meromorphic functions on the complex plane C, this theorem is also
well-known; see Rellich [32], Wittich [36], Laine [25], or He-Xiao [8]. For
several variables, see Hu-Yang [15] and [16].
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Theorem 6.3. Let a1, a2, ... be a sequence of distinct p-adic numbers
which tends to a finite limit value a, and let R(z, w) be a p-adic meromorphic
function on C2

p. If (18) has a p-adic meromorphic solution w satisfying∑
i∈I

T (r, ci) + T (r,Rj) = o(T (r, w)), j = 1, 2, ... ,

where Rj(z) = R(z, aj), then R(z, w) is a polynomial in w with

degw(R) ≤ min{Γ(Ω),deg(Ω) + γ(Ω)(1−Θw(∞))}.

Proof. Define

ϕ[a1] =
Ω−R1

w − a1
,

ϕ[a1, a2] =
ϕ[a1]− ϕ[a2]
a1 − a2

=
Ω

(w − a1)(w − a2)

− R1

(a1 − a2)(w − a1)
+

R2

(a1 − a2)(w − a2)
,

and inductively define

ϕ[a1, ..., al] =
ϕ[a1, ..., al−1]− ϕ[a1, ..., al−2, al]

al−1 − al

=
Ω

(w − a1) · · · (w − al)
+

l∑
j=1

âljRj
w − aj

=
Ω−Ql(z, w)

(w − a1) · · · (w − al)
(l ≥ 3),

where âlj are constants depending on {a1, ..., al}, and Ql(z, w) is a polynomial
in w of degree ≤ l − 1 with coefficients being linear combinations in Rj(1 ≤
j ≤ l). Here we write

ν = Γ(Ω), ϕl = ϕ[al(ν+1)+1, ..., a(l+1)(ν+1)], l = 0, 1, ... .

We claim that ϕl ≡ 0 for some l ≥ 0.
Assume to the contrary that ϕl 6≡ 0 for all l ≥ 0. Then

T (r, w)= T (r, w − aν+1) +O(1)
≤ T (r, (w − aν+1)ϕ0) + T (r, ϕ0) +O(1).

(27)

21
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Note that∣∣∣∣ w(z)
w(z)− aj

∣∣∣∣
p

≤ âmax
{

1,
1

|w(z)− aj|p

}
, j = 1, ..., ν + 1,

where â = max1≤j≤ν+1{1 + |aj|p}. By using the lemma of logarithmic deriva-
tive, we have

m(r, ϕ0)≤ m
(
r,

Ω
(w − a1) · · · (w − aν+1)

)
+m

r, ν+1∑
j=1

âν+1,jRj
w − aj


≤ 2

ν+1∑
j=1

m

(
r,

1
w − aj

)
+
∑
i∈I

m(r, ci) +
ν+1∑
j=1

m(r,Rj) +O(1),

(28)

m(r, (w − aν+1)ϕ0) ≤2
ν∑
j=1

m

(
r,

1
w − aj

)
+
∑
i∈I

m(r, ci)

+
ν+1∑
j=1

m(r,Rj) +O(1).
(29)

Now we consider the poles of ϕ0. Fix z0 ∈ Cp. Since w is the solution of (18),
we have

suppµa1
w ⊂ suppµ0

Ω−R1
.

Thus if µa1
w (z0) > 0, then

µ∞ϕ[a1](z0) ≤ µa1
w (z0)− 1.

By induction, if µajw (z0) > 0 for some j with 1 ≤ j ≤ ν+ 1, but ci(z0) 6=∞(i ∈
I), Rl(z0) 6=∞(1 ≤ l ≤ ν + 1), then we have

µ∞ϕ0
(z0) ≤ µajw (z0)− 1.

If µ∞w (z0) > 0, then

µ∞ϕ0
(z0)≤ max{0,max{µ∞Ω (z0), µ∞Qν+1

(z0)} − (ν + 1)µ∞w (z0)}

≤
∑
i∈I

µ∞ci (z0) +
ν+1∑
j=1

µ∞Rj (z0).

Therefore,

N(r, ϕ0) ≤
ν+1∑
j=1

{
N

(
r,

1
w − aj

)
− N̄

(
r,

1
w − aj

)}

+
∑
i∈I

N(r, ci) +
ν+1∑
j=1

N(r,Rj).
(30)
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Similarly, we have

N(r, (w − aν+1)ϕ0) ≤
ν+1∑
j=1

{
N

(
r,

1
w − aj

)
− N̄

(
r,

1
w − aj

)}

+
∑
i∈I

N(r, ci) +
ν+1∑
j=1

N(r,Rj).
(31)

Therefore, by (27)-(31), we obtain

T (r, w) ≤ 4
ν+1∑
j=1

m(r,
1

w − aj
)+2

ν+1∑
j=1

{N(r,
1

w − aj
)−N̄(r,

1
w − aj

)}+o(T (r, w)).

In a similar fashion, we have, for l ≥ 0,

T (r, w) ≤ 2
(l+1)(ν+1)∑
j=l(ν+1)+1

{2m(r,
1

w − aj
)+N(r,

1
w − aj

)−N̄(r,
1

w − aj
)}+o(T (r, w)).

Therefore,

lT (r, w) ≤ 2
l(ν+1)∑
j=1

{2m(r,
1

w − aj
)+N(r,

1
w − aj

)− N̄(r,
1

w − aj
)}+o(T (r, w)).

By using the second main theorem, we obtain

(l − 8)T (r, w) ≤ o(T (r, w)).

This is impossible if l > 8.
Hence ϕl ≡ 0 for some l ≥ 0, say, l = 0. It follows that w satisfies the

following equation

Ω(z, w,w′, ..., w(n)) = Qν+1(z, w).

Define
H(z, w) = R(z, w)−Qν+1(z, w), Hj(z) = H(z, aj).

If Hj 6≡ 0, then

N̄

(
r,

1
w − aj

)
≤ N

(
r,

1
Hj

)
≤ T (r,Hj) +O(1)

≤ T (r,Rj) +
ν+1∑
l=1

T (r,Rl) +O(1) = o(T (r, w)).
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By the second main theorem, there are at most two values of aj such that the
above inequality holds. Hence Hj ≡ 0, or

R(z, aj) = Qν+1(z, aj), z ∈ Cp,

holds except for these two values of aj. Then R(z, w) = Qν+1(z, w) by the
identity theorem which can be proved according to the standard method in
complex analysis. The rest of the theorem follows from Theorem 6.1.

For meromorphic functions on the complex plane C, this theorem is proved
by Steinmetz [33], or see He-Xiao [8]. For several variables, see Hu-Yang [16].

7. Malmquist-type Theorems (II)

In this section, we consider the following differential equation:

Ω(z, w,w′, ..., w(n)) = R(z, w)Φ(z, w,w′, ..., w(n)),(32)

where
Φ(z, w,w′, ..., w(n)) =

∑
i∈J

diw
i0(w′)i1 · · · (w(n))in

(#J <∞, di ∈M(Cp)).
(33)

The following Clunie-type result will be needed.

Lemma 7.1. Let R(z, w) be defined by (14) and let w be a solution of
(32). If q ≥ k, then

T

(
r,

Ω
Φ

)
≤ T (r,Φ) +

∑
i∈I

T (r, ci) +
k∑
j=0

T (r, aj) +O

 q∑
j=0

T (r, bj)

 .
If q ≥ k + deg(Φ), then

m(r,Ω) ≤
∑
i∈I

m(r, ci)+
∑
i∈J

m(r, di)+
k∑
j=0

m(r, aj)+O

 q∑
j=0

m(r, bj) +m(r,
1
bq

)

 .
Proof. Following the proof of Lemma 6.1, we can prove

m

(
r,

Ω
Φ

)
≤m

(
r,

1
Φ

)
+
∑
i∈I

m(r, ci) +
k∑
j=0

m(r, aj)

+ O

 q∑
j=0

m(r, bj) +m

(
r,

1
bq

) ,(34)
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N

(
r,

Ω
Φ

)
≤ N

(
r,

1
Φ

)
+
∑
i∈I

N(r, ci) +
k∑
j=0

N(r, aj) +O

 q∑
j=0

N(r,
1
bj

)

 ,(35)

if q ≥ k. Thus the first inequlity follows from (34) and (35). Similarly, we can
prove the second inequality.

Theorem 7.1. If there exists a solution w of (32) with R(z, w) defined by
(14) such that

∑
i∈I

T (r, ci) +
∑
i∈J

T (r, di) +
k∑
j=0

T (r, aj) +
q∑
j=0

T (r, bj) = o(T (r, w)),

then
q ≤ min{Γ(Φ), deg(Φ) + γ(Φ)(1−Θw(∞))},

k ≤ min{Γ(Ω), deg(Ω) + γ(Ω)(1−Θw(∞))}.

Proof. The equation (32) can be rewritten as follows

Ω(z, w,w′, ..., w(n)) =
(
A1(z, w) +

A2(z, w)
B(z, w)

)
Φ(z, w,w′, ..., w(n)),

where deg(A1) = k − q if k ≥ q, and deg(A2) = k2 < q. By Lemma 7.1, we
have

T

(
r,

Ω−A1Φ
Φ

)
≤ T (r,Φ) + o(T (r, w)).

Theorem 5.2 implies

T

(
r,

Ω−A1Φ
Φ

)
= T

(
r,
A2

B

)
= qT (r, w) + o(T (r, w)).

Thus we obtain
qT (r, w) ≤ T (r,Φ) + o(T (r, w)).

By combining this with (23) and (24), we obtain the upper bound for q.
Rewriting (32) as follows

Φ
Ω

=
1
R

=
B

A
,

by the conclusion above, one can obtain the upper bound for k.

For meromorphic functions on the complex plane C, this theorem is proved
by Tu [35]. For several variables, see Hu-Yang [16]. Similarly, we can prove
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Theorem 7.2. Take R ∈M(Cp). If the following differential equation

Ω(z, w,w′, ..., w(n)) = R(w)Φ(z, w,w′, ..., w(n))

has a nonconstant solution w ∈M(Cp) satisfying∑
i∈I

T (r, ci) +
∑
i∈J

T (r, di) = o(T (r, w)),

then R = A
B

is a rational function with

deg(B) ≤ min{Γ(Φ),deg(Φ) + γ(Φ)(1−Θw(∞))},

deg(A) ≤ min{Γ(Ω),deg(Ω) + γ(Ω)(1−Θw(∞))}.

For the complex case, also see Hu-Yang [16].

8. Admissible Solutions of Some Differential Equations

In this section, we discuss the following differential equations

Ω(z, w,w′, ..., w(n)) =
k∑
j=0

aj(z)wj(36)

for some special forms of Ω. For w ∈M(Cp), here and in the sequel Ω(z, w,w′,
..., w(n)) is called a differential polynomial of w if

T (r, ci) = o(T (r, w)) (i ∈ I).

Lemma 8.1. If w0, w1 ∈M(Cp) are linearly independent, then

T (r, w0) ≤m(r, w0 + w1) +N(r, w0) + N̄(r, w0)

+N̄(r, 1
w0

) + N̄(r, w1) + N̄(r, 1
w1

) +O(1).

Proof. Setting w = w0 + w1, we have

w′ =
w′0
w0
w0 +

w′1
w1
w1,

which implies

w0 = w

(
w′1
w1
− w′

w

)(
w′1
w1
− w′0
w0

)−1

.
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Hence by using the first main theorem and the lemma of logarithmic derivative,
we have

m(r, w0)≤m(r, w) +m

(
r,
w′1
w1
− w′

w

)
+m

(
r,

(
w′1
w1
− w′0
w0

)−1
)

≤m(r, w) +m

(
r,
w′1
w1

)
+m

(
r,
w′

w

)
+m

(
r,
w′1
w1
− w′0
w0

)
+N

(
r,
w′1
w1
− w′0
w0

)
+O(1)

≤m(r, w) + N̄(r, w0) + N̄(r, w1)

+N̄(r,
1
w0

) + N̄(r,
1
w1

) +O(1).

Thus the lemma follows.

Theorem 8.1. Assume

Ω(z, w,w′, ..., w(n)) = (P (z, w,w′, ..., w(n)) +Q(z, w,w′, ..., w(n)))l,(37)

where P is a differential monomial of w and Q is a differential polynomial of
w with

deg(P ) ≥ deg(Q), γ(P ) > γ(Q).

If k < l, and if (36) has an admissible transcendental meromorphic solution,
then (36) assumes the following form

Ω(z, w,w′, ..., w(n)) = ak(z)(w + b(z))k, b(z) =
ak−1(z)
kak(z)

.(38)

Proof. The case k = 1 is obvious. Assume 1 < k < l and that, to the
contrary,

k∑
j=0

ajw
j − ak(w + b)k =

m∑
j=0

Ajw
j 6≡ 0, b =

ak−1

kak
,

where 0 ≤ m ≤ k − 2, Am 6≡ 0 and Aj are rational functions of {aj}. Then
w0 = −ak(w + b)k and w1 = Ω = (P + Q)l are linearly independent. In fact,
suppose that

αw0 + βw1 ≡ 0, {α, β} ⊂ Cp − {0}.

Then

k∑
j=0

βajw
j = αak(w + b)k = αakw

k + αak−1w
k−1 + · · ·+ αakb

k.
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LetMw(Cp) be the set of p-adic meromorphic functions f satisfying T (r, f) =
o(T (r, w)). Then 1, w, w2, ..., wk are linearly independent overMw(Cp). Thus
α = β. Note that

w0 + w1 =
m∑
j=0

Ajw
j 6≡ 0.

Hence α = β = 0.
Under the conditions of the theorem, we have

N(r,Ω)= lN(r, P +Q)
= l{deg(P )N(r, w) + γ(P )N̄(r, w) + o(T (r, w))}

= N(r,
k∑
j=0

ajw
j) = kN(r, w) + o(T (r, w)).

Since deg(P ) > 0, l > k, we obtain

N(r, w) = o(T (r, w)).

Similarly, we can prove

T (r, P +Q) =
k

l
T (r, w) + o(T (r, w)).

Note that
T (r, w0) = kT (r, w) + o(T (r, w)),

T (r, w1) = lT (r, P +Q) = kT (r, w) + o(T (r, w)),

N(r, w0) = o(T (r, w)), N(r, w1) = o(T (r, w)),

N̄

(
r,

1
w0

)
= N̄

(
r,

1
w + b

)
+ o(T (r, w)) ≤ T (r, w) + o(T (r, w)),

N̄

(
r,

1
w1

)
= N̄

(
r,

1
P +Q

)
≤ T (r, P +Q)

=
k

l
T (r, w) + o(T (r, w)),

m(r, w0 + w1) = m m(r, w) + o(T (r, w)) ≤ mT (r, w) + o(T (r, w)).

By Lemma 8.1, we obtain

kT (r, w) ≤ mT (r, w) + T (r, w) +
k

l
T (r, w) + o(T (r, w)),

which is impossible since k > m+ 1 + k
l
.
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Corollary 8.1. If

(w′)n =
k∑
j=0

aj(z)wj (k < n)(39)

has an admissible transcendental meromorphic solution, then (39) assumes the
following form

(w′)n = ak(z)(w + b(z))k, b(z) =
ak−1(z)
kak(z)

.(40)

Corollary 8.2. If n > k and if n − k is not a factor of n, then (39)
with constant coefficients aj has no admissible transcendental meromorphic
solution.

The result can be proved easily by Corollary 8.1 and by comparing the
multiplicity of poles and (−b)-valued points of w by using (40).

Conjecture 8.1. The equation (39) has no admissible transcendental
meromorphic solution.

For the complex case, this is the conjecture of Gackstatter-Laine [7].

Lemma 8.2. Assume

Ω(z, w,w′, ..., w(n)) =B(z, w)P (z, w,w′, ..., w(n))

+Q(z, w,w′, ..., w(n)) 6≡ 0,
(41)

where P (6≡ 0) and Q(6≡ 0) are differential polynomials of w, and where B(z, w)
is defined by (13). If

q = deg(B) > min{Γ(Q), deg(Q) + γ(Q)(1−Θw(∞))},

then

(q − deg(Q))T (r, w) ≤ (Γ(Q)− deg(Q) + 1)N̄(r, w)

+N̄
(
r,

1
Ω

)
+ N̄

(
r,

1
B

)
+ o(T (r, w)).

Proof. Theorem 7.1 implies that BP
Q

is not constant, and hence Ω
Q

is not
constant, i.e., Ω, Q are linearly independent. Thus

Q∗ =
(
Q′

Q
− Ω′

Ω

)
Q 6≡ 0.
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Note that
Ω′

Ω
BP +

Ω′

Ω
Q = Ω′ = B′P +BP ′ +Q′.

Then BP ∗ = Q∗, where

P ∗ =
(

Ω′

Ω
− B′

B
− P ′

P

)
P.

By using Lemma 7.1, we see

m(r, P ∗) = o(T (r, w)).

Also we have the estimate

m(r,Q∗) ≤ deg(Q)m(r, w) + o(T (r, w)).

By the first main theorem, we obtain

m

(
r,

1
P ∗

)
= m(r, P ∗) +N(r, P ∗)−N

(
r,

1
P ∗

)
+O(1)

= N(r, P ∗)−N
(
r,

1
P ∗

)
+ o(T (r, w)).

Hence

qm(r, w)= m(r,B) + o(T (r, w))

≤ m(r,Q∗) +m

(
r,

1
P ∗

)
+ o(T (r, w))

≤ deg(Q)m(r, w) +N(r, P ∗)−N
(
r,

1
P ∗

)
+ o(T (r, w)).

Fix z0 ∈ Cp. If µ0
B(z0) > 0 but z0 is not a pole or a zero of the coefficients

of B,P and Q, then w(z0) 6=∞, and

µ∞P∗(z0) ≤ 1.

If µ∞w (z0) > 0 but z0 is not a pole or a zero of the coefficients of B,P and Q,
then

µ∞Q∗(z0) ≤ deg(Q)µ∞w (z0) + Γ(Q)− deg(Q) + 1,

and further, if µ∞P∗(z0) > 0, then

µ∞P∗(z0) = µ∞Q∗/B(z0) ≤ deg(Q)µ∞w (z0) + Γ(Q)− deg(Q) + 1− qµ∞w (z0),

otherwise if µ∞P∗(z0) = 0, then

µ∞1/P∗(z0) = µ∞B/Q∗(z0) ≥ qµ∞w (z0)− {deg(Q)µ∞w (z0) + Γ(Q)− deg(Q) + 1}.
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Therefore, the lemma follows from

N(r, P ∗)−N
(
r,

1
P ∗

)
≤ N̄

(
r,

1
Ω

)
+ N̄

(
r,

1
B

)
− (q − deg(Q))N(r, w)

+(Γ(Q)− deg(Q) + 1)N̄(r, w) + o(T (r, w)).

Theorem 8.2. Assume

Ω(z, w,w′, ..., w(n)) = (wqP (z, w,w′, ..., w(n)) +Q(z, w,w′, ..., w(n)))N ,(42)

where P (6≡ 0) and Q(6≡ 0) are differential polynomials of w with

q > max{deg(Q) + 2,Γ(Q)}.

If k < N , then (36) has no admissible transcendental meromorphic solutions.

Proof. Assume, to the contrary, that (36) has an admissible transcendental
meromorphic solution w. Then

N(r,Ω) = N

r, k∑
j=0

ajw
j

 = kN(r, w) + o(T (r, w)),

N(r,Ω) = N N(r, wqP +Q) ≥ NqN(r, w) + o(T (r, w)),

and hence
N(r, w) = o(T (r, w)).

According to the proof of Theorem 8.1, we can prove that (36) assumes the
form (38). Thus Lemma 8.2 implies

(q − deg(Q))T (r, w)≤ N̄
(
r,

1
wqP +Q

)
+ N̄

(
r,

1
w

)
+ o(T (r, w))

= N̄

(
r,

1
w + b

)
+ N̄

(
r,

1
w

)
+ o(T (r, w))

≤ 2T (r, w) + o(T (r, w)),

which is impossible since q − deg(Q) > 2.

Similarly, we can prove

Theorem 8.3. Assume that Ω is defined by (42) with q > Γ(Q)+3. Then
(38) has no admissible transcendental meromorphic solutions for any positive
integers k and N .
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We end this paper by the following problem:

Conjecture 8.2. The following p-adic differential equation

w(n) + an(z)w(n−1) + · · ·+ a2(z)w′ + a1(z)w + a0(z) = 0(43)

with aj ∈M(Cp) has no admissible transcendental meromorphic solutions.

For related topics of this section in the complex-variable case, see Hu [11],
and Hu-Yang [18].
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gen im Komplexen, Ann. Polon. Math. 38 (1980), 259-287.

8. Y. Z. He and X. Z. Xiao, Algebroid Functions and Ordinary Differential Equa-
tions (Chinese), Science Press, Beijing, 1988.

9. G. Frank and M. Reinders, A unique range set for meromorphic functions with
11 elements, Complex Variables Theory Appl., to appear.

10. F. Gross and C. C. Yang, On preimage and range sets of meromorphic functions,
Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 17-20.

11. P. C. Hu, Value distribution and admissible solutions of algebraic differential
equations, J. Shandong Univ. (2)28 (1993), 127-133.

12. P. C. Hu and C. C. Yang, Value distribution theory of p-adic meromorphic
functions, J. Contemp. Math. Anal., to appear.

13. P. C. Hu and C. C. Yang, A unique range set of p-adic meromorphic functions
with 10 elements, Acta Math. Vietnam., to appear.



Nevanlinna Theory 33

14. P. C. Hu and C. C. Yang, The Cartan conjecture for p-adic holomorphic curves,
J. Contemp. Math. Anal., to appear.

15. P. C. Hu and C. C. Yang, Malmquist type theorem and factorization of mero-
morphic solutions of partial differential equations, Complex Variables Theory
Appl. 27 (1995), 269-285.

16. P. C. Hu and C. C. Yang, Further results on factorization of meromorphic
solutions of partial differential equations, Results Math. 30 (1996), 310-320.

17. P. C. Hu and C. C. Yang, The Second Main Theorem for algebroid functions
of several complex variables, Math. Z. 220 (1995), 99-126.

18. P. C. Hu and L. Z. Yang, Admissible solutions of algebraic differential equations,
J. Shandong Univ. (1)26 (1991), 19-25.
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