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DERIVATIONS COCENTRALIZING POLYNOMIALS

Tsiu-Kwen Lee and Wen-Kwei Shiue

Abstract. LetR be a prime ring with extended centroid C and f(X1, . . . , Xt)
a polynomial over C which is not central-valued on RC. Suppose that d
and δ are two derivations of R such that

d(f(x1, . . . , xt))f(x1, . . . , xt)− f(x1, . . . , xt)δ(f(x1, . . . , xt)) ∈ C

for all x1, . . . , xt inR. Then either d = 0 = δ, or δ = −d and f(X1, . . . , Xt)
2

is central-valued on RC, except when charR = 2 and dimC RC = 4.

This paper is motivated by a result of Wong [14]. In [14], Wong proved
the following result.

Theorem W. Let K be a commutative ring with unity, R a prime K-
algebra with center Z and f(X1, . . . , Xt) a multilinear polynomial over K
which is not central-valued on R. Suppose that d and δ are derivations of
R such that

d(f(x1, . . . , xt))f(x1, . . . , xt)− f(x1, . . . , xt)δ(f(x1, . . . , xt)) ∈ Z

for all x1, . . . , xt in some nonzero ideal I of R. Then either d = δ = 0 or
δ = −d and f(X1, . . . , Xt)

2 is central-valued on R, except when charR = 2
and R satisfies the standard identity S4 in 4 variables.

We remark that the above theorem is a part of the study of a series of
papers, initiated by Posner’s paper [13], concerning derivations by a number
of authors in the literature. We refer the reader to the references of [11]. For
Theorem W, if δ = d, the theorem can be regarded as Posner’s theorem [13]
on multilinear polynomials. For general polynomials, the first-named author
proved the following result [11, Theorem 11].
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Theorem L. Let R be a prime ring with extended centroid C and f(X1, . . . ,
Xt) be a nonzero polynomial over C. Suppose that d is a nonzero derivation of
R such that

[
d(f(x1, . . . , xt)), f(x1, . . . , xt)

]
∈ C for all x1, . . . , xt in R. Then

(I) f(X1, . . . , Xt)
2 is central-valued on RC if charR = 2, unless dimC RC = 4.

(II) f(X1, . . . , Xt) is central-valued on RC if charR 6= 2.

In this paper we shall use Theorem L to generalize Theorem W to its full
generality. More precisely, the following result will be proved.

Main Theorem. Let R be a prime ring with extended centroid C and
f(X1, . . . , Xt) a polynomial over C which is not central-valued on RC. Suppose
that d and δ are two derivations of R such that

d(f(x1, . . . , xt))f(x1, . . . , xt)− f(x1, . . . , xt)δ(f(x1, . . . , xt)) ∈ C

for all x1, . . . , xt in R. Then either d = 0 = δ, or δ = −d and f(X1, . . . , Xt)
2

is central-valued on RC, except when charR = 2 and dimC RC = 4.

By [10, Theorem 2], each nonzero ideal of R and the right Utumi quotient
ring U of R satisfy the same differential identities with coefficients in U . Thus
the Main Theorem holds if the condition is imposed only for elements x1, . . . , xt
in a nonzero ideal of R. We begin the proof with a theorem on invariant
subspaces in prime algebras. By a strongly primitive ring we mean a primitive
ring with nonzero socle and with associated division ring which is a finite-
dimensional central division algebra. We denote by soc(R) the socle of R.

Theorem 1. Let R be a strongly primitive ring with extended centroid
C, R = RC and 1 ∈ R. Suppose that M is a C-subspace of R such that
uMu−1 ⊆ M for all invertible elements u ∈ R. Then either M ⊆ C or
[soc(R), soc(R)] ⊆M , except when charR = 2 and dimC RC = 4.

Proof. Suppose first that R contains no nontrivial idempotents. Then R is
a division algebra algebraic over C. In view of Asano’s theorem [1, Theorem
7] we have that either M ⊆ C or [R,R] ⊆ M as desired. Suppose next
that R contains nontrivial idempotents. It follows from Chuang’s theorem [2,
Theorem 1] that either M ⊆ C or [I,R] ⊆ M for some nonzero ideal I of R,
unless charR = 2 and dimC RC = 4. Since soc(R) is the smallest nonzero
ideal of R, [soc(R), soc(R)] ⊆ [I,R] in the latter case. This completes the
proof.

The next result is a special case of the Main Theorem. For brevity we
often denote f(X1, . . . , Xt) and f(x1, . . . , xt) by f(Xi) and f(xi) respectively.
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For a derivation d of R, denote by fd(X1, . . . , Xt) the polynomial obtained
from f(X1, . . . , Xt) by replacing each coefficient α with d(α). Analogously, we
often denote fd(X1, . . . , Xt) by fd(Xi). Denote by ad(u) the inner derivation
induced by u ∈ U , that is, ad(u)(x) = [u, x] for all x ∈ U .

Theorem 2. Let R be a prime ring with extended centroid C and f(X1, . . . ,
Xt) a polynomial over C which is not central-valued on RC. Suppose that d
is a derivation of R such that d(f(xi))f(xi) ∈ C (or f(xi)d(f(xi)) ∈ C) for
all x1, . . . , xt in R. Then d = 0, except when charR = 2 and dimC RC = 4.

For clarifying its proof we introduce t polynomials associated with f(X1, . . . ,
Xt) as given in [11]. Set gi(Yi, X1, . . . , Xt) to be the sum of all possible mono-
mials which are obtained from each monomial involving Xi of f(X1, . . . , Xt)
by replacing one of the Xi’s with Yi for 1 ≤ i ≤ t. For instance, if f(X1, X2) =
X2

1X2+X2X1, then g1(Y1, X1, X2) = Y1X1X2+X1Y1X2+X2Y1 and g2(Y2, X1,
X2) = X2

1Y2 + Y2X1. We remark that

[b, f(x1, . . . , xt)] =
t∑
i=1

gi([b, xi], x1, . . . , xt)(1)

for all b, x1, . . . , xt ∈ U . Also, each gi(Yi, X1, . . . , Xt) is linear in Yi.
Before giving the proof of Theorem 2, we first show a preliminary lemma.

Lemma 1. Let R be a prime ring with center Z, extended centroid C,
L a noncentral Lie ideal of R and a, b ∈ R, a 6= 0. Suppose that [b, L]a ⊆
Z (or a[b, L] ⊆ Z). Then b ∈ Z except when charR = 2 and dimC RC = 4.

Proof. We prove only the case when [b, L]a ⊆ Z. The proof for the
other case is similar. Suppose that either charR 6= 2 or dimC RC > 4. Set
I = R[L,L]R. In view of [7, Lemma 7], [L,L] 6= 0 follows and so I is a
nonzero ideal of R. Note that [I,R] ⊆ L. Thus [b, [I, I]]a ⊆ Z and hence
[b, [R,R]]a ⊆ Z [3]. If [b, [R,R]]a = 0, then we are done by [9, Theorem 6]
and [5, Lemma 3]. We may assume henceforth that 0 6= [b, [R,R]]a ⊆ Z.
Then b /∈ Z and

[
[b, [X1, X2]]a,X3

]
is a nontrivial GPI for R. It follows from

Martindale’s theorem [12] that RC is a strongly primitive ring. By [3, Theorem
2], 0 6=

[
b, [soc(RC), soc(RC)]

]
a ⊆ C and hence soc(RC) contains a nonzero

central element and so RC is a finite-dimensional central simple C-algebra.
In particular, a is invertible in RC. Thus we have [b, [R,R]] ⊆ Ca−1. In
particular,

[
[b, [R,R]], [b, [R,R]]

]
= 0. Since [R,R] is a noncentral Lie ideal of

R, in view of [9, Theorem 3] and [5, Corollary] we obtain b ∈ Z, a contradiction.
This proves the lemma.
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Proof of Theorem 2. Suppose that either charR 6= 2 or dimC RC > 4. The
aim is to prove that d = 0. Suppose on the contrary that d 6= 0. By symmetry
we may assume that d(f(xi))f(xi) ∈ C for all xi ∈ R. Expansion of it yields
that fd(xi) +

t∑
j=1

gj(d(xj), x1, . . . , xt)

 f(xi) ∈ C(2)

for all xi ∈ R. Suppose first that d is not a Q-inner derivation. Applying
Kharchenko’s theorem [6] to (2) we havefd(xi) +

t∑
j=1

gj(yj , x1, . . . , xt)

 f(xi) ∈ C(3)

for all xi, yi ∈ R. Setting yi = 0 for all i in (3) we obtain that fd(xi)f(xi) ∈ C
and so  t∑

j=1

gj(yj , x1, . . . , xt)

 f(xi) ∈ C(4)

for all xi, yi ∈ R. Let u ∈ R and set yi = [u, xi] in (4). By (1) we have
[u, f(xi)]f(xi) ∈ C. By [3, Theorem 2], [U, f(xi)]f(xi) ⊆ C for all xi ∈ U .
It follows from Lemma 1 that f(Xi) is central-valued on U in this case, a
contradiction.

Therefore we may assume that d is Q-inner, that is, d = ad(b) for some
b ∈ Q, the two-sided Martindale quotient ring of R. Note that b /∈ C since
d 6= 0. Now [[b, f(Xi)]f(Xi), Y ] is a nontrivial GPI for R and hence for U [3,
Theorem 2]. By Martindale’s theorem [12], U is a strongly primitive ring since
U is a centrally closed prime C-algebra. Let M = {r ∈ U | [r, f(xi)]f(xi) ∈
C for all xi ∈ U}. Note that b ∈ M and so M 6⊆ C. Clearly, M is a
C-subspace of U such that uMu−1 ⊆ M for all invertible elements u ∈ U .
Applying Theorem 1 we have that [soc(U), soc(U)] ⊆ M . By [3, Theorem 2]
again, we have that [

[[X,Y ], f(Xi)]f(Xi), X0

]
(5)

is a PI for U . In view of Lemma 1, f(Xi) is central-valued on U and hence on
RC, a contradiction. This completes the proof.

From now on, we always make the following assumptions:
Let R be a prime ring with extended centroid C and f(X1, . . . , Xt) a

nonzero polynomial over C which is not central-valued on RC. Suppose that
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d and δ are two nonzero derivations of R such that

d(f(x1, . . . , xt))f(x1, . . . , xt)− f(x1, . . . , xt)δ(f(x1, . . . , xt)) ∈ C(6)

for all x1, . . . , xt in R. Moreover, either charR 6= 2 or dimC RC > 4.

If δ = −d, by (6) we have d(f(xi)2) ∈ C for all xi ∈ R and hence f(Xi)2

central-valued on RC [11, Lemma 5]. Thus we may assume further that δ 6=
−d. The next lemma is to reduce δ and d to be Q-inner.

Lemma 2. d = ad(p) and δ = ad(q) for some p, q ∈ Q.

Proof. Expanding (6) we havefd(xi) +
t∑

j=1

gj(d(xj), x1, . . . , xt)

 f(xi)

−f(xi)

f δ(xi) +
t∑

j=1

gj(δ(xj), x1, . . . , xt)

 ∈ C(7)

for all xi ∈ R. Suppose first that d and δ are C-independent modulo Q-inner
derivations. Applying Kharchenko’s theorem [6] to (7) we havefd(xi) +

t∑
j=1

gj(yj , x1, . . . , xt)

 f(xi)

−f(xi)

f δ(xi) +
t∑

j=1

gj(zj , x1, . . . , xt)

 ∈ C(8)

for all xi, yi, zi ∈ R. Setting yi = 0 = zi for all i in (8) we obtain fd(xi)f(xi)−
f(xi)f δ(xi) ∈ C and hence

 t∑
j=1

gj(yj , x1, . . . , xt)

 f(xi)− f(xi)

 t∑
j=1

gj(zj , x1, . . . , xt)

 ∈ C(9)

for all xi, yi, zi ∈ R. Let u ∈ R and replacing yi, zi with [u, xi], 0 respectively
and then applying (1) we obtain [u, f(xi)]f(xi) ∈ C for all xi ∈ R and hence
for all xi ∈ U [3, Theorem 2]. It follows from Theorem 2 that f(Xi) is central–
valued on RC, a contradiction.

Suppose next that d and δ are C-dependent modulo Q-inner derivations.
By symmetry we may assume that δ = βd+ ad(b) for some β ∈ C and b ∈ Q.
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If d is Q-inner, then so is δ and hence we are done in this case. Therefore we
assume d to be outer. In view of (7) we havefd(xi) +

t∑
j=1

gj(d(xj), x1, . . . , xt)

 f(xi)

−f(xi)

βfd(xi) +
t∑

j=1

gj(βd(xj) + [b, xj ], x1, . . . , xt)

 ∈ C(10)

for all xi ∈ R. Applying Kharchenko’s theorem [6] to (10) yieldsfd(xi) +
t∑

j=1

gj(yj , x1, . . . , xt)

 f(xi)

−f(xi)

βfd(xi) +
t∑

j=1

gj(βyj + [b, xj ], x1, . . . , xt)

 ∈ C(11)

for all xi, yi ∈ R. Setting yi = 0 in (11) and using (1) we have

fd(xi)f(xi)− f(xi)
(
βfd(xi) + [b, f(xi)]

)
∈ C(12)

for all xi ∈ R. Since gj(Yj , X1, . . . , Xt) is linear in Yj , it follows from (11) and
(12) that

 t∑
j=1

gj(yj , x1, . . . , xt)

 f(xi)− βf(xi)

 t∑
j=1

gj(yj , x1, . . . , xt)

 ∈ C(13)

for all xi, yi ∈ R. Let u ∈ R and replacing yj with [u, xj ] in (13) and using (1)
we obtain

[u, f(xi)]f(xi)− βf(xi)[u, f(xi)] ∈ C(14)

for all xi, u ∈ R. Thus R is a PI-ring and so RC is a finite-dimensional
central simple C-algebra by Posner’s theorem for prime PI-rings. Suppose
that dimC RC = n2. Then n ≥ 2. Note that RC and Mn(C) satisfy the same
PIs. Thus, in view of (14), [Y, f(Xi)]f(Xi)−βf(Xi)[Y, f(Xi)] is central-valued
on Mn(C). Let e be an arbitrary idempotent in Mn(C) and let y, xi ∈ Mn(C).
Then

(1− e)
(
[ey(1− e), f(xi)]f(xi)− βf(xi)[ey(1− e), f(xi)]

)
e = 0.

That is, (β+ 1)(1− e)f(xi)ey(1− e)f(xi)e = 0. Suppose for the moment that
β 6= −1. The primeness of R implies that f(xi)e = ef(xi)e. Analogously,
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ef(xi) = ef(xi)e and so [f(xi), e] = 0. However, Mn(C) is spanned by idem-
potents over C. Thus f(xi) ∈ C. That is, f(Xi) is central-valued on Mn(C)
and hence on RC, a contradiction. So β = −1 follows. By (14) we have
[R, f(xi)2] ⊆ C for all xi ∈ R, implying that f(Xi)2 is central-valued on RC.
Replacing δ with −d+ ad(b) in (6), we see that d(f(xi)2)− f(xi)[b, f(xi)] ∈ C
and hence f(xi)[b, f(xi)] ∈ C for all xi ∈ R. In view of Theorem 2, b ∈ C
follows and so δ = −d, a contradiction. Thus δ and d are Q-inner. This
completes the proof.

To continue our proof we define the following three sets, which are essential
in the proof of the Main Theorem. Let

H = {(a, b) ∈ U × U | [a, f(xi)]f(xi)− f(xi)[b, f(xi)] ∈ C for all xi ∈ U},

A = {a ∈ U | (a, b) ∈ H for some b ∈ U}
and

E = {a+ b | (a, b) ∈ H}.
By [3, Theorem 2], we may assume henceforth that R = U . In particular,

R is a centrally closed prime C-algebra. Since (p, q) ∈ H, p /∈ C and q /∈ C, R
satisfies the nontrivial GPI

[
[p, f(Xi)]f(Xi) − f(Xi)[q, f(Xi)], Y

]
. It follows

from Martindale’s theorem [12] that R is a strongly primitive ring.

Lemma 3. The Main Theorem holds if C is an infinite field.

Proof. Recall that R = U . In this case, R is a strongly primitive ring.
Denote by D its associated division C-algebra and let dimC D = m2 for some
m ≥ 1. Then soc(R) is a simple ring with nonzero minimal right ideals. By
Litoff’s theorem [4], each element x ∈ soc(R) is contained in some eRe for
some idempotent e ∈ soc(R). Note that eRe ∼= M`(D) where ` is the rank of
e. Therefore x is algebraic over C.

Note that H is a C-subspace of R × R. Let (a, b) ∈ H, x ∈ soc(R) and
k the degree of the minimal polynomial of x over C. Since C is infinite, we
can choose k distinct µ′is ∈ C such that (x+ µi)−1 exists for each i. Then the
C-subspace generated by these (x + µi)−1’s coincides with the C-subalgebra
of R generated by x and 1. Now we have

((x+ µi)a(x+ µi)−1, (x+ µi)b(x+ µi)−1)− (a, b)

= ([x, a](x+ µi)−1, [x, b](x+ µi)−1) ∈ H.

Choose λi ∈ C, 1 ≤ i ≤ k, such that 1 =
∑k
i=1 λi(x+ µi)−1. Then

([x, a], [x, b]) =
k∑
i=1

λi([x, a](x+ µi)−1, [x, b](x+ µi)−1) ∈ H.
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That is, ([a, x], [b, x]) ∈ H for all x ∈ soc(R). Let x, y ∈ soc(R). Then
([a, x], [b, x]) ∈ H and so

([[a, x], y], [[b, x], y]) ∈ H.(15)

Note that [a, x] ∈ soc(R). Replacing y with [a, x] in (15) yields that (0, [[b, x], [a,
x]]) ∈ H. In view of Theorem 2 we see that [[b, x], [a, x]] ∈ C. In particular,
[[q, x], [p, x]] ∈ C for all x ∈ soc(R). By [8, Theorem 4], q = λp + β for some
λ, β ∈ C, since either charR 6= 2 or dimC RC > 4.

Replacing q with λp+ β in (6) we see that

[p, f(xi)]f(xi)− λf(xi)[p, f(xi)] ∈ C

for all xi ∈ R. Consider the C-subspace of R:

L = {r ∈ R | [r, f(xi)]f(xi)− λf(xi)[r, f(xi)] ∈ C for all xi ∈ R}.

Since p ∈ L \ C and uLu−1 ⊆ L for all invertible elements u ∈ R, it follows
from Theorem 1 that [soc(R), soc(R)] ⊆ L. An application of [3, Theorem 2]
yields that [

[[X,Y ], f(Xi)]f(Xi)− λf(Xi)[[X,Y ], f(Xi)], X0

]
(16)

is a PI for R. By Posner’s theorem for prime PI-rings, R is a finite-dimensional
central simple C-algebra. Suppose that dimC R = s2, where s ≥ 2. Since R
and Ms(C) satisfy the same PIs, it follows that (16) is also a PI for Ms(C).
Let x, xi ∈ Ms(C) and e2 = e ∈ Ms(C). Note that ex(1 − e) = [e, ex(1 − e)].
By (16), 0 = (1 − e)

(
[ex(1 − e), f(xi)]f(xi) − λf(xi)[ex(1 − e), f(xi)]

)
e and

hence (1 + λ)(1 − e)f(xi)ex(1 − e)f(xi)e = 0. If λ = −1, then δ = −d,
a contradiction. Thus λ 6= −1 and so (1 − e)f(xi)e = 0 follows from the
primeness of R. Analogously, ef(xi)(1−e) = 0. Therefore [f(xi), e] = 0, which
implies that f(Xi) is central-valued on Ms(C) and hence on R, a contradiction.
This completes the proof.

Proof of the Main Theorem. By Lemma 3 we assume that C is a finite
field. Since R is a noncommutative strongly primitive ring, R is not a division
ring. Recall that we may assume R = U . Therefore R contains nontrivial
idempotents. We claim that C = GF(2), the Galois field of two elements.
Suppose on the contrary that C has more than two elements. Let w ∈ R with
w2 = 0, (a, b) ∈ H and let β ∈ C \ {0, 1}. Then ((1 +w)a(1−w), (1 +w)b(1−
w))−(a, b) ∈ H and ((1+βw)a(1−βw), (1+βw)b(1−βw))−(a, b) ∈ H. That
is, ([a,w], [b, w]) + (waw,wbw) ∈ H and ([a,w], [b, w]) + β(waw,wbw) ∈ H.
These imply that (waw,wbw) ∈ H. Recalling the definition of H we see that

[waw, f(xi)]f(xi)− f(xi)[wbw, f(xi)] ∈ C
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for all xi ∈ R. Using w2 = 0 to expand w([waw, f(xi)]f(xi)−f(xi)[wbw, f(xi)])
w, we have wf(xi)w(a+b)wf(xi)w = 0. That is, wf(xi)wEwf(xi)w = 0. But
E is a C-subspace of R invariant under inner automorphisms, it follows from
Theorem 1 that either E ⊆ C or [soc(R), soc(R)] ⊆ E. If the first case occurs,
then p+q ∈ C and so δ = −d, a contradiction. Thus [soc(R), soc(R)] ⊆ E and
so wf(xi)w[soc(R), soc(R)]wf(xi)w = 0, implying wf(xi)w = 0. In particular,
let w = ey(1−e) with y ∈ R, 1 6= e = e2 ∈ R. Then ey(1−e)f(xi)ey(1−e) = 0,
implying (1− e)f(xi)e = 0 [13, Lemma 2]. Similarly, ef(xi)(1− e) = 0. Thus
[f(xi), e] = 0 and so [f(xi),W ] = 0, where W denotes the additive subgroup of
R generated by the idempotents of R. Note that W is a noncentral Lie ideal of
R. Since either charR 6= 2 or dimC RC > 4, in view of [7, Lemma 8] we have
f(xi) ∈ Z. This proves that f(Xi) is central-valued on R, a contradiction.
Now we have shown that C = GF(2).

The next is to show that R ∼= Mn(C) for some n ≥ 3. By the fact that C
is finite, it is enough to prove that R is a PI-ring. Suppose on the contrary
that R is not a PI-ring. Let m be the degree of f(Xi). Then there exists an
idempotent e in soc(R) with rank(e) > m. Note that [soc(R), soc(R)] ⊆ A.
Let x, xi ∈ R. Then there exists y ∈ R, depending only on (1−e)xe ∈ A, such
that [(1− e)xe, f(exie)]f(exie)− f(exie)[y, f(exie)] ∈ C and so

(1− e)
(
[(1− e)xe, f(exie)]f(exie)− f(exie)[y, f(exie)]

)
e = 0.

That is, (1 − e)xf(exie)2 = 0. It follows from the primeness of R and e 6= 1
that f(exie)2 = 0. Thus f(Xi)2 is a PI for the simple Artinian C-algebra eRe
and so dimC eRe ≤ m2 by the Kaplansky theorem for primitive PI-algebras.
This is absurd as dimC eRe = rank(e)2 > m2. Up to now we have proved that
R ∼= Mn(GF(2)), n ≥ 3.

We claim that f(X1, . . . , Xt)
2 is central-valued on R. Since p ∈ A \ C,

it follows from Theorem 1 that [R,R] ⊆ A. In particular, e12 ∈ A. Thus
(e12, b) ∈ H for some b ∈ R. Note that b /∈ C by Theorem 2. Let CR(e12)
denote the centralizer of e12 in R, namely CR(e12) = {x ∈ R | [x, e12] = 0}.
Let u ∈ CR(e12) be such that 1 + u is invertible in R and rank(u) = 1. Then
((1+u)e12(1+u)−1, (1+u)b(1+u)−1) ∈ H, that is, (e12, (1+u)b(1+u)−1) ∈ H
and hence

(0, [b, u](1 + u)−1) = (e12, b) + (e12, (1 + u)b(1 + u)−1) ∈ H.

By Theorem 2, this implies that [b, u](1 + u)−1 ∈ C and so [b, u] = 0 since
rank([b, u](1 + u)−1) ≤ 2.

Taking u = e1j with j ≥ 2 or u = ek2 with k ≥ 3, we see that b commutes
with these e1j and ek2. By a direct computation we see that b ∈ C + Ce12
and hence b = e12 + µ for some µ ∈ C, since b /∈ C and C = GF(2). Thus

465



466 Tsiu-Kwen Lee and Wen-Kwei Shiue

(e12, e12) ∈ H. By Theorem L, this proves that f(X1, . . . , Xt)
2 is central-

valued on R.
Now f(X1, . . . , Xt)

2 is central-valued onR, so [p, f(x1, . . . , xt)]f(x1, . . . , xt)
+f(x1, . . . , xt)[p, f(x1, . . . , xt)] = [p, f(x1, . . . , xt)

2] = 0 for all xi ∈ R. Thus
(p, p) ∈ H. On the other hand, (p, q) ∈ H, so (0, p− q) ∈ H. By Theorem 2,
we have p + q = p − q ∈ C, that is, δ = −d, a contradiction. This completes
the proof of the Main Theorem.
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