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A CHARACTERIZATION OF HOLOMORPHIC GENERATORS
ON THE CARTESIAN PRODUCT OF HILBERT BALLS

Simeon Reich and David Shoikhet

Abstract. We present a necessary and sufficient condition for a holo-
morphic mapping to be a generator of a flow on any finite Cartesian
product of Hilbert balls. A related null point theorem is also established.

Let X be a Banach space and let X* be its dual. For a point z € X and
a functional z* € X we use the pairing (x,z*) to denote z*(z). The duality
mapping J : X — 2% is defined by

J(2) = {a" € X" : Re(z,a*) = ||o]* = *[?}

for each z € X.

In particular, if X = H is a Hilbert space, then (-, -) is the inner product in
H and J: H — H is the identity mapping. Let now D be the open unit ball
in X, and let C'(D, X) denote the class of continuous mappings from D into
X. Suppose that f belongs to C(D, X) and satisfies the following boundary
condition:

(%) inf Re(f(z),z*) >0,
@ eJ(x)
for each = € 0D.

Following [10] we call this condition a “one-sided estimate”. We recall that
such estimates have been systematically used in many areas of analysis, e.g.,
boundary value problems ([9], [5], [16]), nonlinear integral equations [6], and
monotone operator theory [4]. For an extension of condition (x) to topological
vector spaces, with applications, we refer the reader to a paper by Fan [7].

Releived August 26, 1997; revised December 2, 1997.

Communicated by S.-Y. Shaw.

1991 Mathematics Subject Classification: 34G20, 46G20, 47H15, 47H20, 58C10.

Key words and phrases: Cauchy problem, flow, generator, Hilbert ball, holomorphic mapping,
null point.

383



384 Simeon Reich and David Shoikhet

If D = B is the open unit ball in a Hilbert space H, and f : B — H
is a completely continuous vector field on B (i.e. f € C(B,X) and I — f
is compact), then by Krasnoselskii’s theorem [9] condition (%) implies the
existence of a null point of f in B. As a matter of fact, this also follows from
the Leray-Schauder Theorem because the mapping I — f is compact.

A similar assertion was proved by Shinbrot [16] under the assumptions that
f is weakly continuous and H is separable. This result was applied by him
to a class of quasi-linear partial differential equations and to Navier-Stokes
equations.

Suppose now that H is complex and that f : B — H is a holomorphic
mapping in B. As we proved in [2], the compactness condition in this case
can be replaced by the condition of uniform continuity of f on B. However,
examples show (see [2]) that such an assertion is no longer true for every
Banach space. Nevertheless, we will show in the sequel that Theorem 2 in [2]
can be generalized to the case when X is the Cartesian product of complex
Hilbert spaces with the maximum norm. The key to the solution of such a
problem is the following observation related to another issue, namely evolution
equations and a characterization of infinitesimal holomorphic generators.

First we note that if D is a ball in a Banach space X and f € C(D, X),
then condition (*) is equivalent to the following “flow invariance condition”:

- dist(z — hf(x), D)

h—0t h

(FIC) =0

(see [12]).

If we now suppose that f satisfies the condition:

For some § > 0 there exists a continuous family F; : [0,6) — C(D, X),
F,(D) c D, t €]0,0), such that for each x € D,

f(z) = lim v - Fz)

10+ t ’

then it is clear that f satisfies (FIC) and hence the one-sided estimate (x).
This happens, in particular, if f is a strong generator of a one-parameter
semigroup.

The converse assertion, generally speaking, is not clear. Usually, its validity
can be ensured by additional conditions, such as accretivity (see, for example,
[11]).

If X is complex and f is holomorphic in D and uniformly continuous on
D, then condition (x) is equivalent to the assumption that f is an infinitesimal
generator inside D (see [2]).

Thus the existence of an interior null point of f under the condition (x)
or (FIC) is equivalent in this case to the existence of a stationary point of the
flow {F,}, t > 0, defined by the Cauchy problem:
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dF;}it(I)‘i‘f(Ft(m)): , >0,
(CP)

Ji ) =
(see [13]).

The following question now arises: Are there interior characterizations of
f to be a generator on the open unit ball D such that if f has a continuous ex-
tension to D one can derive condition (*) (or (FIC))? For the one-dimensional
case an implicit characterization of f to be an infinitesimal generator of a one-
parameter semigroup of holomorphic self-mappings in D = A (the unit disk
in C) was obtained by E. Berkson and H. Porta [3]. They proved the following
assertion.

Let f: A — C be a holomorphic mapping in A. Then the Cauchy prob-
lem (CP) has a global solution on R = (0,00) if and only if f admits the
representation:

(BPC) f(x) = (y — 2)(gz — 1)g(x)

for some y € A and for some holomorphic mapping g : A — C with Re
g(x) >0 for all x € A.

This characterization was used in [3] to study semi-groups of composition
operators on Hardy spaces of the unit disk. Recently M. Abate [1] established
a different characterization of holomorphic generators on the open unit ball
B of C™ with the Euclidean norm (i.e., a finite-dimensional Hilbert space) by
using the differentiability (in this case) of the Kobayashi metric. In our setting
his characterization of f : B — C" to be a generator has the form

2[l g=) I* =[{g(x), z}|*]Re(g(x), z)
+(1 = [lz)*)*Re(f"(2) f (), g (x)) = O,

where g(z) = (1 — [|z[|*) f(z) + (f(z), )=
In particular, if n = 1, (AC) becomes

(AC)

1
(ACY) Ref(a)F > —sRef'(2)(1— |of?), v e A.
It was also shown in [1] how to deduce (BPC) from (AC)" and conversely.

However, a deficiency of these conditions is that it is not clear how to derive
the condition

(%)) Re(f(x),z) >0, x€dD
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when f has a continuous extension to D. The difficulty is, of course, the
presence of the derivative in (AC) (or (AC)’), which generally speaking may
be unbounded (consider, for example, f(x) =2 — 1+ /1 — z). Observe that
when n = 1, condition (x)' can be written in the form

Re (M) <1-Re(F(0)x), z €A,

where F(z) := 2 — f(z), = € A. Since both the left and the right hand sides
of the last inequality are harmonic functions, it continues to hold throughout
A. Multiplying now by |z|?> and returning to f = I — F, we obtain

(+#) Re(f(2)7) = Re(f(0)2)(1 ~ [a?). = € Al

As a matter of fact, as we will see below, this condition (with z € A) char-
acterizes holomorphic generators on A even when f is not assumed to have a
continuous extension to A.

In another direction, a careful study of the notion of monotonicity in the
hyperbolic sense has led us [14] to conclude that a bounded holomorphic map-
ping f on the open unit ball B of a complex Hilbert space H is a generator if
and only if

Re(z, f(2)) | Rely, f(y)) _ 5 (F(@).y) + (2 f(y))
1 —[fa]|? L—yll> — 1—(z,y)

for all x and y in B.
Setting y = 0 we obtain the condition

(+)") Re(f(x),z) = Re(f(0),z)(1 — [z]*), = € B,

which reduces to (#x*) in the one-dimensional case. Actually, it turns out that
(xx)" is also sufficient for f to be a generator. However, once again a crucial
point of the arguments in [14] is the smoothness of the hyperbolic metric on
B.

In the present paper we present an entirely different, but simple enough,
approach to derive an analogous condition to (xx)" as a necessary and sufficient
condition for f to be a generator on any finite Cartesian product of Hilbert
balls.

Let X = H™ be the Cartesian product of n copies of a complex Hilbert
space H, and let D be the open unit ball in X with the maximum norm, i.e.,
D = B", where B is the open unit ball in H. By Hol(D, D) we denote the

family of holomorphic mappings from D into a subset D of X.
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We will say that f € Hol(D, X) is a generator of a flow on D if for some
d > 0 there is a continuous one-parameter semigroup F; : [0,d) — Hol(D, D)
such that the strong limit

(1) lim z — Fy(z)

t—0+ t

= f(z)

exists for all x € D.

Theorem 1. Let f € Hol(D, X), where D = B™ and X = H".

1. If f is the generator of a flow on D, then it satisfies the following con-
dition for all x € D and z* € J(z) :

(2) Re(f(z),2") = Re(f(0),z")(1 — [lz).

2. Conversely, if f is bounded on each subset strictly inside D, and for each
x € D there is x* € J(z) such that

(2)) Re(f(z),2") > Re(f(0),2")(1 — ||=[*),

then f is a generator of a flow on D.

Proof. Recall that for each b € B we can define the Mobius transformation
M, : B— B by

My(z) = (/1= [ 0 [PQp + Pp)mu(2),
where

Z+0b (z,b)b
EETAE N I

my(2)
(See, for example, [15] and [8].)

Let f be the generator of a flow Fy, = (F}!, F?,..., F"). For each t > 0
we now consider the holomorphic mapping G; = (G},G?,...,G?) : D — D,
D = B™, defined by

Gy () := M_proy(F}'(2)), z€ D, 1 <k <n.
Note that since G;(0) = 0, we have
(3) 1Ge(@) < llzll, =€ D,

by the Schwarz lemma.
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To differentiate G, at the origin we calculate
N k
lim - (2" — G{(2))

ot — (Ff(z), F(0))a" + FF(0) — /1 = [[FF ()| F ()

(4 = Jlim t(1— (Ff(w), FF(0)))

o LTV HFZ“(O)HQMFZ“(OC%Ft’“(0)>Ft’“(0)‘

1—0+ t(1 = (Ff(x), FF0)) | FF(0)]12

Since F}(0) — 0 and QvVIROR) as t — 0T, the second limit in (4)

I1EF 02 2
is zero, and
a® — /1 —[|[Ff(0)]]2 Ff(x) P
t M
as t — 0+.
Hence
(5) g"(z) := lim E (2" — GF(x)) = fF(x) + (2*, £7(0))z" — f*(0).

t—0t

By (3) we have, for any z € J(z),

(6) Re(g(z),2) 20, =€ D,

where g = (¢',¢%,...,9").
We observe now that for each z = (2!, 22,...,2") € H", z = (2},2%,...,2") €
J(x), and 1 <k <n,

n
2% = ayz®, where 0 < o, < 1 and Zak =1.
k=1

Moreover, if ||z*]| < |z|| = max{||z’/|| : 1 < j < n}, then o) = 0.
Therefore for each x € D and z € J(z),

0< Re(g(z),z) = Re <§n:<9k(~’v)vzk>>

k=1

= Re(f(z),2) + Re (Zn:@f’“, FH0)) (", Z'“>> —Re (Zan’“(O), Z’“>>

= Re(f(z),2) + iakRe<f’“(0),x’“>(Hka|!2 -1

= Re(f(2), 2) + ([lz]* = DRe(f(0), 2).
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This yields (2) and the first assertion of the theorem is proven.

Conversely, by Theorem 1.2 in [14] it is sufficient to prove that under
the assumptions of assertion 2, f € Hol(D, X) satisfies the following range
condition:

For each » > 0 and for each y € D, the equation

(7) z+rflr) =y

has a unique solution x € D.
Indeed, fix » > 0 and y € D, and consider the mapping G € Hol(D, X)
defined by the formula

(8) G(z) =y —rf(x).

For each t € (0,1), ||yl < s <1, and = € D with ||z|| = s, there exists by (2)’
a functional z* € J(x) such that

Re(z — tG(z),z*) = ||z|* — tRe(y,x*) + trRe(f(z),z*)
> s —tslly|| = trs||f(0)[I(1 — s?)

S R LCTEAT]

S
If we choose now s close enough to 1, we obtain

lz = tG(@)|| =]l = Re(z —tG(x),2*) > [lz[*(1 - tK),
rll fO) I (1—s*

S

<1

with K =¥,
S

Hence it follows by Lemma 1 in [2] that G : D — X has a unique fixed point
xzeD.

This fixed point is the solution of the equation (7). This concludes the
proof of the theorem. n

Combining this theorem with our results in [13] and [14] we deduce the
following results.

Corollary 1. Let D = B™, and let f € Hol(D, X)) be bounded on each ball
strictly inside D. Then the following are equivalent:

(i) For each x € D there exist z* € J(x) and m € R such that

Re(f(z),2") = m(1 — [lz|*);
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(ii) For each x € D and all x* € J(x),
Re(f(),2") > Re(f(0),2") (1 — [|=[|*);

(iii) For some 6 > 0 there exists a continuous family Fy : [0,9) — Hol(D, D)
such that

Jim %(g; ~F(x) = f(2)

t—0t

for each x € D;
(iv) The Cauchy problem (CP) has a unique solution on R™ for each x € D;
(v) For each r > 0 the mapping J, = (I +rf)~" is well-defined on D and
belongs to Hol (D, D).

Corollary 2. Let D and f be as above and assume that f has a uniformly
continuous extension to D. Then the following assertions are equivalent:

(i) For each x € 0D there exists z* € J(x) such that
Re(f(z),z") > 0;

(ii) For each x € 0D
inf Re(f(z),z") > 0;

z*eJ(x)

(iii) For each x € 0D, f satisfies the flow invariance condition (FIC):

N =
hhj%)l+ Edlst(x —hf(z), D) =0;

(iv) The mapping f generates a flow (one-parameter semigroup)
{Ft}t>0 C HOI (D, D)
Corollary 3. If D = B™ and f € Hol(D, X) is a generator of a flow on
D, then the linear operator A = f'(0) is accretive.
Proof. Let us represent f in the form

f(x) = f(0) + Az + h(x),

where lim
lzll—o || 2 ||

Re(f(x),z*) = Re(f(0),z*) + Re(Ax,z*) + Re(h(x), z*)
> Re(f(0), z*)(1 — [|=[*)

h(z) = 0. Then it follows by Theorem 1 that for x € D,
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for all z* € J(x). This yields the inequality
Re(Az,z") > —Re ((h(z),2") + [|2[*(f(0),2")) .

Let now y € 0D be arbitrary and set x = ty, 0 < t < 1. The last inequality
implies

t*Re(Ay, y") > —Re ((h(ty), ty") + *(£(0),y7)) -
Hence for 0 <t < 1,

Re(dy.y') = ~Re ((;h(t). ") + 0.} ).

But the right hand side of this inequality converges to zero as t — 07.
It follows that for each y with || y ||= 1 and each y* € J(y),

Re(Ay,y*) > 0.
In other words, A is an accretive linear operator. [

Returning now to the existence of null points, we consider for simplicity
only the case n = 2.

Theorem 2. Let B be the open unit ball in a complex Hilbert space H,
and let D = B*. Suppose that a bounded f € Hol(D, H?) has a uniformly
continuous extension to D. If for each x € 0D there exists x* € J(x) such
that

(9) Re(f(z),2") 2 0,
then f has a null point in D.

For the proof we need the following lemmata.

Lemma 1. Let B be the open unit ball in a complex Hilbert space H,
and let 2 be a domain in a complex reflexive Banach space X. Suppose that
g: BxQ — H is a bounded holomorphic mapping such that for each \ €
the mapping g(-, \) has a uniformly continuous extension to B and satisfies
the condition

(10) Re(g(z,\),z) >0, x€ 0B.

Then
1) The equation
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(11) g(x,\) =0

has a holomorphic solution x : Q — B;
2) If for some Ay € Q the equation

g(xa)\O) =0

has no solution on OB, then for each A € ), equation (11) has a unique
solution x = x(\) in B.

This lemma can be obtained by combining Theorem 8.1 of [13] with The-
orem 2 of [2]. For information on the hyperbolic metric, see, for example, [8,
p. 98].

Lemma 2. Let p(-,-) be the hyperbolic metric on the open unit ball B of
a complex Hilbert space H. Let {z,} and {w,} be two sequences in B such
that {z,} converges to e € OB as n — oo, and for some sequence t,, € (0,1),
t, — 1—, the following condition holds for all n € N :

(12) p (0] < plen ).

n

Then {w,} converges to e as n — .

Proof. 1t is not difficult to see that if there exists a subsequence of
{(2n,w,)} which does not converge to 1, then condition (12) leads to a con-
tradiction. Therefore {(z,,w,)} — 1, and {z, — w,} — 0 as n — oc. [

Proof of Theorem 2. Let f = (fi, f2), where each f; : B> — H, i = 1,2,
is a bounded holomorphic mapping on B? which is uniformly continuous on
B2. Tt follows from condition (9) that for each fixed x5 € B and for each fixed
x1 € B, the mappings fi(-, z2) and fa(z1,-) satisfy the boundary conditions

(13) Re(fi(z1,22),71) >0, 7, € 9B, x5 € B,
and
(14) Re<f2(l'1,$2),l'2> Z 0, To S 3B, Al € B.

Lemma 1 and condition (13) imply that for each xz, € B, the mapping
f1(-,75) has a null point z; = ¢(x,) in B. If for some x5y € B, fi(-,z2) has no
null point in B, then it has no null point in B for all x5 € B, and therefore
the function z; = ¢(x3) is a constant e; € 9B by the maximum principle. In
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other words, fi(e;,z2) = 0 for all x, € B. But by (14) and continuity, the
mapping fa(ei,-) : B — H has a null point e; € B and therefore e = (e;, ey)
is a null point of f = (f1, fo).

Thus we can suppose that for at least one x, € B and hence for all z, € B,
the mapping f;(-,22) has a null point x; = ¢(z3) in B. In addition we can
assume that fo(z,-) has a null point x5 = ¥(z,) € B, since otherwise the
same considerations as above yield the result. Thus we arrive at the following
system:

fl((p(.%'2>,$2) =0, = € B,
(15) { o, (21)) = 0, 21 € B,

where ¢(-) and ¥(-) are holomorphic self-mappings of B.
We now claim that the equations

(16) $1—J1($1,$2):f1§

Tg — J2(!E17~’U2) = fo

Ji(z1,x2), x2),
x1, Jo(x1,22))
have unique holomorphic solutions J;(-,+) : B> — B, i = 1,2. To see this,
consider the mappings g; : B x B?> — H defined by the formulas
91y, 1, 22) ==y + fi(y, x2) — 21,
92(Y, 1, 22) ==y + foz1,y) — 22,

where y € B. Setting in Lemma 1, B> = Q and A\ = (z;,75) € B?, we see
t}lat the mappings g;(-,A), @ = 1,2, have uniformly continuous extensions to
B, and therefore we have by (13) and (14),

Re(gi(y, M), y) 2 1 = |lill , y € 9B, i=1,2.

Thus assertion (2) of Lemma 1 implies the existence and uniqueness of
holomorphic solutions y = J;(x1,22), i = 1,2, to the equations g¢;(y,\) =
0, ¢« = 1,2, which are equivalent to (16). In addition, the uniqueness of
J; : B> - B, i = 1,2, and (15) imply that the mappings ¢(-) and (-)
satisfy the following equations:

p(x2) = Ji(p(x2), 22),
Y(x1) = Jo(21,9(21))-
Now we consider the holomorphic mappings F; : B — B, i = 1,2, defined as
follows:
Fy = Jl(vw())v
Fy = Ja((0), )

(17)
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Suppose that one of them, say Fj, has a fixed point z € B. That is, z =
Ji(z,¢(2)) and ¢¥(z) = Jo(2,9(z)) by (17). Hence it follows from (16) that
the point (z,1(z)) € B,y is a null point of f = (f1, fo).

Finally, assume that neither F| nor F5 has a fixed point in B. In this case,
it is known (see [8]) that the approximating curves

z(t) = tF(2(1))
and
w(t) = thy(w(t))

converge as t — 1~ to points a and b, respectively, on dB. If p is the hyperbolic
metric on B, then we have

p (320 00w(t) ) = (B (1), o w(t))
» — o (=(0), w(=(0), p(w ()
— (I (=(0), 0(=(0)). i (o wl(t)), w(t)))
< max{p(=(t), ¢ (w(®)); p(V(=(1)), w(t)} = m(t)
In a similar way we also get
(19) p(Fu®) 0= ) <m).

Suppose that there is a sequence t,, — 1~ such that m(t,,) = p(z(t.), p(w(t,))).
By Lemma 2, we have ¢(w(t,,)) — a strongly and hence f;(a,b) = lim,, ... f1(p(w(t,)),
w(t,)) = 0 by (15). To show that fs(a,b) = 0 we use (16) and the following
simple calculations:

fala,b)= lim falplw(t), -w(t,)
= i fol(w(ta), Lo (w(t), w(ta))
= dfut) - Slaltaiott]
= lim (, — 1) a(o(w(tn)), w(tn)) =

If, on the other hand, there is a sequence ¢, — 1~ such that m(t,) =
p(¢(2(t,)), w(t,)), then we can use (18), and once again the same arguments
as above show that f(a,b) = (fi(a,b), f2(a,b)) = (0,0) € H2. This concludes
the proof of Theorem 2. n
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