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A STABILITY ANALYSIS FOR VIBRATING VISCOELASTIC
SPHERICAL SHELLS

(The Effect of Damping on the LBB Constants of Vibration Problems)

Y. C. Chang and L. Demkowicz

Abstract. This paper is a continuation of [3-6] and it is devoted to
a stability analysis of multilayered vibrating viscoelastic spheres, both
in vacuo and in an acoustical fluid. The analysis is done by investigat-
ing the effect of viscoelastic damping on the (continuous) Ladyzenskaya-
Babuška-Brezzi (LBB) constants for the related boundary-value prob-
lems. The sphere is modeled using both 3-D viscoelasticity and the
Kirchhoff-Love shell theory.

1. Introduction

The present study has been motivated by the numerical modeling of fluid-
structure acoustic interaction problems presented in [7]. Based on the numer-
ical experiments, it was found experimentally and analyzed theoretically in
[5, 6] that, for a typical data (a thin steel shell in water) the radiation damp-
ing might be insufficient to guarantee stability (and, therefore, convergence)
of the numerical simulations.

The natural choice in such a situation is to add to the model some damping
phenomenon. Modeling of damping for real-life complex structures is a very
complicated and unresolved issue (see, e.g. [12]) and in the present study
we resort to the simplest, linear viscoelastic laws. The stability effect of the
viscoelastic damping will be measured through the evaluation of the LBB
constants for the appropriate boundary-value problems.

The investigations are done in context of spherical shells only. The spher-
ical geometry allows for a modal decoupling and makes the whole analysis
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possible. In particular, we model the shells using both 3-D viscoelasticity and
Kirchhoff-Love shell theories. As a by-product of the stability consideration
we construct the exact 3-D solutions to the viscoelastic vibration and scat-
tering problems. The solutions are indispensable in validating the numerical
simulations mentioned earlier. In this aspect, the work is a continuation of [3,
4].

The plan of the paper is as follows. In Section 2, we review first the exact
solutions for vibrating hollow viscoelastic spheres using the 3-D theory, and
use it to construct the solution of the scattering problem. The stability con-
siderations are presented in Section 3. After a short theoretical introduction,
we perform the stability analysis for a viscoelastic spherical shell using first
the shell theory and next the full 3-D theory. The paragraph is concluded
with a generalization for multilayered shells. Finally, Section 4 is devoted to
various numerical experiments investigating the effect of viscous damping on
stability.

2. Steady-State Vibrations of a Viscoelastic Sphere

In this section, we consider several problems concerning steady-state vi-
brations of a 3-D viscoelastic hollow sphere. By means of the Helmholtz
potentials, solutions of the steady-state form of the Navier equations for the
sphere can be reduced to the solution of equivalent, three decoupled reduced
wave equations for three Helmholtz potentials Φ, Ψ, and χ:

(2.1) − c∗2l ∇2Φ− ω2Φ = 0,

(2.2) − c∗2s ∇2Ψ− ω2Ψ = 0,

(2.3) − c∗2s ∇2χ− ω2χ = 0.

Here ω is the frequency of the vibrations and c∗l and c∗s are the viscous coun-
terparts of the longitudinal wave velocity and the shear wave velocity, respec-
tively,

c∗l =

√
λ∗ + 2µ∗

ρs
, c∗s =

√
µ∗

ρs
(2.4)

with λ∗, µ∗ denoting the complex viscoelastic moduli depending upon a par-
ticular model and frequency ω, and ρs denoting the density of the solid. For
instance, for the simplest Kelvin model we have

λ∗ = λe − iωλv,(2.5)

µ∗ = µe − iωµv.(2.6)
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Here λe and µe are the elastic Lame constants and λv and µv are their viscous
counterparts.

We shall restrict ourselves to axisymmetric vibrations only. Referring to
[3, 4] for details, we list here only the final formulas

σrr =
∞∑
n=0

2µ∗

r2

[
AnT

(1)
11 (α∗r) +BnT

(1)
13 (β∗r) + CnT

(2)
11 (α∗r)

+DnT
(2)
13 (β∗r)

]
Pn(cos θ).

(2.7)

Following [8], we shall use a simplified notation of the form

σrr =
2µ∗

r2

[
T

(i)
11 (α∗r) + T

(i)
13 (β∗r)

]
Pn(cos θ)(2.8)

with T
(i)
11 (α∗r) replacing AnT

(1)
11 (α∗r) + CnT

(2)
11 (α∗r), T (i)

13 (α∗r) replacing
BnT

(1)
13 (β∗r) +DnT

(2)
13 (β∗r), and the summation convention being used. Con-

tinuing formulas for the stresses, we have

σθθ =
2µ∗

r2

{
T

(i)
21 (α∗r)Pn(cos θ) + T̂

(i)
21 (α∗r)

1
sin2 θ

·
[
−n cos2 θPn(cos θ) + n cos θPn−1(cos θ)

]
+T (i)

23 (β∗r)Pn(cos θ) + T̂
(i)
23 (β∗r)

1
sin2 θ

·
[
(−n cos2 θ)Pn(cos θ) + n cos θPn−1(cos θ)

]}
,

(2.9)

σφφ =
2µ∗

r2

{
T

(i)
31 (α∗r)Pn(cos θ) + T̂

(i)
31 (α∗r)

1
sin2 θ

·
[
n cos2 θPn(cos θ)− n cos θPn−1(cos θ)

]
+T (i)

33 (β∗r)Pn(cos θ) + T̂
(i)
33 (β∗r)

1
sin2 θ

·
[
(n cos2 θ)Pn(cos θ)− n cos θPn−1(cos θ)

]}
,

(2.10)

σrθ =
2µ∗

r2

{
T

(i)
41 (α∗r)

[
n cot θPn(cos θ)− n

sin θ
Pn−1(cos θ)

]
+ T

(i)
43 (β∗r) ·

[
n cot θPn(cos θ)− n

sin θ
Pn−1(cos θ)

]}
,

(2.11)

σrφ = σθφ = 0,(2.12)
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where

(2.13) T
(i)
11 (α∗r) =

(
n2 − n− 1

2
β∗2r2

)
Z

(i)
n (α∗r) + 2α∗rZ(i)

n+1(α∗r),

(2.14) T
(i)
13 (β∗r) = n(n+ 1)

[
(n− 1)Z(i)

n (β∗r)− β∗rZ(i)
n+1(β∗r)

]
,

(2.15) T
(i)
21 (α∗r) =

(
−n2 − 1

2
β∗2r2 + α∗2r2

)
Z

(i)
n (α∗r)− α∗rZ(i)

n+1(α∗r),

(2.16) T̂
(i)
21 (α∗r) = Z

(i)
n (α∗r),

(2.17) T
(i)
23 (β∗r) = −(n2 + n)

[
nZ

(i)
n (β∗r)− β∗rZ(i)

n+1(β∗r)
]
,

(2.18) T̂
(i)
23 (β∗r) = (n+ 1)Z(i)

n (β∗r)− β∗rZ(i)
n+1(β∗r),

(2.19) T
(i)
31 (β∗r) =

(
n− 1

2
β∗2r2 + α∗2r2

)
Z

(i)
n (α∗r)− α∗rZ(i)

n+1(α∗r),

(2.20) T̂
(i)
31 (α∗r) = Z

(i)
n (α∗r),

(2.21) T
(i)
33 (β∗r) = n(n+ 1)Z(i)

n (β∗r),

(2.22) T̂
(i)
33 (β∗r) = (n+ 1)Z(i)

n (β∗r)− β∗rZ(i)
n+1(β∗r),

(2.23) T
(i)
41 (α∗r) = (n− 1)Z(i)

n (α∗r)− α∗rZ(i)
n+1(α∗r),

(2.24) T
(i)
43 (β∗r) =

(
n2 − 1− 1

2
β∗2r2

)
Z

(i)
n (β∗r) + β∗rZ

(i)
n+1(β∗r),

α∗ =
ω

c∗l
, β∗ =

ω

c∗s
, c∗l =

√
λ∗ + 2µ∗

ρ
, c∗s =

√
µ∗

ρ
,(2.25)

Z(1)
n (z) ≡ jn(z) ≡ (π/2z)1/2Jn+1/2(z),(2.26)

Z(2)
n (z) ≡ yn(z) ≡ (π/2z)1/2Yn+1/2(z).(2.27)

Here r, θ, φ are the spherical coordinates, Pn(η) are the Legendre polynomials,
jn(z), Jn+ 1

2
(z) and yn(z), Yn+ 1

2
(z) are spherical and regular Bessel functions

of first and second kind of complex argument z.
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The corresponding displacement field takes the form

(2.28) ur =
1
r

[
U

(i)
1 (α∗r) + U

(i)
3 (β∗r)

]
Pn(cos θ);

(2.29) uθ =
1
r

{
V

(i)
1 (α∗r) + V

(i)
3 (β∗r)

} [
n cot θPn(cos θ)− n

sin θ
Pn−1(cos θ)

]
;

(2.30) uφ=0,

where

(2.31) U
(i)
1 (α∗r) =nZ

(i)
n (α∗r)− α∗rZ(i)

n+1(α∗r),

(2.32) U
(i)
3 (β∗r) =n(n+ 1)Z(i)

n (β∗r),

(2.33) V
(i)

1 (α∗r)=Z
(i)
n (α∗r), V

(i)
2 (β∗r) = Z

(i)
n (β∗r),

(2.34) V
(i)

3 (β∗r) =(n+ 1)Z(i)
n (β∗r)− β∗rZ(i)

n+1(β∗r).

2-1. Free Vibrations in Vacuum
Imposing the traction-free boundary conditions, we obtain the character-

istic modal equations for natural frequencies ω:

4n =

∣∣∣∣∣ T
(1)
11 (α∗ro) T

(2)
11 (α∗ro)

T
(1)
11 (α∗ri) T

(2)
11 (α∗ri)

∣∣∣∣∣ = 0 for n = 0,(2.35)

4n =

∣∣∣∣∣∣∣∣∣
T

(1)
11 (α∗ro) T

(1)
13 (β∗ro) T

(2)
11 (α∗ro) T

(2)
13 (β∗ro)

T
(1)
11 (α∗ri) T

(1)
13 (β∗ri) T

(2)
11 (α∗ri) T

(2)
13 (β∗ri)

T
(1)
41 (α∗ro) T

(1)
43 (β∗ro) T

(2)
41 (α∗ro) T

(2)
43 (β∗ro)

T
(1)
41 (α∗ri) T

(1)
43 (β∗ri) T

(2)
41 (α∗ri) T

(2)
43 (β∗ri)

∣∣∣∣∣∣∣∣∣ = 0 for n > 0.(2.36)

Here, ri and ro denote inner and outer radii, respectively. In order to obtain
the corresponding eigenmodes, the corresponding systems of 2× 2 (n = 0) or
4× 4 (n > 0) equations for constants An, Bn, Cn, Dn must be solved.

2-2. Forced Vibrations in Vacuum
Expanding the excitation pressure in terms of the Legendre polynomials

we reduce again the whole problem, as for the free vibrations, to separate
modal systems of equations. The only different equation compared with the
free vibrations is as follows:

σrr |r=r0 =
2µ∗

r2
o

[
AnT

(1)
11 (α∗ro) +BnT

(1)
13 (βro) + CnT

(2)
11 (α∗ro)

+DnT
(2)
13 (βro)

]
Pn(cos θ)

= fnPn(cos θ),

(2.37)
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where fn is the nth spectral component of the forcing term.
For n = 0, we obtain

A0T
(1)
11 (α∗ro) + C0T

(2)
11 (α∗ro) =

r2
o

2µ∗
f0,

A0T
(1)
11 (α∗ri) + C0T

(2)
11 (α∗ri) = 0.

(2.38)

Solving for A0 and C0 in (2.38), we obtain

A0 =

∣∣∣∣∣
r2
o

2µ∗ f0 T
(2)
11 (α∗ro)

0 T
(2)
11 (α∗ri)

∣∣∣∣∣∣∣∣∣∣ T
(1)
11 (α∗ro) T

(2)
11 (α∗ro)

T
(1)
11 (α∗ri) T

(2)
11 (α∗ri)

∣∣∣∣∣
, C0 =

∣∣∣∣∣∣
T

(1)
11 (α∗ro)

r2
o

2µ∗ f0

T
(1)
11 (α∗ri) 0

∣∣∣∣∣∣∣∣∣∣∣ T
(1)
11 (α∗ro) T

(2)
11 (α∗ro)

T
(1)
11 (α∗ri) T

(2)
11 (α∗ri)

∣∣∣∣∣
.(2.39)

For n > 0, we have

AnT
(1)
11 (α∗ro) +BnT

(1)
13 (β∗ro) + CnT

(2)
11 (α∗ro) +DnT

(2)
13 (β∗ro) =

r2
o

2µ∗
fn,

AnT
(1)
11 (α∗ri) +BnT

(1)
13 (β∗ri) + CnT

(2)
11 (α∗ri) +DnT

(2)
13 (β∗ri) = 0,

AnT
(1)
41 (α∗ro) +BnT

(1)
43 (β∗ro) + CnT

(2)
41 (α∗ro) +DnT

(2)
43 (β∗ro) = 0,

AnT
(1)
41 (α∗ri) +BnT

(1)
43 (β∗ri) + CnT

(2)
41 (α∗ri) +DnT

(2)
43 (β∗ri) = 0.

(2.40)

Solving for coefficients An, Bn, Cn and Dn, we obtain

An =
4n1

4n
, Bn =

4n2

4n
, Cn =

4n3

4n
, Dn =

4n4

4n
,(2.41)

where

4n =

∣∣∣∣∣∣∣∣∣∣
T

(1)
11 (α∗ro) T

(1)
13 (β∗ro) T

(2)
11 (α∗ro) T

(2)
13 (β∗ro)

T
(1)
11 (α∗ri) T

(1)
13 (β∗ri) T

(2)
11 (α∗ri) T

(2)
13 (β∗ri)

T
(1)
41 (α∗ro) T

(1)
43 (β∗ro) T

(2)
41 (α∗ro) T

(2)
43 (β∗ro)

T
(1)
41 (α∗ri) T

(1)
43 (β∗ri) T

(2)
41 (α∗ri) T

(2)
43 (β∗ri)

∣∣∣∣∣∣∣∣∣∣
,(2.42)

4n1 =

∣∣∣∣∣∣∣∣∣∣

r2
o

2µ∗ fn T
(1)
13 (β∗ro) T

(2)
11 (α∗ro) T

(2)
13 (β∗ro)

0 T
(1)
13 (β∗ri) T

(2)
11 (α∗ri) T

(2)
13 (β∗ri)

0 T
(1)
43 (β∗ro) T

(2)
41 (α∗ro) T

(2)
43 (β∗ro)

0 T
(1)
43 (β∗ri) T

(2)
41 (α∗ri) T

(2)
43 (β∗ri)

∣∣∣∣∣∣∣∣∣∣
,(2.43)
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4n2 =

∣∣∣∣∣∣∣∣∣∣
T

(1)
11 (α∗ro)

r2
o

2µ∗ fn T
(2)
11 (α∗ro) T

(2)
13 (β∗ro)

T
(1)
11 (α∗ri) 0 T

(2)
11 (α∗ri) T

(2)
13 (β∗ri)

T
(1)
41 (α∗ro) 0 T

(2)
41 (α∗ro) T

(2)
43 (β∗ro)

T
(1)
41 (α∗ri) 0 T

(2)
41 (α∗ri) T

(2)
43 (β∗ri)

∣∣∣∣∣∣∣∣∣∣
,(2.44)

4n3 =

∣∣∣∣∣∣∣∣∣∣
T

(1)
11 (α∗ro) T

(1)
13 (β∗ro)

r2
o

2µ∗ fn T
(2)
13 (β∗ro)

T
(1)
11 (α∗ri) T

(1)
13 (β∗ri) 0 T

(2)
13 (β∗ri)

T
(1)
41 (α∗ro) T

(1)
43 (β∗ro) 0 T

(2)
43 (β∗ro)

T
(1)
41 (α∗ri) T

(1)
43 (β∗ri) 0 T

(2)
43 (β∗ri)

∣∣∣∣∣∣∣∣∣∣
,(2.45)

4n4 =

∣∣∣∣∣∣∣∣∣∣
T

(1)
11 (α∗ro) T

(1)
13 (β∗ro) T

(2)
11 (α∗ro)

r2
o

2µ∗ fn

T
(1)
11 (α∗ri) T

(1)
13 (β∗ri) T

(2)
11 (α∗ri) 0

T
(1)
41 (α∗ro) T

(1)
43 (β∗ro) T

(2)
41 (α∗ro) 0

T
(1)
41 (α∗ri) T

(1)
43 (β∗ri) T

(2)
41 (α∗ri) 0

∣∣∣∣∣∣∣∣∣∣
.(2.46)

It is useful to define a modal mechanical impedance in vacuum for the 3-D
theory as follows

Zn =
fn

−iωurn
(2.47)

with

urn =
1
ro

{
AnU

(1)
1 (α∗r) + CnU

(2)
1 (α∗r) +BnU

(1)
3 (β∗r) +DnU

(2)
3 (β∗r)

}
,(2.48)

and the coefficients An, Bn, Cn, and Dn given by (2.39) and (2.41). Note that
Zn is independent of fn.

2-3. Radiation Problem
The radiation pressure distribution for the outer surface r = ro vibrating

with acceleration ür can be written as [10]

p(r, θ) = −ρw
k

∞∑
n=0

ürnPn(cos θ)
hn(kr)
h′n(kro)

.(2.49)

By setting r = ro, we obtain the surface pressure in terms of the modal specific
acoustic impedance

p(ro, θ) =
∞∑
n=0

znu̇rnPn(cos θ),(2.50)

where zn is the modal specific acoustic impedance

zn = rn − iωmn = iρwcw
hn(kro)
h′n(kro)

(2.51)
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with modal resistance rn and modal accession to inertia mn given by the for-
mulas

rn = <
[
iρwcw

hn(kro)
h′n(kro)

]
,(2.52)

mn =
1
ω
=
[
−iρwcw

hn(kro)
h′n(kro)

]
.(2.53)

As usual, the bar symbol denotes the complex conjugate, ρw is the density of
water, hn and h′n are Hankel’s functions and derivatives of Hankel’s functions,
respectively.

2-4. Free Vibrations in Fluid

We begin by recalling the formula for the normal displacement component

ur =
1
r

[
AnU

(1)
1 (α∗r) + CnU

(2)
1 (α∗r) +BnU

(1)
3 (β∗r) +DnU

(2)
3 (β∗r)

]
·Pn(cos θ),

(2.54)

where

U
(i)
1 (α∗r) = nZ(i)

n (α∗r)− α∗rZ(i)
n+1(α∗r),(2.55)

U
(i)
3 (β∗r) = n(n+ 1)Z(i)

n (β∗r).(2.56)

Substituting (2.54) into (2.51), we get the normal stress

σrr(ro, θ)=−
∞∑
n=0

znu̇rnPn(cos θ)

=
∞∑
n=0

(iωrn + ω2mn)
1
ro

[AnU
(1)
1 (α∗ro) + CnU

(2)
1 (α∗ro)

+BnU
(1)
3 (β∗ro) +DnU

(2)
3 (β∗ro)]Pn(cos θ).

(2.57)

Finally, we impose the traction boundary condition

σrr|r=r0 =
2µ∗

r2
o

[AnT
(1)
11 (α∗ro) +BnT

(1)
13 (β∗ro)

+CnT
(2)
11 (α∗ro) +DnT

(2)
13 (β∗ro)]Pn(cos θ).

(2.58)

The resulting systems of modal equations look as follows.
For n = 0, we get



Vibrating Viscoelastic Spherical Shells 221

AnT
(1)
11 (α∗ro) + CnT

(2)
11 (α∗ro)=

r0

2µ∗
(iωrn + ω2mn)

·
[
AnU

(1)
1 (α∗r) + CnU

(2)
1 (α∗r)

]
,

AnT
(1)
11 (α∗ri) + CnT

(2)
11 (α∗ri) =0.

(2.59)

For n > 0, we obtain

AnT
(1)
11 (α∗ro) +BnT

(1)
13 (β∗ro) + CnT

(2)
11 (α∗ro) +DnT

(2)
13 (β∗ro)

=
r0

2µ∗
(iωrn + ω2mn)

[
AnU

(1)
1 (α∗ro) + CnU

(2)
1 (α∗ro)

+BnU
(1)
3 (β∗ro) +DnU

(2)
3 (β∗ro)

]
,

AnT
(1)
11 (α∗ri) +BnT

(1)
13 (β∗ri) + CnT

(2)
11 (α∗ri) +DnT

(2)
13 (β∗ri) = 0,

AnT
(1)
41 (α∗ro) +BnT

(1)
43 (β∗ro) + CnT

(2)
41 (α∗ro) +DnT

(2)
43 (β∗ro) = 0,

AnT
(1)
41 (α∗ri) +BnT

(1)
43 (β∗ri) + CnT

(2)
41 (α∗ri) +DnT

(2)
43 (β∗ri) = 0.

(2.60)

Equating the corresponding determinants to zero, we obtain the corresponding
modal characteristic equations from which resonant (scattering) frequencies
[11] are determined. Contrary to the vibrations in vacuo, the characteristic
equations are transcendental (not algebraic) as both modal resistance rn and
modal accession to inertia mn depend upon frequency ω.

2-5. Forced Vibrations in Fluid

The problem is equivalent to forced vibrations in vacuo with the loading
term equal to the sum of the actual loading and the radiation loading

Znu̇rn = fn − znu̇rn.(2.61)

Solving for u̇rn we get

u̇rn =
fn

Zn + zn
,(2.62)

where the mechanical impedance corresponding to the 3-D theory is defined
by (2.47).
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2-6. Rigid Scattering of a Plane Wave

Consider a spherical scatterer with midsurface radius a, and a distant
source generating a train of sound waves which impinge on the outer boundary
of the sphere. Let the rigid scattered pressure be denoted by ps,∞ and the total
pressure by p:

p = pinc + ps,∞.(2.63)

Since the boundary is rigid, the resultant particle acceleration must have a
zero component in the radial direction on the scatterer.

üs,∞r + üincr = 0 at r = ro,(2.64)

where üincr and üs,∞r are the normal acceleration components corresponding to
incident and scattered waves, and ro denotes the outer radius, respectively.
Consequently

üs,∞r = −üincr =
1
ρw

∂pinc(r, θ)
∂r

at r = ro.(2.65)

Thus the rigid scattering problem reduces simply to the radiation problem with
the vibrating boundary acceleration ürn specified by (2.65). We restrict now
ourselves to an incident plane wave only, representing it in terms of spherical
harmonics

pinc(r, θ) = Pince
ikr cos θ

= Pinc

∞∑
n=0

(2n+ 1)inPn(cos θ)jn(kr),
(2.66)

where Pinc is a prescribed coefficient. Substituting (2.66) into (2.65) and
comparing with equation (2.49), we obtain finally

ps,∞(r, θ) = −Pinc
∞∑
n=0

(2n+ 1)inPn(cos θ)
j′n(kro)
h′n(kro)

hn(kr).(2.67)

2-7. Scattering of a Plane Wave from a Viscoelastic Sphere

We begin again by expanding the incident plane wave in terms of the
spherical harmonics

pinc(r, θ) = Pince
ikr cos θ

= Pinc

∞∑
n=0

(2n+ 1)inPn(cos θ)jn(kr),
(2.68)
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where Pinc is a prescribed coefficient.
The total viscoelastic-body scattered pressure ps(r, θ) is equal to the sum

of rigid-body scattered pressure ps,∞(r, θ)

ps,∞(r, θ) = −Pinc
∞∑
n=0

(2n+ 1)inPn(cos θ)
j′n(kro)
h′n(kro)

hn(kr)(2.69)

and pressure ps,r(r, θ) radiated by the viscoelastic shell in fluid loaded with
forcing term, equal to ps,∞(r, θ) + pinc(r, θ).

ps,r(r, θ) = iρwcw

∞∑
n=0

u̇rnPn(cos θ)
hn(kr)
h′n(kro)

= inρwcw

∞∑
n=0

Pn(cos θ)
(2n+ 1)Pinchn(kr)

(kro)2(Zn + zn)(h′n(kro))2 ,

(2.70)

where u̇rn denotes the velocity component for the nth mode

u̇rn = − pn
Zn + zn

= − in+1(2n+ 1)Pinc
(kro)2h′n(kro)(Zn + zn)

(2.71)

with the forcing term equal to the sum of pinc and ps,∞

pn =
in+1(2n+ 1)Pinc

(kro)2h′n(kro)
(2.72)

and modal mechanical impedance Zn defined by (2.47) and modal specific
acoustic impedance zn defined by (2.51).

Using the spectral decomposition, we obtain the final pressure field

p = pinc(r, θ) + ps,∞(r, θ) + ps,r(r, θ)(2.73)

with

pinc(r, θ) = Pince
ikr cos θ

(2.74) = Pinc

∞∑
n=0

(2n+ 1)inPn(cos θ)jn(kr),

(2.75) ps,∞(r, θ) = −Pinc
∞∑
n=0

(2n+ 1)inPn(cos θ)
j′n(kro)
h′n(kro)

hn(kr),

(2.76) ps,r(r, θ) = iρwcw

∞∑
n=0

u̇rnPn(cos θ)
hn(kr)
h′n(kro)

,

(2.77) u̇rn = − pn
Zn + zn

= − in+1(2n+ 1)Pinc
(kro)2h′n(kro)(Zn + zn)

.

223



224 Y. C. Chang and L. Demkowicz

3. Stability Analysis. The Effect of Damping on

the LBB Constant

3-1. Theoretical Foundations

Given a Hilbert space V , we consider an abstract variational problem of
the form {

Find u ∈ V such that

b(u,v) = `(v) ∀v ∈ V,
(3.78)

where b(u,v) is a continuous sesquilinear form on V ×V and `(v) is a contin-
uous antilinear form on V .

The sesquilinear form b defines a linear operator B prescribed on V with
values in the topological dual V ′,

B : V → V ′; < Bu,v >= b(u,v) ∀u,v ∈ V(3.79)

which allows us to rewrite (3.78) in the operator form

Bu = `, u ∈ V,(3.80)

consistently with the classical theory of linear operators in Banach spaces (see,
e.g. [13]); operator B is postulated to be bounded below

‖ Bu ‖V ′≥ γ ‖ u ‖V ,(3.81)

where ‖ · ‖V and ‖ · ‖V ′ are the norms in the original Hilbert space and its
dual, respectively. The optimal (smallest) constant γ is known as the LBB
(Ladyzenskaya-Babuška-Brezzi) constant

γ = inf
u6=0

‖ Bu ‖V ′
‖ u ‖V

.(3.82)

Introducing the Riesz operator

R : V → V ′; < Ru,v > = (u,v) ∀u,v ∈ V,(3.83)

where (·, ·) denotes the inner product in space V , we can eliminate inner
product (·, ·) from the dual norm

γ2 = inf
u6=0

‖ Bu ‖2V ′
‖ u ‖2V

= inf
u6=0

‖ R−1Bu ‖2V
‖ u ‖2V

= inf
(u,u)=1

(R−1Bu,R−1Bu).
(3.84)
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Next, using the standard Lagrange multiplier technique, we arrive at the
eigenvalue problem

Find u ∈ V, γ2 such that
(R−1Bu,R−1Bδu) = γ2(u, δu) ∀δu ∈ V
(u,u) = 1.

(3.85)

Finally, it is convenient to rewrite (3.85) as a system of two equations.
Introducing an auxiliary variable

ua = R−1Bu,(3.86)

we get

(R−1Bu, δua)− (ua, δua) = 0 ∀δua,(3.87)

(ua,R−1Bδu)− γ2(u, δu) = 0 ∀δu,(3.88)

or, recalling the definitions of operators B and R,

b(u, δua)− (ua, δua) = 0 ∀δua,(3.89)

b(δu,ua)− γ2(u, δu) = 0 ∀δu.(3.90)

Introducing a family of finite dimensional subspaces Vh of V , converging to
V as h→ 0, we formulate the usual Bubnov-Galerkin approximation of (3.78){

Find uh ∈ Vh such that
b(uh,vh) = `(vh) ∀vh ∈ Vh.

(3.91)

Repeating exactly the same steps as for the continuous problem, we can in-
troduce the discrete LBB constant γh which represents for the stability of the
discrete problem. It has been proved in [5] that, under approximate assump-
tions, the discrete LBB constant γh converges to its continuous counterpart γ,
as h→ 0. This motivated the study in [6] on the LBB constant for the acoustic
scattering and other related problems, in context of the spherical geometry.

3-2. Forced Vibrations of a Viscoelastic Hollow Sphere by the
Shell Theory

In the following we calculate the LBB constant for forced vibrations of a
viscoelastic hollow sphere by the shell theory. We shall focus on the depen-
dence of the LBB constant upon the wave number k and study the effect of
damping.
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Restricting ourselves to axisymmetric vibrations only, we describe the de-
formation of the shell with radial displacement Ur(θ) and transversial dis-
placement Uθ(θ) of the middle surface r = a, where r, θ, φ denote the usual
spherical coordinates.

Referring to [10] for details, we recall here only the formulas for the
sesquilinear form b and the inner product:

b((Ur, Uθ), (δUr, δUθ)) =
2πE∗t
1− ν∗2

∫ π

0

{(
∂Uθ
∂θ

+ Ur

)(
∂δŪθ
∂θ

+ δŪr

)
+(cot θUθ + Ur)(cot θδŪθ + δŪr)

+ν∗
(
∂Uθ
∂θ

+ Ur

)
(cot θδŪθ + δŪr)

+ν∗(cot θUθ + Ur)
(
∂δŪθ
∂θ

+ δŪr

)}
sin θdθ

+
2πE∗tβ2

1− ν∗2
∫ π

0

{(
∂Uθ
∂θ
− partial2Ur

∂θ2

)(
∂δŪθ
∂θ
− ∂2δŪr

∂θ2

)
(3.92) + cot2 θ

(
Uθ −

∂Ur
∂θ

)(
δŪθ −

∂δŪr
∂θ

)
+ν∗ cot θ

(
∂Uθ
∂θ
− ∂2Ur

∂θ2

)(
δŪθ −

∂δUr
∂θ

)
+ν∗ cot θ

(
Uθ −

∂Ur
∂θ

)(
∂δŪθ
∂θ
− ∂2δŪr

∂θ2

)}
sin θdθ

−2πω2ρsta
2
∫ π

0
(UrδŪr + UθδŪθ) sin θdθ

+
[
2πa2

∫ π

0
p(η)δŪr sin θdθ

]
,

((Ur, Uθ), (δUr, δUθ)) =
2πEt
1− ν2

∫ π

0

{(
∂Uθ
∂θ

+ Ur

)(
∂δŪθ
∂θ

+ δŪr

)
+(cot θUθ + Ur)(cot θδŪθ + δŪr)

+ν
(
∂Uθ
∂θ

+ Ur

)
(cot θδŪθ + δŪr)

(3.93) +ν(cot θUθ + Ur)
(
∂δUθ
∂θ

+ δŪr

)}
sin θdθ

+
2πEtβ2

1− ν2

∫ π

0

{(
∂Uθ
∂θ
− ∂2Ur

∂θ2

)(
∂δŪθ
∂θ
− ∂2δŪr

∂θ2

)
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+ cot2 θ

(
Uθ −

∂Ur
∂θ

)(
∂δŪr
∂θ

)
+ν cot θ

(
∂Uθ
∂θ
− ∂Uθ

∂θ
− ∂2Ur

∂θ2

)(
∂δŪr
∂θ

)
+ν cot θ

(
Uθ −

∂Ur
∂θ

)(
∂δŪθ
∂θ
− ∂2δŪr

∂θ2

)}
sin θdθ

+2πta2C

∫ π

0
(UrδŪr + UθδŪθ) sin θdθ.

(3.93)

The following notation has been used

• a : the radius of the middle surface of the shell,

• E, ν : the Young modulus and Poisson ratio for the elastic material,

• E∗, ν∗ : the corresponding viscoelastic moduli,

• t : the thickness of the shell,

• ω : the frequency,

• k : the wave number, k = ω
cw

,

• cw : sound speed in fluid,

• ρs : the density of the solid,

• ρw : the density of the fluid.

The terms in brackets [ ] correspond to the interaction with the fluid, and are
set to zero in the case of the shell vibrating in vacuo.

Although the choice of the inner product is, up to a certain extent, arbi-
trary, selecting the elastic energy seems to be rather natural. Constant C in
(3.93), however, controlling the mass contribution to the final norm, is cer-
tainly arbitrary and the final results will depend upon its choice. Here, we
adopt the first natural frequency of the system, i.e., C = ρsω

2
21 (ω21 is natural

frequency of the second mode in the first branch).
Problem (3.78) admits the usual spectral decomposition using the classical

representation

Ur(η) =
∞∑
n=0

UrnPn(η);(3.94)

Uθ(η) =
∞∑
n=1

Urn[−P 1
n(η)],(3.95)
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where Pn(η) and P 1
n(η) are Legendre polynomials and associated Legendre

functions, and η = cos θ.
Substituting (3.94)-(3.95) and related formulas for δUr and δUθ into

(3.92)-(3.93), we arrive at a sequence of modal eigenvalue problems of the
form [

−gn b∗n
b̄∗
T

n −γ2gn

] [
ua

u

]
= 0.(3.96)

Here, superscript ∗ refers to the viscoelasticity problem.
For n = 0,

(3.97) b∗0 = I∗0 +A∗2

[
−Ω∗

2 mn
ρsh

+ iΩ∗ ah
rn
ρsc∗p

]
,

(3.98) g0 = J0 +A1C,

(3.99) I∗0 = A∗2

[
2(1 + ν∗)− Ω∗

2
]
,

(3.100) J0 = A2 [2(1 + ν)] ,

where

A1 =
4πha2

2n+ 1
,(3.101)

(3.102) A2 =
4πρshc2

p

2n+ 1
,

(3.103) A∗2 =
4πρshc∗

2

p

2n+ 1
.

For n > 0,

(3.104) b∗n =I∗n +A∗2

[
−Ω∗

2 mn
ρsh

+ iΩ∗ ah
rn
ρsc∗p

0
0 0

]
,

(3.105) gn =Jn +A1C

[
1 0
0 κn

]
,

(3.106) I∗n =A∗2


−Ω∗

2
+ 2(1 + ν∗) κn[β2(ν∗ + κn − 1) + (1 + ν∗)]

+β2κn(ν∗ + κn − 1)

κnβ
2(ν∗ + κn − 1) κn[−Ω∗

2
+ (1 + β2)(ν∗ + κn − 1)]

+(1 + ν∗)

 ,

(3.107) Jn=A2

[
2(1 + ν) + β2κn(ν + κn − 1) κn[β2(ν + κn − 1) + (1 + ν)]

κnβ
2(ν + κn − 1) + (1 + ν) κn(1 + β2)(ν + κn − 1)

]
,
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with bn corresponding to the forced vibrations in vacuum or in water, Jn
corresponding to the elastic strain energy in vacuum.

The following notation has been used

• κn = n(n+ 1),

• η = cos θ,

• Ω : dimensionless frequency of the elastic shell,

Ω =
wa

cp
=

(
c

cp

)
ka,(3.108)

• Ω∗ : dimensionless frequency of the viscoelastic shell,

Ω∗ =
wa

c∗p
=

(
c

c∗p

)
ka,(3.109)

• cw : wave velocity in water,

• cp : the low frequency phase velocity of compressional waves in an elastic
plate,

• c∗p : the low frequency phase velocity of compressional waves in a vis-
coelastic plate.

The final LBB constant γ is equal to the infimum (minimum as a matter of
fact) of the modal eigenvalues.

3-3. Forced Vibrations of a Viscoelastic Hollow Sphere by the 3-D
Theory

We begin by recalling the formula for the sesquilinear form corresponding
to the standard variational formulation

b(u, δu) =
∫
V
σ∗ij(u)εij(δū)dV − ρsω2

∫
V
u · δūdV

+
[
2πr2

o

∫ π

0
p(cos θ)δūr sin θdθ

]
.

(3.110)

Here, the term in the bracket is equal to zero for forced vibrations in vacuum.

As for the formulation based on the shell theory, we select the following
inner product

(u, δu) =
∫
V
σij(u)εij(δū)dV + C

∫
V
u · δūdV,(3.111)
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where the first term corresponds to the elastic energy and the mass term is
scaled with constant C equal to ρsω2

min (ωmin is the smallest positive eigenfre-
quency).

As in the previous case, the main idea consists of using the spectral de-
composition to reduce the calculation of the LBB constant to a sequence of
finite-dimensional modal eigenvalue problems. Formally one represents fields
u and v as sums of infinite series involving spectral components given by for-
mulas (3.94)-(3.95) and uses the L2-orthogonality of the Legendre polynomials
on the unit circle. As the displacement field u satisfies the Navier equations,
it is convenient to convert the volume integral in the sesquilinear form into
two surface integrals on the outer sphere So and the inner sphere Si

b(u, δu) =
∫
So

[σ∗rrδūr + σ∗rθδūθ] dSo

−
∫
Si

[σ∗rrδūr + σ∗rθδūθ] dSi

+
[
2πr2

o

∫ π

0
p(cos θ)δūr sin θdθ

]
.

(3.112)

Substituting now formulas (2.8), (2.11), (2.28), and (2.29) for the stresses
σrr, σrθ and the displacements δur, δuθ, one can arrive at modal eigenvalue
problems involving 4 constants for n = 0 (An and Cn for both original and
adjoint variables) and 8 constants for n > 0 (An, Bn, Cn, Dn for both original
and adjoint variables). Each of the equations is obtained by setting one out
of four constants in the formulas for δur, δuθ to one and the remaining ones
to zero at the inner and outer boundary for the test functions and the values
of stresses.

From the point of view of the following analysis for multi-layered shells, it
is more convenient to identify as new degrees of freedom values of r-dependent
factors in the formulas for ur and uθ, at the inner and outer surfaces

1
r

[
U

(i)
1 (α∗r) + U

(i)
3 (β∗r)

]
, r = ri, ro,(3.113)

1
r

[
V

(i)
1 (α∗r) + V

(i)
3 (β∗r)

]
, r = ri, ro.(3.114)

We shall denote the corresponding vector of four degrees of freedom by u. Note
that for n = 0, the new variables include only the first of the two quantities
defined in (3.113). The final sequence of the modal eigenproblems takes the
form [

−gn b∗n
b̄∗
T

n −γ2gn

] [
ua

u

]
= 0.(3.115)
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For n = 0,

(3.116) b∗0 = S∗0Q
∗−1
0 ,

(3.117) g0 = S0Q
−1
0 + (ρsω2 + C)V 0,

(3.118) S∗0 = c∗0

[
−T (1)

11 (α∗ri) −T (2)
11 (α∗ri)

T
(1)
11 (α∗ro) T

(2)
11 (α∗ro)

]

+d0

[
0 0

U
(1)
1 (α∗ro) U

(2)
1 (α∗ro)

]
,

(3.119) d0 =

{
0 in vacuum;

− r0
2µ iωz0 in water,

(3.120) S0 = c0

[
−T (1)

11 (αri) −T (2)
11 (αri)

T
(1)
11 (αro) T

(2)
11 (αro)

]
,

(3.121) V 0 = Q−T0 W 0Q
−1
0 ,

(3.122) Q∗0 =

[
U

(1)
1 (α∗ri)/ri U

(2)
1 (α∗ri)/ri

U
(1)
1 (α∗ro)/ro U

(2)
1 (α∗ro)/ro

]
,

(3.123) Q0 =

[
U

(1)
1 (αri)/ri U

(2)
1 (αri)/ri

U
(1)
1 (αro)/ro U

(2)
1 (αro)/ro

]
,

(3.124) W 0 = 4π
∫ ro

ri

[
χT1 χ1

]
dr,

(3.125) χ1 =
[
U

(1)
1 (αr) U

(2)
1 (αr)

]
,

with
c∗0 = 8πµ∗,(3.126)

c0 = 8πµ,(3.127)

and T
(1)
11 , T (2)

11 , U (1)
1 and U

(2)
1 are given by (2.13) and (2.31).

For n > 0,

(3.128) b∗n = S∗nQ
∗−1
n ,

(3.129) gn = SnQ
−1
n + (ρsω2 + C)V n,
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(3.130) S∗n = c∗n


−T (1)

11 (α∗ri) −T (1)
13 (β∗ri) −T (2)

11 (α∗ri) −T (2)
13 (β∗ri)

−κnT (1)
41 (α∗ri) −κnT (1)

43 (β∗ri) −κnT (2)
41 (α∗ri) −κnT (2)

43 (β∗ri)
T

(1)
11 (α∗ro) T

(1)
13 (β∗ro) T

(2)
11 (α∗ro) T

(2)
13 (β∗ro)

κnT
(1)
41 (α∗ro) κnT

(1)
43 (β∗ro) κnT

(2)
41 (α∗ro) κnT

(2)
43 (β∗ro)



+dn


0 0 0 0
0 0 0 0

U
(1)
1 (α∗ro) U

(1)
3 (β∗ro) U

(2)
1 (α∗ro) U

(2)
3 (β∗ro)

0 0 0 0

 ,
(3.131) dn =

{
0 in vacuum;

− r0
2µ iωzn in water,

(3.132) Sn = cn


−T (1)

11 (αri) −T (1)
13 (βri) −T (2)

11 (αri) −T (2)
13 (βri)

−κnT (1)
41 (αri) −κnT (1)

43 (βri) −κnT (2)
41 (αri) −κnT (2)

43 (βri)
T

(1)
11 (αro) T

(1)
13 (βro) T

(2)
11 (αro) T

(2)
13 (βro)

κnT
(1)
41 (αro) κnT

(1)
43 (βro) κnT

(2)
41 (αro) κnT

(2)
43 (βro)

 ,
(3.133) V n=Q−Tn W nQ

−1
n ,

(3.134) Q∗n =


U

(1)
1 (α∗ri)/ri U

(1)
3 (β∗ri)/ri U

(2)
1 (α∗ri)/ri U

(2)
3 (β∗ri)/ri

V
(1)
1 (α∗ri)/ri V

(1)
3 (β∗ri)/ri V

(2)
1 (α∗ri)/ri V

(2)
3 (β∗ri)/ri

U
(1)
1 (α∗ro)/ro U

(1)
3 (β∗ro)/ro U

(2)
1 (α∗ro)/ro U

(2)
3 (β∗ro)/ro

V
(1)
1 (α∗ro)/ro V

(1)
3 (β∗ro)/ro V

(2)
1 (α∗ro)/ro V

(2)
3 (β∗ro)/ro

 ,

(3.135) Qn =


U

(1)
1 (αri)/ri U

(1)
3 (βri)/ri U

(2)
1 (αri)/ri U

(2)
3 (βri)/ri

V
(1)
1 (αri)/ri V

(1)
3 (βri)/ri V

(2)
1 (αri)/ri V

(2)
3 (βri)/ri

U
(1)
1 (αro)/ro U

(1)
3 (βro)/ro U

(2)
1 (αro)/ro U

(2)
3 (βro)/ro

V
(1)
1 (αro)/ro V

(1)
3 (βro)/ro V

(2)
1 (αro)/ro V

(2)
3 (βro)/ro

 ,
(3.136) W n=

4π
2n+ 1

∫ ro

ri

[
χT

1 χ1 + κnχ
T
2 χ2

]
dr,

(3.137) χ1 =
[
U

(1)
1 (αr) U

(1)
3 (βr) U

(2)
1 (αr) U

(2)
3 (βr)

]
,

(3.138) χ2 =
[
V

(1)
1 (αr) V

(1)
3 (βr) V

(2)
1 (αr) V

(2)
3 (βr)

]
,

with

c∗n =
8πµ∗

2n+ 1
,(3.139)

cn =
8πµ

2n+ 1
,(3.140)

and T
(i)
11 , T (i)

13 , T (i)
41 , T (i)

43 , U (i)
1 , U

(i)
3 , V (i)

1 and V
(i)

3 are given by (2.13), (2.14),
(2.23), (2.24) and (2.31)-(2.34).
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Remark: In all reported numerical experiments, integrals in matrices W n

are evaluated numerically using Romberg’s method. The AMOS portable
package [2] is used to evaluate Bessel’s functions of complex argument.

3-4. Forced Vibrations of a Multilayered Viscoelastic Hollow Sphere

We assume that the shell is composed of M viscoelastic layers bounded by
spheres with radii

r1 < r2 < . . . < rM < rM+1(3.141)

and the displacements are continuous at all interfaces. The sesquilinear form
is now obtained by summing up the contributions corresponding to the layers

b(u, δu) =
M∑
m=1

∫
Vm

σ∗ij(u|Vm)εij(δū|Vm)dVm − ρ(m)
s ω2

∫
Vm

u|Vm · δū|VmdVm

+
[
2πr2

M+1

∫ π

0
p(cos θ)δūr|r=rM+1 sin θdθ

]
.

(3.142)

Here Vm denotes the mth layer, u|Vm is the restriction of the displacement field
u to the layer Vm and index m indicates correspondence to the mth layer. As
previously, the term in brackets corresponds to the interaction with the fluid.
Taking advantage of the fact that the displacement field (2.1)-(2.3) satisfies
the Navier equations, we obtain

b(u, δu) =
M∑
m=1

{∫
Sm+1

(σ∗rrδūr + σ∗rθδūθ)dSm+1 −
∫
Sm

(σ∗rrδūr + σ∗rθδūθ)dSm

}

+
[
2πr2

M+1

∫ π

0
p(cos θ)δūr|r=rM+1 sin θdθ

]
.

(3.143)

Following the spectral analysis for a single layer shell from the previous sec-
tion, each of the terms within the curly braces can be represented in terms
of new “nodal” unknowns identified as values of factors (3.113)-(3.114) at
r = rm, rm+1 and corresponding to the same values of the test functions. Con-
sequently, identifying values of factors (3.113)-(3.114) at r = r1, . . . , rM+1 as
the vector of unknowns u, one can assemble the corresponding modal matrix
in the same way as it is done in the usual FE discretization of 1-D problems.
The same assembly procedure will apply to the inner product.

Symbolically writing, the nth modal eigenvalue problem has the same form
as before with matrices defined as

(3.144) b∗n = AssemblyMm=1b
(m)∗
n ,

(3.145) gn = AssemblyMm=1g
(m)
n ,
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where b(m)∗
n and g

(m)
n correspond to layer Vn, and the unknowns at r =

rm, rm+1. As before, for n = 0, the number of unknowns is decreased by
half.

4. Numerical Results

4-1. Forced Vibrations of a Thin Hollow Sphere by the Kirchhoff-
Love Shell Theory

All tests involving the hollow spherical shell were run with the following
data:

Water density ρw = 1000 kg/m3

Steel density ρs = 7800 kg/m3

Sound speed in water cw = 1524 m/sec
Elastic Young′s modulus E = 2.1× 1011 N/m2

Fictitious Young′s modulus E∗ = 2.1× 1011 × (1− ηi) N/m2
, (Kelvin′s model)

Loss factor η = 0, 5× 10−3ka
Poisson Ratio ν = 0.3
Fictitious Poisson Ratio ν∗ = 0.3
Midsurface radius a = 1 m
Thickness of the shell t = 0.01 m
Constant for the chosen norm C = ρsω

2
21 = 1.1× 1011.

A quantitative study to indicate the effect of damping on the LBB constant
is summarized in Figs. 1-4. The results are clear. As expected, increasing
the loss factor results in an increase of the LBB constant and therefore the
overall stability of the problem, both in vacuo and in water. We emphasize
the quantitative character of presented results, as the “real” loss factor η is
a function of frequency ω and it depends upon the choice of the viscoelastic
constitutive law.

4-2. Forced Vibrations of a Thin Hollow Sphere by the 3-D Theory

In order to compare the 3-D theory with the Kirchhoff-Love model, the
same case was studied using the 3-D results. Due to the instability in evalua-
tion of Bessel’s functions for small ka, the wave number range was restricted to
0.03 < ka < 10 in this study. Practically speaking, the results summarized in
Figs. 5-8 are indistinguishable from the ones obtained using the shell theory.

In order to verify and illustrate the theoretical investigations, the classical
problem of scattering of a plane wave on a viscoelastic hollow sphere was
solved. Two cases were considered:
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Fig. 1 Vibrations of a thin spherical shell in vacuum by the shell theory.

The pointwise infimum of the curves shown represents dependence of LBB
constant γ upon the wave number k for the case η = 0%.

Fig. 2 Vibrations of a thin spherical shell in vacuum by the shell theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 5× 10−3ka.

Fig. 3 Vibrations of a thin spherical shell in water by the shell theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 0%.

Fig. 4 Vibrations of a thin spherical shell in water by the shell theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 5× 10−3ka.
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Fig 5. Vibrations of a thin spherical shell in vacuum by the 3-D theory.

The pointwise infimum of the curves shown represents dependence of LBB
constant γ upon the wave number k for the case η = 0%.

Fig 6. Vibrations of a thin spherical shell in vacuum by the 3-D theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 5× 10−3ka.

Fig. 7 Vibrations of a thin spherical shell in water by the 3-D theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 0%.

Fig. 8 Vibrations of a thin spherical shell in water by the 3-D theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 5× 10−3ka.
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• k = 1.56 (near the first local minimum of LBB constants for mode 4,
γ = 7.9× 10−2, see Fig. 8)

• k = 1.66237 (the first local minimum of LBB constants for mode 4,
γ = 5.7× 10−3, see Fig. 8).

With the same physical data as in the previous section, the problem was solved
using a BE/FE approximation based on the Burton-Miller integral equation
coupled with the standard 3-D viscoelasticity formulation. For all numerical
details we refer to [7]. Figs. 9-12 display the real part of the pressure along a
cross section of the sphere compared with the 3-D exact pressure distribution
derived in Section 2. Four uniform meshes of 8 × m2 quadratic triangular
elements, with m = 1, 2, 4, 6 were used. A stable convergence can be observed.
The next four Figs. 13-16 illustrate the same experiment for the second value
of wave number k. The effect of one order of magnitude smaller value of the
LBB constant γ is clearly visible, as the approximation becomes unstable and
the method does not converge. All calculations have been carried out on a
DEC 3000 workstation.

4-3. Forced Vibrations of a Thick Hollow Sphere by the 3-D Theory

The calculations described in Section 4.2 were repeated for a thick sphere
with thickness t = 0.1 m (all other data remained the same). The results are
summarized in Figs. 17-20. The effect of the increased thickness on spreading
the resonant wave numbers is clearly visible.

Fig. 9 Acoustic scattering of a plane wave on a viscoelastic hollow sphere for
k = 1.56, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 1.

Fig. 10 Acoustic scattering of a plane wave on a viscoelastic hollow sphere
for k = 1.56, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 2.
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Fig. 11 Acoustic scattering of a plane wave on a viscoelastic hollow sphere

for k = 1.56, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 4.

Fig. 12 Acoustic scattering of a plane wave on a viscoelastic hollow sphere
for k = 1.56, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 6.

Fig. 13 Acoustic scattering of a plane wave on a viscoelastic hollow sphere for
k = 1.66237, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 1.

Fig. 14 Acoustic scattering of a plane wave on a viscoelastic hollow sphere for
k = 1.66237, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 2.
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Fig. 15 Acoustic scattering of a plane wave on a viscoelastic hollow sphere for

k = 1.66237, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 4.

Fig. 16 Acoustic scattering of a plane wave on a viscoelastic hollow sphere for
k = 1.66237, comparison of the exact and approximate solutions on a uniform
mesh of quadratic elements with m = 6.

Fig. 17 Vibrations of a thick spherical shell in vacuum by the 3-D theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 0%.

Fig. 18 Vibrations of a thick spherical shell in vacuum by the 3-D theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 5× 10−3ka.
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Fig. 19 Vibrations of a thick spherical shell in water by the 3-D theory.

The pointwise infimum of the curves shown represents dependence of LBB
constant γ upon the wave number k for the case η = 0%.

Fig. 20 Vibrations of a thick spherical shell in water by the 3-D theory. The
pointwise infimum of the curves shown represents dependence of LBB constant
γ upon the wave number k for the case η = 5× 10−3ka.

4-4. Forced Vibrations of a Rubber-Coated Steel Shell
Finally, we investigate the effect of damping on the LBB constant for the

forced vibrations of a silicon rubber-coated spherical steel shell. The data used
in the simulation are as follows [1, 9]:

Water density ρw = 1000 kg/m3

Sound speed in water cw = 1524 m/sec
Steel density ρs = 7800 kg/m3

Steel elastic Young′s modulus Es = 2.1× 1011 N/m2

Steel Poisson Ratio νs = 0.3
Rubber density ρb = 1020 kg/m3

Rubber elastic Lame′s modulus λe = 1.19× 109 N/m2

µe = 4.40× 106 N/m2

Rubber viscous Lame′s modulus λv = 6.3× 106/ω N/m2

µv = 1.49× 10−1 N/m2

Inner radius r1 = 0.995 m
Middle radius r2 = 1.005 m
Outer radius r3 = 1.010 m
Constant for the chosen norm C = 1.1× 1011
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Fig. 21 Vibrations of a coated thin spherical shell in vacuum by the 3-D

theory. The pointwise infimum of the curves shown represents dependence of
LBB constant γ upon the wave number k for the case r3 = 1.010 m.

Fig. 22 Vibrations of a coated thin spherical shell in water by the 3-D theory.
The pointwise infimum of the curves shown represents dependence of LBB
constant γ upon the wave number k for the case r3 = 1.010 m.

Here, Kelvin’s model for rubber has been used

λ∗ = λe − iωλv,(4.146)

µ∗ = µe − iωµv.(4.147)

Figs. 21-22 show the effect of the coating thickness on the LBB constants. It
is very clear that, compared with Fig. 5 and Fig. 7, coating does not improve
the stability.
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