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INTEGRABILITY, MEAN CONVERGENCE,
AND PARSEVAL’S FORMULA

FOR DOUBLE TRIGONOMETRIC SERIES

Chang-Pao Chen and Chin-Cheng Lin

Abstract. Consider the double trigonometric series whose coefficients
satisfy conditions of bounded variation of order (p, 0), (0, p), and (p, p)
with the weight (|j| |k|)p−1 for some p > 1. The following properties con-
cerning the rectangular partial sums of this series are obtained: (a) reg-
ular convergence; (b) uniform convergence; (c) weighted Lr-integrability
and weighted Lr-convergence; and (d) Parseval’s formula. Our results
generalize Bary [1, p. 656], Boas [2, 3], Chen [6, 7], Kolmogorov [9],
Marzug [10], Móricz [11, 12, 13, 14], Ul’janov [15], Young [16], and Zyg-
mund [17, p. 4].

0. Introduction

Let {cjk : j, k ∈ Z} be a double sequence of complex numbers satisfying
the following conditions for some p ∈ IN :

|cjk| (|j| |k|)p−1 −→ 0 as max{|j|, |k|} → ∞,(0.1)

lim
|k|→∞

∞∑
j=−∞

|∆p0cjk| (|j| |k|)p−1 = 0,(0.2)

lim
|j|→∞

∞∑
k=−∞

|∆0pcjk| (|j| |k|)p−1 = 0,(0.3)
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∞∑
j=−∞

∞∑
k=−∞

|∆ppcjk| (|j| |k|)p−1 <∞,(0.4)

where ξ̄ ≡ max{ξ, 1} and the finite-order differences ∆pqcjk are defined by

∆00cjk = cjk;

∆pqcjk = ∆p−1,qcjk −∆p−1,qcj+1,k (p ≥ 1);

∆pqcjk = ∆p,q−1cjk −∆p,q−1cj,k+1 (q ≥ 1).

Conditions (0.2)− (0.4) are known as conditions of bounded variation of order
(p, 0), (0, p), and (p, p) with the weight (|j| |k|)p−1, respectively. They general-
ize the concept of monotone sequences. Any double sequence {cjk} satisfying
(0.4) with p = 2 is called a quasiconvex sequence (cf. [4, 9, 12]). For p = 1,
conditions (0.2) and (0.3) can be derived from (0.1) and (0.4). Moreover, (0.1)
and (0.4) reduce to

cjk −→ 0 as max{|j|, |k|} −→ ∞,(0.1*)

and

∞∑
j=−∞

∞∑
k=−∞

|∆11cjk| <∞.(0.4*)

Let T = [−π, π] and denote by smn(x, y) the rectangular partial sums of
the double trigonometric series

∞∑
j=−∞

∞∑
k=−∞

cjk e
i(jx+ky) (x, y ∈ T);(0.5)

that is,

smn(x, y) =
∑
|j|≤m

∑
|k|≤n

cjk e
i(jx+ky).

We say that the series (0.5) converges in Pringsheim’s sense to f(x, y) if
smn(x, y) → f(x, y) as min{m,n} → ∞. In addition, if the row series∑∞
j=−∞ cjke

i(jx+ky) converges for each fixed value of k, and the column series∑∞
k=−∞ cjke

i(jx+ky) converges for each fixed value of j, then series (0.5) is said
to converge regularly to f(x, y) (cf. [8]). For E ⊆ T2, the series (0.5) is said to
converge uniformly on E to f(x, y) if smn(x, y) → f(x, y) uniformly on E as
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min{m,n} → ∞. Set

‖f‖r,φ =
(∫ π

−π

∫ π

−π
|f(x, y)|r|φ(x, y)| dxdy

)1/r

,

‖f(·, y)‖r,φ =
(∫ π

−π
|f(x, y)|r|φ(x, y)| dx

)1/r

,

‖f(x, ·)‖r,φ =
(∫ π

−π
|f(x, y)|r|φ(x, y)| dy

)1/r

.

It is well known that ‖f‖r,φ, ‖f(·, y)‖r,φ, and ‖f(x, ·)‖r,φ define norms for r ≥ 1,
while ‖f‖rr,φ, ‖f(·, y)‖rr,φ, and ‖f(x, ·)‖rr,φ induce metrics for 0 < r < 1.

The purpose of this paper is to investigate the validity of the following
statements for suitable r and φ:

(0.6) smn(x, y) converges uniformly to f(x, y) on {α ≤ |x| ≤ π} × {β ≤ |y| ≤
π} for all 0 < α, β ≤ π;

(0.7) smn(x, y) converges regularly to f(x, y) on (T \ {0})2;

(0.8) |f(x, y)|rφ(x, y) ∈ L1(T2);

(0.9)
∫ π

−π

∫ π

−π
|smn(x, y)− f(x, y)|r|φ(x, y)| dxdy −→ 0

as min{m,n} → ∞;

(0.10) lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy = (4π2)
∞∑

j=−∞

∞∑
k=−∞

cjk φ̂
∗(−j,−k),

where
φ̂∗(j, k) = lim

ε,δ↓0

1
4π2

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

φ(x, y)e−i(jx+ky) dxdy.

Formula (0.10) is known as Parseval’s formula. The definition for φ̂∗(j, k) is
a generalization of the Fourier coefficient φ̂(j, k). These problems have been
investigated by Bary [1], Boas [2, 3], Kolmogorov [9], Ul’janov [15], Young
[16], Zygmund [17] for one-dimensional case, and by Chen [4, 5, 6], Marzug
[10], Móricz [11, 12, 13, 14] for higher dimensions. All of them discussed the
case of p = 1 or p = 2 only. Our goal in this paper is to extend the above
results from p = 1 to general cases. A detailed argument on these problems
will be given in the next five sections. Throughout this paper C, Cp, and Cpr
denote constants, which are not necessarily the same at each occurrence.
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1. The Family {Ψk
j (t)}

Let Ψ0
0+(t) = Ψ0

0−(t) = 1
2 , Ψ0

j(t) = eijt for j ≥ 1, and Ψ0
−j(t) = Ψ0

j(−t) =
e−ijt for j ≥ 1. Denote by {Ψk

j (t)} the Cesàro sums of order k of the sequence
{Ψ0

j(t)} (cf. [17] for this terminology). By this we mean

Ψk
j (t) =

j∑
s=0+

Ψk−1
s (t) (k ≥ 1, j ≥ 0+),

Ψk
−j(t) =

j∑
s=0+

Ψk−1
−s (t) (k ≥ 1, j ≥ 0+).

Here −0+ ≡ 0−. Obviously, Ψk
−j(t) = Ψk

j (−t) for all k ≥ 0 and all j ≥ 0+. As
given in [6], we introduce the following finite-order differences

∆∗00cjk = cjk;

∆∗pqcjk = ∆∗p−1,qcjk −∆∗p−1,qcτ(j),k (p ≥ 1);

∆∗pqcjk = ∆∗p,q−1cjk −∆∗p,q−1cj,τ(k) (q ≥ 1).

Here c0+,k = c0−,k = c0k and cj,0+ = cj,0− = cj0. The function τ(j) is defined
by τ(0+) = 1, τ(0−) = −1, τ(j) = j+ 1 for j ≥ 1, and τ(j) = j− 1 for j ≤ −1.
After applying a double summation by parts, we obtain

smn(x, y) =
m∑

|j|=0+

n∑
|k|=0+

(∆∗ppcjk)Ψ
p
j (x)Ψp

k(y)

+
p−1∑
t=0

m∑
|j|=0+

∑
|k|=n

(∆∗ptcj,τ(k))Ψ
p
j (x)Ψt+1

k (y)

+
p−1∑
s=0

∑
|j|=m

n∑
|k|=0+

(∆∗spcτ(j),k)Ψs+1
j (x)Ψp

k(y)

+
p−1∑
s=0

p−1∑
t=0

∑
|j|=m

∑
|k|=n

(∆∗stcτ(j),τ(k))Ψs+1
j (x)Ψt+1

k (y),

(1.1)

where m,n > 0, x, y ∈ T, and
∑m
|j|=0+ ≡

∑
0+≤j≤m +

∑
−m≤j≤0− . It is impor-

tant to get an estimate of |Ψk
j (t)| and an upper bound for ‖Ψk

j‖r,φ. For the
latter, we introduce the concept of pairs of type Ir below. We say that (φ, θ)
is a pair of type Ir if there is an absolute constant C such that

ρ

(∫
|t|≤π/ρ

|φ(t)| dt
)1/r

+
(∫

π/ρ≤|t|≤π

|φ(t)|
|t|r

dt

)1/r

≤ Cθ(ρ) for all ρ ≥ 1.

This generalizes the concept of pairs of type I given in [6]. The main result of
this section reads as follows.



Double Trigonometric Series 195

Theorem 1.1.

( i ) For all t ∈ T, all j, and all k ≥ 1,

|Ψk
j (t)| ≤ 2k(k+1)/2π ·min{(|j|)k, (|j|)k−1|t|−1}.

(ii) Let p ≥ 1, 0 < r <∞, and (φ, θ) be of type Ir. Then(∫ π

−π
|Ψk

j (t)|r|φ(t)| dt
)1/r

≤ Cpr (|j|)p−1θ(|j|)

for all j and all 0 ≤ k ≤ p.

Proof. An elementary calculation gives

|Ψ1
j(t)| ≤ min{|j|+ 1/2, π/|t|}.

This proves (i) for k = 1. For j ≥ 0+, we have

|Ψk+1
j (t)| ≤

j∑
s=0+

|Ψk
s(t)| and |Ψk+1

−j (t)| ≤
j∑

s=0+

|Ψk
−s(t)|.

By induction on k, we get (i). As for (ii), it follows from (i) that

|Ψk
j (t)| ≤ 2p(p+1)/2π ·min{(|j|)p, (|j|)p−1|t|−1}

for all t ∈ T, all j, and all 0 ≤ k ≤ p. Let ρ = |j|. We obtain(∫ π

−π
|Ψk

j (t)|r|φ(t)| dt
)1/r

≤ 2p(p+1)/2+1/rπ

{
(|j|)p

(∫
|t|≤π/ρ

|φ(t)| dt
)1/r

+(|j|)p−1
(∫

π/ρ≤|t|≤π

|φ(t)|
|t|r

dt

)1/r
}

≤ Cpr (|j|)p−1θ(|j|).

2. Convergence for φ(x, y) = O(|xy|r−1+ε)

The following theorem confirms (0.6)−(0.9) for the case that φ(x, y)/|xy|r ∈
L1(T2), where r > 0. In particular, it will apply to the case that φ(x, y) =
O(|xy|σ), where σ > r − 1. Our result for σ = 0 generalizes [11], [15], and
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[17, p. 4]. Since any quasiconvex null-sequence is of bounded variation, the
following result also includes [9] as a special case.

Theorem 2.1. Assume that conditions (0.1)− (0.4) are satisfied for some
p ≥ 1. Then series (0.5) converges regularly to some measurable function
f(x, y) for all x, y ∈ T \ {0}, and the convergence is uniform on the rectangle
{α ≤ |x| ≤ π, β ≤ |y| ≤ π} for all 0 < α, β ≤ π. In addition, let r > 0 and
x0, y0 ∈ T \ {0}.

( i ) If φ(x, y0)/|x|r ∈ L1(T), then |f(x, y0)|rφ(x, y0) ∈ L1(T) and

‖smn(·, y0)− f(·, y0)‖r,φ → 0 as min{m,n} → ∞.

(ii) If φ(x0, y)/|y|r ∈ L1(T), then |f(x0, y)|rφ(x0, y) ∈ L1(T) and

‖smn(x0, ·)− f(x0, ·)‖r,φ → 0 as min{m,n} → ∞.

(iii) If φ(x, y)/|xy|r ∈ L1(T2), then |f(x, y)|rφ(x, y) ∈ L1(T2) and

‖smn − f‖r,φ → 0 as min{m,n} → ∞.

Moreover, the conclusions (i)−(iii) still hold provided the corresponding L1(T)
and L1(T2) are replaced by C(T) and C(T2).

Proof. By Theorem 1.1 (i), we get the following estimates:

m∑
|j|=0+

n∑
|k|=0+

|(∆∗ppcjk)Ψ
p
j (x)Ψp

k(y)|

≤ Cp

 m∑
|j|=0+

n∑
|k|=0+

|∆∗ppcjk| (|j| |k|)p−1

 |xy|−1

(2.1)

and

p−1∑
t=0

m∑
|j|=0+

∑
|k|=n

|(∆∗ptcj,τ(k))Ψ
p
j (x)Ψt+1

k (y)|

≤ Cp
p−1∑
t=0

t∑
v=0

(
t

v

) m∑
|j|=0+

∑
|k|=n+v+1

|∆∗p0cjk| (|j| |k|)p−1

 |xy|−1

≤ Cp

sup|k|>n
m∑

|j|=0+

|∆∗p0cjk| (|j| |k|)p−1

 |xy|−1.

(2.2)

Similarly, we have
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p−1∑
s=0

∑
|j|=m

n∑
|k|=0+

|(∆∗spcτ(j),k)Ψs+1
j (x)Ψp

k(y)|

≤ Cp

sup|j|>m
n∑

|k|=0+

|∆∗0pcjk| (|j| |k|)p−1

 |xy|−1

(2.3)

and

p−1∑
s=0

p−1∑
t=0

∑
|j|=m

∑
|k|=n

|(∆∗stcτ(j),τ(k))Ψs+1
j (x)Ψt+1

k (y)|

≤ Cp
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

) ∑
|j|=m+u+1

∑
|k|=n+v+1

|∆∗00cjk|

×(|j| |k|)p−1|xy|−1

≤ Cp
(

sup|j|>m,|k|>n |cjk| (|j| |k|)p−1
)
|xy|−1.

(2.4)

Obviously, conditions (0.2)− (0.4) are equivalent to

lim
|k|→∞

∞∑
|j|=0+

|∆∗p0cjk| (|j| |k|)p−1 = 0,(2.5)

lim
|j|→∞

∞∑
|k|=0+

|∆∗0pcjk| (|j| |k|)p−1 = 0,(2.6)

∞∑
|j|=0+

∞∑
|k|=0+

|∆∗ppcjk| (|j| |k|)p−1 <∞.(2.7)

Putting these with (0.1), (1.1), (2.1) − (2.4) together, we infer that smn(x, y)
converges to some measurable function f(x, y) for x, y ∈ T \ {0}, and the
convergence is uniform on the rectangle {α ≤ |x| ≤ π, β ≤ |y| ≤ π} for all
0 < α, β ≤ π. Moreover,

f(x, y) =
∞∑

|j|=0+

∞∑
|k|=0+

(∆∗ppcjk)Ψ
p
j (x)Ψp

k(y).(2.8)

A modified proof also shows that series (0.5) converges regularly to f(x, y)
for x, y ∈ T \ {0}. Assume that r > 0 and φ(x, y)/|xy|r ∈ L1(T2). Then, by
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(2.1), (2.7), and (2.8), we get∫ π

−π

∫ π

−π
|f(x, y)|r|φ(x, y)| dxdy

≤ Cp‖φ(x, y)/|xy|r‖1


∞∑

|j|=0+

∞∑
|k|=0+

|∆∗ppcjk| (|j| |k|)p−1


r

<∞.

This says that |f(x, y)|rφ(x, y) ∈ L1(T2). Set M = ‖φ(x, y)/|xy|r‖1 and Λmn ≡
{(j, k) ∈ Z × Z : |j| > m or |k| > n}. By (1.1), (2.1) − (2.4), and (2.8), we
infer that, for 0 < r < 1,

‖smn − f‖rr,φ

≤ CpM
{(∑

Λmn

|∆∗ppcjk| (|j| |k|)p−1

)r
+

(
sup
|k|>n

m∑
|j|=0+

|∆∗p0cjk| (|j| |k|)p−1

)r

+

(
sup|j|>m

n∑
|k|=0+

|∆∗0pcjk| (|j| |k|)p−1

)r
+

(
sup

|j|>m,|k|>n
|cjk| (|j| |k|)p−1

)r}
−→ 0 as min{m,n} → ∞,

and, for r ≥ 1,

‖smn − f‖r,φ

≤ CpM 1/r

∑
Λmn

|∆∗ppcjk| (|j| |k|)p−1 + sup
|k|>n

m∑
|j|=0+

|∆∗p0cjk| (|j| |k|)p−1

+ sup|j|>m
n∑

|k|=0+

|∆∗0pcjk| (|j| |k|)p−1 + sup
|j|>m,|k|>n

|cjk| (|j| |k|)p−1


−→ 0 as min{m,n} → ∞,

which proves (iii). For x, y ∈ T \ {0}, it follows from (2.8) that

xyf(x, y) =
∞∑

|j|=0+

∞∑
|k|=0+

(∆∗ppcjk)
(
xΨp

j (x)
)

(yΨp
k(y)) .

We have ‖(xΨp
j (x))(yΨp

k(y))‖∞ ≤ Cp(|j| |k|)p−1 for all j and k. By (2.7), we
find that xyf(x, y) ∈ C(T2). If φ(x, y)/|xy|r ∈ C(T2), then |f(x, y)|rφ(x, y) =
|xyf(x, y)|r (φ(x, y)/|xy|r) ∈ C(T2). The proofs of (i) and (ii) are similar, and
we leave them to the reader.
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Set φ1(x) = O(|x|σ), φ2(y) = O(|y|λ), and φ3(x, y) = O(|x|σ|y|λ), where
σ, λ > r − 1. Then φ1(x)/|x|r ∈ L1(T), φ2(y)/|y|r ∈ L1(T), and φ3(x, y)/|xy|r
∈ L1(T2). Thus, Theorem 2.1 can apply to this case.

Corollary 2.2. Assume that conditions (0.1) − (0.4) are satisfied for
some p ≥ 1.Then series (0.5) converges regularly to some measurable function
f(x, y) for all x, y ∈ T \ {0}, and the convergence is uniform on the rectangle
{α ≤ |x| ≤ π, β ≤ |y| ≤ π} for all 0 < α, β ≤ π. Moreover, let r > 0 and
σ, λ > r − 1. The following statements are true.

( i ) For all y ∈ T\{0}, |f(x, y)|r|x|σ ∈ L1(T) and ‖smn(·, y)−f(·, y)‖r,φ → 0
as min{m,n} → ∞, where φ(x, y) = O(|x|σ).

(ii) For all x ∈ T\{0}, |f(x, y)|r|y|λ ∈ L1(T) and ‖smn(x, ·)−f(x, ·)‖r,φ → 0
as min{m,n} → ∞, where φ(x, y) = O(|y|λ).

(iii) |f(x, y)|r|x|σ|y|λ ∈ L1(T2) and ‖smn − f‖r,φ −→ 0 as min{m,n} → ∞,
where φ(x, y) = O(|x|σ|y|λ).

Whenever σ, λ ≥ r, |f(x, y)|r|x|σ ∈ C(T) for all y ∈ T\{0}, |f(x, y)|r|y|λ ∈
C(T) for all x ∈ T\{0}, and |f(x, y)|r|x|σ|y|λ ∈ C(T2).

As indicated in [5, 6, 12], Corollary 2.2 may not hold for the case that
σ = λ = r − 1. For this case, consider φ1(x) = O(|x|r−1(log 1/|x|)−ε), φ2(y) =
O(|y|r−1(log 1/|y|)−δ), and φ3(x, y) = O(|xy|r−1(log 1/|x|)−ε(log 1/|y|)−δ),
where ε, δ > 1. We have φ1(x)/|x|r ∈ L1(T), φ2(y)/|y|r ∈ L1(T), and
φ3(x, y)/|xy|r ∈ L1(T2). Thus, we are led to the following result.

Corollary 2.3. Assume that conditions (0.1)−(0.4) are satisfied for some
p ≥ 1. Then series (0.5) converges regularly to some measurable function
f(x, y) for all x, y ∈ T \ {0}, and the convergence is uniform on {α ≤ |x| ≤
π, β ≤ |y| ≤ π} for all 0 < α, β ≤ π. Moreover, let r > 0 and ε, δ > 1. The
following statements are true.

( i ) For all y ∈ T \ {0}, |f(x, y)|r|x|r−1(log 1/|x|)−ε ∈ L1(T) and

‖smn(·, y)− f(·, y)‖r,φ → 0 as min{m,n} → ∞, where

φ(x, y) = O(|x|r−1(log 1/|x|)−ε).

(ii) For all x ∈ T \ {0}, |f(x, y)|r|y|r−1(log 1/|y|)−δ ∈ L1(T) and

‖smn(x, ·)− f(x, ·)‖r,φ → 0 as min{m,n} → ∞, where

φ(x, y) = O(|y|r−1(log 1/|y|)−δ).
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(iii) |f(x, y)|r|xy|r−1(log 1/|x|)−ε(log 1/|y|)−δ ∈ L1(T2) and

‖smn − f‖r,φ → 0 as min{m,n} → ∞, where

φ(x, y) = O(|xy|r−1(log 1/|x|)−ε(log 1/|y|)−δ).

3. Convergence for φ(x, y) = O(|xy|r−1−ε)

Theorem 2.1(iii) excludes the case φ(x, y) = |xy|σ, where σ ≤ r − 1. In
this section, we investigate the case. To do so, we shall assume the following
conditions, which are stronger than (0.1)− (0.4).

|cjk| (|j| |k|)p−1θ(|j|)ϑ(|k|) −→ 0 as max{|j|, |k|} → ∞,(0.1′)

lim
|k|→∞

∞∑
j=−∞

|∆p0cjk| (|j| |k|)p−1θ(|j|)ϑ(|k|) = 0,(0.2′)

lim
|j|→∞

∞∑
k=−∞

|∆0pcjk| (|j| |k|)p−1θ(|j|)ϑ(|k|) = 0,(0.3′)

∞∑
j=−∞

∞∑
k=−∞

|∆ppcjk| (|j| |k|)p−1θ(|j|)ϑ(|k|) <∞,(0.4′)

where θ and ϑ are two positive increasing functions defined on [1,∞). For
p = 1, conditions (0.2′) and (0.3′) can be derived from (0.1∗) and (0.4′), and
conditions (0.1∗) and (0.4′) together imply (0.1′). The main result of this
section is the following theorem, which extends [6, Theorem 1] from p = 1 to
general cases. As indicated in [6], our result also generalizes Boas [3], Marzug
[10], Móricz [12], and Young [16]. A detailed argument on these will be given
later.

Theorem 3.1. Assume that θ and ϑ are two positive increasing functions
defined on [1,∞) such that (0.1′) − (0.4′) are satisfied for some p ≥ 1. Then
series (0.5) converges regularly to some measurable function f(x, y) for all
x, y ∈ T \ {0}, and the convergence is uniform on the rectangle {α ≤ |x| ≤
π, β ≤ |y| ≤ π} for all 0 < α, β ≤ π. In addition, let r ≥ 1.

( i ) If (φ, θ) is of type Ir, then for all y ∈ T \ {0}, |f(x, y)|rφ(x) ∈ L1(T) and
‖smn(·, y)− f(·, y)‖r,φ → 0 as min{m,n} → ∞, where φ(x, y) = φ(x).

(ii) If (ψ, ϑ) is of type Ir, then for all x ∈ T\{0}, |f(x, y)|rψ(y) ∈ L1(T) and
‖smn(x, ·)− f(x, ·)‖r,φ → 0 as min{m,n} → ∞, where φ(x, y) = ψ(y).
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(iii) If (φ, θ) and (ψ, ϑ) are of type Ir, then |f(x, y)|rφ(x)ψ(y) ∈ L1(T2) and
‖smn − f‖r,φ → 0 as min{m,n} → ∞, where φ(x, y) = φ(x)ψ(y).

Proof. Since (0.1′)− (0.4′) imply (0.1)− (0.4), it follows from Theorem 2.1
that series (0.5) converges regularly to some measurable function f(x, y) for
all x, y ∈ T \ {0}, and the convergence is uniform on the rectangle {α ≤ |x| ≤
π, β ≤ |y| ≤ π} for all 0 < α, β ≤ π. Let r ≥ 1 and assume that (φ, θ) and
(ψ, ϑ) are of type Ir. Set

αkj =
(∫ π

−π
|Ψk

j (x)|r|φ(x)| dx
)1/r

, βkj =
(∫ π

−π
|Ψk

j (y)|r|ψ(y)| dy
)1/r

.

Then Theorem 1.1(ii) says that αkj ≤ Cpr|j|
p−1

θ(|j|) and βkj ≤ Cpr|j|
p−1

ϑ(|j|)
for all j and all 0 ≤ k ≤ p. By (0.4′), (2.8), Fatou’s lemma, and Minkowski’s
inequality, we infer that(∫ π

−π

∫ π

−π
|f(x, y)|r|φ(x)ψ(y)| dxdy

)1/r

≤ Cpr
{

lim infm→∞
m∑

|j|=0+

m∑
|k|=0+

|∆∗ppcjk|α
p
jβ

p
k

}

≤ Cpr
{ ∞∑
j=−∞

∞∑
k=−∞

|∆ppcjk| (|j| |k|)p−1 θ(|j|)ϑ(|k|)
}

<∞.

Let Λmn consist of all (j, k) with |j| > m or |k| > n. By (1.1), (2.8), and
(0.1′)− (0.4′), we get(∫ π

−π

∫ π

−π
|smn(x, y)− f(x, y)|r|φ(x)ψ(y)| dxdy

)1/r

≤ Cpr

{∑
Λmn

|∆∗ppcjk| (|j| |k|)p−1 θ(|j|)ϑ(|k|)

+
p−1∑
t=0

t∑
v=0

(
t

v

)( m∑
|j|=0+

∑
|k|=n+v+1

|∆∗p0cjk| (|j| |k|)p−1θ(|j|)ϑ(|k|)
)

+
p−1∑
s=0

s∑
u=0

(
s

u

)( ∑
|j|=m+u+1

n∑
|k|=0+

|∆∗0pcjk| (|j| |k|)p−1θ(|j|)ϑ(|k|)
)

+
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

) ∑
|j|=m+u+1

∑
|k|=n+v+1

|∆∗00cjk|

×(|j| |k|)p−1 θ(|j|)ϑ(|k|)
}
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≤ Cpr

{∑
Λmn

|∆∗ppcjk| (|j| |k|)p−1 θ(|j|)ϑ(|k|)

+2p
(

sup|k|>n
m∑

|j|=0+

|∆∗p0cjk| (|j| |k|)p−1 θ(|j|)ϑ(|k|)
)

+2p
(

sup|j|>m
n∑

|k|=0+

|∆∗0pcjk| (|j| |k|)p−1 θ(|j|)ϑ(|k|)
)

+22p
(

sup|j|>m,|k|>n |cjk| (|j| |k|)p−1 θ(|j|)ϑ(|k|)
)}

−→ 0 as min{m,n} → ∞.

This completes the proof of (iii). For (i) and (ii), we leave them to the reader.

We now go back to discuss applications of Theorem 3.1. By definition,
we find that if (φ, 1) is a pair of type Ir, then φ(t)/|t|r ∈ L1(T). Thus, the
case θ(ρ) = ϑ(ρ) = 1 has been dealt with in Theorem 2.1. If we consider
θ(ρ) = (log ρ)(1−ε)/r and ϑ(ρ) = (log ρ)(1−δ)/r with 0 ≤ ε, δ < 1, then conditions
(0.1′)− (0.4′) become

(0.1′′)

|cjk| (|j| |k|)p−1(log |j|)(1−ε)/r(log |k|)(1−δ)/r → 0 as max{|j|, |k|} → ∞,

lim
|k|→∞

∞∑
j=−∞

|∆p0cjk| (|j| |k|)p−1(log |j|)(1−ε)/r(log |k|)(1−δ)/r = 0,(0.2′′)

lim
|j|→∞

∞∑
k=−∞

|∆0pcjk| (|j| |k|)p−1(log |j|)(1−ε)/r(log |k|)(1−δ)/r = 0,(0.3′′)

∞∑
j=−∞

∞∑
k=−∞

|∆ppcjk| (|j| |k|)p−1(log |j|)(1−ε)/r(log |k|)(1−δ)/r <∞.(0.4′′)

Conditions (0.2′′) and (0.3′′) are not necessary for p = 1, and condition (0.1′′)
can be replaced by (0.1∗) for this case. An elementary calculation says that
(φ, θ) and (ψ, ϑ) are of type Ir, where φ(t) = O(|t|r−1(log 1/|t|)−ε) and ψ(t) =
O(|t|r−1(log 1/|t|)−δ). As a consequence of Theorem 3.1, we get the following
extension of [6, Corollary 2]. As indicated in [6], it generalizes [12, Theorems
2, 4, and 5] and [16].
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Corollary 3.2. Let p, r ≥ 1 and 0 ≤ ε, δ < 1. Assume that conditions
(0.1′′) − (0.4′′) are satisfied for p, r, ε, and δ. Then series (0.5) converges
regularly to some measurable function f(x, y) for all x, y ∈ T \ {0}, and the
convergence is uniform on the rectangle {α ≤ |x| ≤ π, β ≤ |y| ≤ π} for all
0 < α, β ≤ π. Moreover,

( i ) for all y ∈ T \ {0}, |f(x, y)|r|x|r−1(log 1/|x|)−ε ∈ L1(T) and

‖smn(·, y)− f(·, y)‖r,φ → 0 as min{m,n} → ∞, where

φ(x, y) = O(|x|r−1(log 1/|x|)−ε);

(ii) for all x ∈ T \ {0}, |f(x, y)|r|y|r−1(log 1/|y|)−δ ∈ L1(T) and

‖smn(x, ·)− f(x, ·)‖r,φ → 0 as min{m,n} → ∞, where

φ(x, y) = O(|y|r−1(log 1/|y|)−δ);

(iii) |f(x, y)|r|xy|r−1(log 1/|x|)−ε(log 1/|y|)−δ ∈ L1(T2) and

‖smn − f‖r,φ → 0 as min{m,n} → ∞, where

φ(x, y) = O(|xy|r−1(log 1/|x|)−ε(log 1/|y|)−δ).

The third case we investigate is θ(ρ) = ρ1−(σ+1)/r and ϑ(ρ) = ρ1−(λ+1)/r,
where −1 < σ, λ < r−1. In this case, conditions (0.1′)− (0.4′) take the forms:

|cjk| (|j|)p−(σ+1)/r(|k|)p−(λ+1)/r → 0 as max{|j|, |k|} → ∞,(0.1′′′)

lim
|k|→∞

∞∑
j=−∞

|∆p0cjk| (|j|)p−(σ+1)/r(|k|)p−(λ+1)/r = 0,(0.2′′′)

lim
|j|→∞

∞∑
k=−∞

|∆0pcjk| (|j|)p−(σ+1)/r(|k|)p−(λ+1)/r = 0,(0.3′′′)

∞∑
j=−∞

∞∑
k=−∞

|∆ppcjk| (|j|)p−(σ+1)/r(|k|)p−(λ+1)/r <∞.(0.4′′′)

It is known that (φ, θ) and (ψ, ϑ) are of type Ir, where φ(t) = O(|t|σ) and
ψ(t) = O(|t|λ). This leads us to the following extension of [6, Corollary 6],
which generalizes [10, Theorem 4] and [3, Theorems 4.1 and 4.2].

Corollary 3.3. Assume that conditions (0.1′′′) − (0.4′′′) are satisfied for
some p, r ≥ 1 and some −1 < σ, λ < r − 1. Then series (0.5) converges
regularly to some measurable function f(x, y) for all x, y ∈ T \ {0}, and the
convergence is uniform on the rectangle {α ≤ |x| ≤ π, β ≤ |y| ≤ π} for all
0 < α, β ≤ π. Moreover,
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( i ) for all y ∈ T \ {0}, |f(x, y)|r|x|σ ∈ L1(T) and ‖smn(·, y)− f(·, y)‖r,φ → 0
as min{m,n} → ∞, where φ(x, y) = O(|x|σ);

(ii) for all x ∈ T \ {0}, |f(x, y)|r|y|λ ∈ L1(T) and ‖smn(x, ·)− f(x, ·)‖r,φ → 0
as min{m,n} → ∞, where φ(x, y) = O(|y|λ);

(iii) |f(x, y)|r|x|σ|y|λ ∈ L1(T2) and ‖smn − f‖r,φ → 0 as min{m,n} → ∞,
where φ(x, y) = O(|x|σ|y|λ).

4. Parseval’s Formula

To ensure the validity of (0.10), we shall assume conditions (0.1)−(0.4) for
some p ≥ 1. Under these conditions, Theorem 2.1 guarantees the existence of
the limiting function f of series (0.5). To derive (0.10), we shall also assume
that

sup
−∞<j,k<∞

0<ε,δ≤π

∣∣∣∣∣
∫ ∫
ε≤|x|≤π
δ≤|y|≤π

φ(x, y)Ψp
j (x)Ψp

k(y) dxdy

∣∣∣∣∣ <∞;(4.1)

in other words,

sup
−∞<j,k<∞

0<ε,δ≤π

|Φpp
jk(ε, δ)| <∞,(4.2)

where

Φst
jk(ε, δ) ≡

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

φ(x, y)Ψs
j(x)Ψt

k(y) dxdy.(4.3)

Let φεδ(x, y) = φ(x, y) for ε ≤ |x| ≤ π and δ ≤ |y| ≤ π, and 0 otherwise. The
definition of Ψk

j (t) tells us that

Φ00
jk(ε, δ) =


4π2φ̂εδ(−j,−k) if |j|, |k| ≥ 1,
2π2φ̂εδ(−j, 0) if |j| ≥ 1, |k| = 0+,

2π2φ̂εδ(0,−k) if |j| = 0+, |k| ≥ 1,
π2φ̂εδ(0, 0) if |j| = |k| = 0+.

Moreover, for s, t ≥ 1 and j, k ≥ 0+,

Φst
jk(ε, δ) =

j∑
u=0+

Φs−1,t
uk (ε, δ) =

k∑
v=0+

Φs,t−1
jv (ε, δ)

=
j∑

u=0+

k∑
v=0+

Φs−1,t−1
uv (ε, δ).
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This says that Φst
jk(ε, δ) with j, k ≥ 0+ can be regarded as the two -dimensional

Cesàro sums of order (s, t) of the double sequence {Φ00
jk(ε, δ) : j, k ≥ 0+}.

Similarly, Φst
−j,−k(ε, δ) are the two-dimensional Cesàro sums of order (s, t) of

the double sequence {Φ00
−j,−k(ε, δ) : j, k ≥ 0+}. Based on these, we see that

condition (4.1) is equivalent to the existence of the constant C such that

sup
−∞<j,k<∞

0<ε,δ≤π

|Φst
jk(ε, δ)| ≤ C <∞ for all 0 ≤ s, t ≤ p.(4.4)

Moreover, condition (4.1) with p = 1 is equivalent to

sup
0<ε,δ≤π

sωφεδ(0, 0) <∞, (ω = (ω1, ω2), |ω1| = |ω2| = 1),

where sω denotes the one-sided maximal operator defined below:

sωφ(x, y) ≡ sup
m,n≥0

|
m∑
j=0

n∑
k=0

φ̂∗(j, k)ei(jx+ky)| (ω = (1, 1));

sωφ(x, y) ≡ sup
m,n≥0

|
m∑
j=0

n∑
k=0

φ̂∗(−j, k)ei(−jx+ky)| (ω = (−1, 1));

sωφ(x, y) ≡ sup
m,n≥0

|
m∑
j=0

n∑
k=0

φ̂∗(j,−k)ei(jx−ky)| (ω = (1,−1));

sωφ(x, y) ≡ sup
m,n≥0

|
m∑
j=0

n∑
k=0

φ̂∗(−j,−k)ei(−jx−ky)| (ω = (−1,−1)).

Hence, the following theorem and Theorem 2.1 together extend [7, Theorem
1] from p = 1 to the general case. As explained in [7], our result generalizes
[1, p. 656], [2], and [13, 14].

Theorem 4.1. Assume that conditions (0.1)− (0.4) are satisfied for some
p ≥ 1. Then series (0.5) converges regularly to some measurable function
f(x, y) for all x, y ∈ T \ {0}, and the convergence is uniform on {α ≤ |x| ≤
π, β ≤ |y| ≤ π} for all 0 < α, β ≤ π. Moreover, if φ : T2 7→ C is measurable
and locally bounded in (T \ {0})2, φ̂∗(j, k) exists for all (j, k), and condition
(4.1) is satisfied, then formula (0.10) holds and the following three statements
remain true for r ≥ 1.

( i ) If φ(x, y)/|x| ∈ Lr(T) for almost all y ∈ T, then

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy = lim
δ↓0

∫
δ≤|y|≤π

∫ π

−π
f(x, y)φ(x, y) dxdy.
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(ii) If φ(x, y)/|y| ∈ Lr(T) for almost all x ∈ T, then

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy = lim
ε↓0

∫ π

−π

∫
ε≤|x|≤π

f(x, y)φ(x, y) dxdy.

(iii) If φ(x, y)/|xy| ∈ Lr(T2), then

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy =
∫ π

−π

∫ π

−π
f(x, y)φ(x, y) dxdy.

Proof. By Theorem 2.1, we find that it suffices to prove the validity of
(0.10) and the statements (i)–(iii). The proof of Theorem 2.1 indicates that,
for x, y ∈ T \ {0},

m∑
|j|=0+

n∑
|k|=0+

(∆∗ppcjk) Ψp
j (x)Ψp

k(y) −→ f(x, y) as min{m,n} → ∞,

and the convergence is uniform on {ε ≤ |x| ≤ π, δ ≤ |y| ≤ π} for all 0 < ε, δ ≤
π. Since φ is locally bounded in (T\{0})2, it follows that, as min{m,n} → ∞,

m∑
|j|=0+

n∑
|k|=0+

(∆∗ppcjk)Φ
pp
jk(ε, δ) −→

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy,(4.5)

where Φst
jk(ε, δ) is defined by (4.3). We have

lim
ε,δ↓0

Φ00
jk(ε, δ) =


4π2φ̂∗(−j,−k) if |j|, |k| ≥ 1,
2π2φ̂∗(−j, 0) if |j| ≥ 1, |k| = 0+,

2π2φ̂∗(0,−k) if |j| = 0+, |k| ≥ 1,
π2φ̂∗(0, 0) if |j| = |k| = 0+,

and φ̂∗(j, k) exists for all (j, k). Therefore, the limit ζstjk ≡ limε,δ↓0 Φst
jk(ε, δ)

exists for all s, t, j, k, and (4.4) implies that

|ζstjk| ≤ C (|j|, |k| ≥ 0+, 0 ≤ s, t ≤ p).(4.6)

Putting (0.4), (4.2), and (4.5) together, we infer that the following limit of
double integral exists, the double series at the right is absolutely convergent,
and

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy =
∞∑

|j|=0+

∞∑
|k|=0+

(∆∗ppcjk)ζ
pp
jk .
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For m,n > 0, we have

λmn ≡ (4π2)
∑
|j|≤m

∑
|k|≤n

cjk φ̂
∗(−j,−k)

= lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

smn(x, y)φ(x, y) dxdy.

It follows from (1.1) that

λmn =
m∑

|j|=0+

n∑
|k|=0+

(∆∗ppcjk) ζ
pp
jk +

p−1∑
t=0

m∑
|j|=0+

∑
|k|=n

(∆∗ptcj,τ(k)) ζ
p,t+1
jk

+
p−1∑
s=0

∑
|j|=m

n∑
|k|=0+

(∆∗spcτ(j),k) ζ
s+1,p
jk

+
p−1∑
s=0

p−1∑
t=0

∑
|j|=m

∑
|k|=n

(∆∗stcτ(j),τ(k)) ζ
s+1,t+1
jk .

By (0.4) and (4.4), the series
∑∞
|j|=0+

∑∞
|k|=0+(∆∗ppcjk) ζ

pp
jk converges absolutely.

On the other hand, (0.1)− (0.3) and (4.4) imply

p−1∑
t=0

m∑
|j|=0+

∑
|k|=n

|∆∗ptcj,τ(k)||ζp,t+1
jk | ≤ C

p−1∑
t=0

t∑
v=0

(
t

v

) m∑
|j|=0+

∑
|k|=n+v+1

|∆∗p0cjk|

≤ Cp
(

sup|k|>n
m∑

|j|=0+

|∆∗p0cjk|
)

−→ 0 as min{m,n} → ∞,

p−1∑
s=0

∑
|j|=m

n∑
|k|=0+

|∆∗spcτ(j),k||ζs+1,p
jk | ≤ C

p−1∑
s=0

s∑
u=0

(
s

u

) ∑
|j|=m+u+1

n∑
|k|=0+

|∆∗0pcjk|

≤ Cp
(

sup|j|>m
n∑

|k|=0+

|∆∗0pcjk|
)

−→ 0 as min{m,n} → ∞,
and

p−1∑
s=0

p−1∑
t=0

∑
|j|=m

∑
|k|=n

|∆∗stcτ(j),τ(k)||ζs+1,t+1
jk |

≤ C
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

) ∑
|j|=m+u+1

∑
|k|=n+v+1

|∆∗00cjk|

≤ Cp
(

sup|j|>m,|k|>n |cjk|
)

−→ 0 as min{m,n} → ∞.

207



208 Chang-Pao Chen and Chin-Cheng Lin

Hence, as min{m,n} → ∞, λmn tends to
∑∞
|j|=0+

∑∞
|k|=0+(∆∗ppcjk)ζ

pp
jk and,

consequently, (0.10) follows. Let r ≥ 1. Then Lr(T) ⊂ L1(T) and Lr(T2) ⊂
L1(T2). With the help of Theorem 2.1, we find that (i) – (iii) follow from the
Lebesgue dominated convergence theorem. This finishes the proof.

5. Another Type of Conditions of Bounded Variation

The rectangular partial sum smn(x, y) can be rewritten in the following
form:

smn(x, y) =
m∑

|j|=0+

∑
|k|≤n

(∆∗p0cjk)Ψ
p
j (x)eiky

+
p−1∑
s=0

∑
|j|=m

∑
|k|≤n

(∆∗s0cτ(j),k)Ψs+1
j (x)eiky.

Consider the following two conditions instead of (0.1)− (0.4):

lim
|j|→∞

∞∑
k=−∞

|cjk| (|j|)p−1 = 0,(5.1)

∞∑
j=−∞

∞∑
k=−∞

|∆p0cjk| (|j|)p−1 <∞.(5.2)

Obviously, condition (5.1) implies that cjk(|j|)p−1 → 0 as max{|j|, |k|} → ∞,
and they are equivalent for p = 1 under the condition (5.2). Employing the
same proofs as those given in §2, we obtain

Theorem 5.1. Assume that conditions (5.1)− (5.2) are satisfied for some
p ≥ 1. Then series (0.5) converges regularly to some measurable function
f(x, y) for all x ∈ T \ {0} and all y ∈ T, and the convergence is uniform on
{α ≤ |x| ≤ π} × T for all 0 < α ≤ π. In addition, let r > 0, x0 ∈ T \ {0}, and
y0 ∈ T.

( i ) If φ(x, y0)/|x|r ∈ L1(T), then |f(x, y0)|rφ(x, y0) ∈ L1(T) and

‖smn(·, y0)− f(·, y0)‖r,φ → 0 as min{m,n} → ∞.

(ii) If φ(x0, y) ∈ L1(T), then |f(x0, y)|rφ(x0, y) ∈ L1(T) and

‖smn(x0, ·)− f(x0, ·)‖r,φ → 0 as min{m,n} → ∞.

(iii) If φ(x, y)/|x|r ∈ L1(T2), then |f(x, y)|rφ(x, y) ∈ L1(T2) and

‖smn − f‖r,φ → 0 as min{m,n} → ∞.
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Moreover, the conclusions (i)−(iii) still hold provided the corresponding L1(T)
and L1(T2) are replaced by C(T) and C(T2).

Apply Theorem 5.1 to the cases: φ(x, y) = O(|x|σ), φ(x, y) = O(|y|λ),
and φ(x, y) = O(|x|σ|y|λ), where r > 0, σ > r − 1, and λ > −1. Then we
get an analogue of Corollary 2.2. The difference between them is the range
of λ. We need to change λ from “λ > r − 1” to “λ > −1”. Similarly,
consider φ(x, y) = O(|x|r−1(log 1/|x|)−ε), φ(x, y) = O(|y|−1(log 1/|y|)−δ), and
φ(x, y) = O(|x|r−1|y|−1(log 1/|x|)−ε(log 1/|y|)−δ), where ε, δ > 1. Then we
obtain an analogue of Corollary 2.3. For this case, we only replace |y|r−1 in
(ii) – (iii) of Corollary 2.3 by |y|−1.

To get an analogue of Theorem 3.1, we replace (5.1) – (5.2) by the following
stronger conditions:

lim
|j|→∞

∞∑
k=−∞

|cjk| (|j|)p−1θ(|j|) = 0,(5.1
′
)

∞∑
j=−∞

∞∑
k=−∞

|∆p0cjk| (|j|)p−1θ(|j|) <∞.(5.2
′
)

Theorem 5.2. Assume that θ is a positive increasing function defined on
[1,∞) such that (5.1′)− (5.2′) are satisfied for some p ≥ 1. Then series (0.5)
converges regularly to some measurable function f(x, y) for all x ∈ T \ {0}
and all y ∈ T, and the convergence is uniform on {α ≤ |x| ≤ π} × T for all
0 < α ≤ π. In addition, let r ≥ 1.

( i ) If (φ, θ) is of type Ir, then for all y ∈ T, |f(x, y)|rφ(x) ∈ L1(T) and
‖smn(·, y)− f(·, y)‖r,φ → 0 as min{m,n} → ∞, where φ(x, y) = φ(x).

(ii) If ψ ∈ L1(T), then for all x ∈ T \ {0}, |f(x, y)|rψ(y) ∈ L1(T) and
‖smn(x, ·)− f(x, ·)‖r,φ → 0 as min{m,n} → ∞, where φ(x, y) = ψ(y).

(iii) If (φ, θ) is of type Ir and ψ ∈ L1(T), then |f(x, y)|rφ(x)ψ(y) ∈ L1(T2)
and ‖smn − f‖r,φ → 0 as min{m,n} → ∞, where φ(x, y) = φ(x)ψ(y).

Consider the following conditions with p, r ≥ 1 and 0 ≤ ε < 1:

lim
|j|→∞

∞∑
k=−∞

|cjk| (|j|)p−1(log |j|)(1−ε)/r = 0,(5.1′′)

∞∑
j=−∞

∞∑
k=−∞

|∆p0cjk| (|j|)p−1(log |j|)(1−ε)/r <∞.(5.2′′)

These correspond to (5.1′) − (5.2′) with θ(ρ) = (log ρ)(1−ε)/r. Choose φ(t) =
O(|t|r−1(log 1/|t|)−ε) and ψ(t) = O(|t|−1(log 1/|t|)−δ), where δ > 1. Then
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(φ, θ) is of type Ir and ψ ∈ L1(T), and therefore, an analogue of Corollary 3.2
occurs. The only change is to replace |y|r−1 in (ii) – (iii) of Corollary 3.2 by
|y|−1. If we consider θ(ρ) = ρ1−(σ+1)/r with r ≥ 1 and −1 < σ < r − 1, then
(5.1′)− (5.2′) reduce to

lim
|j|→∞

∞∑
k=−∞

|cjk| (|j|)p−(σ+1)/r = 0,(5.1′′′)

∞∑
j=−∞

∞∑
k=−∞

|∆p0cjk| (|j|)p−(σ+1)/r <∞.(5.2′′′)

Here we assume p ≥ 1. It is known that (φ, θ) is of type Ir, where φ(t) =
O(|t|σ). Hence, as a consequence of Theorem 5.2, an analogue of Corollary 3.3
is established. The only change is to replace |y|λ in (ii) – (iii) of Corollary 3.3
by |y|−1(log 1/|y|)−δ with δ > 1.

To correspond to condition (4.1), we assume

sup
−∞<j,k<∞

0<ε,δ≤π

∣∣∣∣∣
∫ ∫
ε≤|x|≤π
δ≤|y|≤π

φ(x, y)Ψp
j (x)eiky dxdy

∣∣∣∣∣ <∞,(5.3)

or equivalently,
sup

−∞<j,k<∞
0<ε,δ≤π

|Φp0
jk(ε, δ)| <∞,

where Φst
jk(ε, δ) is defined by (4.3). For p = 1, it is the same as the condition

sup
0<ε,δ≤π

sωφεδ(0, 0) <∞ (ω = (ω1, 0), |ω1| = 1).

The maximal operator sω is defined by

sωφ(x, y) ≡ sup m≥0
−∞<k<∞

∣∣∣∣ m∑
j=0

φ̂∗(j, k)eijx
∣∣∣∣ (ω = (1, 0)),

sωφ(x, y) ≡ sup m≥0
−∞<k<∞

∣∣∣∣ m∑
j=0

φ̂∗(−j, k)e−ijx
∣∣∣∣ (ω = (−1, 0))

(cf. [7]). Like Theorem 4.1, we have

Theorem 5.3. Assume that conditions (5.1)− (5.2) are satisfied for some
p ≥ 1. Then series (0.5) converges regularly to some measurable function
f(x, y) for all x ∈ T \ {0} and all y ∈ T, and the convergence is uniform on
{α ≤ |x| ≤ π} × T for all 0 < α ≤ π. Moreover, if φ : T2 7→ C is measurable
and locally bounded in (T\{0})×T, φ̂∗(j, k) exists for all (j, k), and condition
(5.3) is satisfied, then formula (0.10) holds and the following three statements
remain true for r ≥ 1.
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( i ) If φ(x, y)/x ∈ Lr(T) for almost all y ∈ T, then

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy = lim
δ↓0

∫
δ≤|y|≤π

∫ π

−π
f(x, y)φ(x, y) dxdy.

(ii) If φ(x, y) ∈ Lr(T) for almost all x ∈ T, then

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy = lim
ε↓0

∫ π

−π

∫
ε≤|x|≤π

f(x, y)φ(x, y) dxdy.

(iii) If φ(x, y)/x ∈ Lr(T2), then

lim
ε,δ↓0

∫ ∫
ε≤|x|≤π
δ≤|y|≤π

f(x, y)φ(x, y) dxdy =
∫ π

−π

∫ π

−π
f(x, y)φ(x, y) dxdy.

The theory developed here also works for the case:

∞∑
j=−∞

∞∑
k=−∞

|cjk| <∞.

We refer the reader to [7, Theorem 3] for details.
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