TAIWANESE JOURNAL OF MATHEMATICS Vol. 2, No. 2, pp. 173-179, June 1998

EDGE DOMINATION IN GRAPHS

S. Arumugam and S. Velammal

Abstract. Let G be a (p,q)-graph with edge domination number γ' and edge domatic number d'. In this paper we characterize connected graphs for which $\gamma' = p/2$ and graphs for which $\gamma' + d' = q + 1$. We also characterize trees and unicyclic graphs for which $\gamma' = \lfloor p/2 \rfloor$ and $\gamma' = q - \Delta'$, where Δ' denotes the maximum degree of an edge in G.

1. INTRODUCTION

By a graph G = (V, E) we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary [3].

A subset S of V is called a *dominating set* of G if every vertex not in S is adjacent to some vertex in S. The *domination number* $\gamma(G)$ (or γ for short) of G is the minimum cardinality taken over all dominating sets of G. A dominating set S is called an *independent dominating set* if no two vertices of S are adjacent. The *independent domination number* $\gamma_i(G)$ (or γ_i for short) of G is the minimum cardinality taken over all independent dominating sets of G.

The concept of edge domination was introduced by Mitchell and Hedetniemi [5]. A subset X of E is called an *edge dominating set* of G if every edge not in X is adjacent to some edge in X. The *edge domination number* $\gamma'(G)$ (or γ' for short) of G is the minimum cardinality taken over all edge dominating sets of G. The maximum order of a partition of E into edge dominating sets of G is called the *edge domatic number* of G and is denoted by d'(G) (or d' for short). An edge dominating set X is called an *independent edge dominating set* if no two edges in X are adjacent. The *independent edge domination*

Received April 22, 1995; revised December 27, 1997.

Communicated by G. J. Chang.

¹⁹⁹¹ Mathematics Subject Classification: 05C70, 05C05.

Key words and phrases: Edge domination number, independent edge domination number, edge domatic number.

number $\gamma'_i(G)$ (or γ'_i for short) of G is the minimum cardinality taken over all independent edge dominating sets of G. The *edge independence number* $\beta_1(G)$ (or β_1 for short) is defined to be the number of edges in a maximum independent set of edges of G.

A path with *n* vertices is denoted by P_n . The graph S(G) obtained from G by subdividing each edge of G exactly once is called the *subdivision* of G. The *degree* of an edge e = uv of G is defined by deg $e = \deg u + \deg v - 2$. For a real number $x, \lfloor x \rfloor$ denotes the greatest integer less than or equal to x and $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. We need the following theorems.

Theorem 1.1. [1]. If G is $K_{1,3}$ -free, then $\gamma = \gamma_i$.

Since L(G) is $K_{1,3}$ -free, we have the following.

Corollary 1.2. For any graph $G, \gamma' = \gamma'_i$.

Theorem 1.3. [4]. $\gamma'(C_p) = \lceil p/3 \rceil$ for $p \ge 3$.

Theorem 1.4. [2]. For any (p,q)-graph $G, \gamma' \leq \lfloor p/2 \rfloor$.

Theorem 1.5. [4]. For any (p,q)-graph $G, \gamma' \leq q - \Delta'$ where Δ' denotes the maximum degree of an edge in G.

Theorem 1.6. [4]. For any (p,q)-graph $G, \gamma' \leq q - \beta_1 + q_0$ where q_0 is the number of isolated edges in G.

Theorem 1.7. [4]. For any (p,q)-graph $G, \gamma' + d' \leq q + 1$.

In this paper we consider the problem of characterizing the class of graphs which attain the upper bounds given in Theorems 1.4, 1.5, 1.6 and 1.7.

2. Main Results

Theorem 2.1. For any connected graph G of even order $p, \gamma' = p/2$ if and only if G is isomorphic to K_p or $K_{p/2,p/2}$.

To prove this theorem, we need the following result.

Lemma 2.2. A connected graph G is either a complete graph or a complete bipartite graph if G has the following property: Whenever any two vertices are joined by a path of length 3, then they are adjacent.

Proof. By the hypothesis, distance between any two vertices is at most 2. Therefore diam $(G) \leq 2$. If diam(G) = 1, then G is a complete graph. So, assume that diam(G) = 2.

Let a be any vertex with deg a < p-1 where p is the order of G. Let us show that G is complete bipartite with the bipartition $\{V_1, V_2\}$ where $V_2 = N(a)$.

If x, y are any two distinct vertices in $V_1 \setminus \{a\}$, then x, y are non-adjacent for otherwise the non-adjacent vertices a and y would be joined by a path of length 3, contradicting the hypothesis.

Let b be any vertex in $V_1 \setminus \{a\}$. Then there exists a vertex x in V_2 such that x is adjacent to both a and b. If y is any other vertex in V_2 , then (bxay) is a path of length 3 and therefore by the hypothesis b and y are adjacent. Thus every vertex in V_1 is adjacent to all the vertices in V_2 .

Next let us show that no two vertices in V_2 are adjacent. Suppose x, y are two distinct vertices in V_2 . Let b be any vertex in $V_1 \setminus \{a\}$. (Note that $V_1 \setminus \{a\}$ is non-empty since deg a .) Then <math>x, y are non-adjacent for otherwise the non-adjacent vertices a and b would be joined by a path of length 3.

Thus it follows that G is a complete bipartite graph.

Proof of Theorem 2.1. Suppose $\gamma'(G) = p/2$. Let us first show that the hypothesis of Lemma 2.2 holds. Suppose (abcd) is a path of length 3 in G. Let S be an independent edge dominating set in $G \setminus \{a, b, c, d\}$. Then $S \cup \{ab, cd\}$ is an edge dominating set in G. Therefore $|S| + 2 \ge \gamma'(G) = p/2$. Since $S \cup \{ab, cd\}$ is an independent edge dominating set in G, it follows that |S| = (p-4)/2. Therefore a and d are adjacent for otherwise $S \cup \{bc\}$ would be an edge dominating set of cardinality $\gamma' - 1$.

Hence by Lemma 2.2, G is either complete or complete bipartite. Since for any complete bipartite graph $K_{r,s}$, $\gamma'(K_{r,s}) = \min\{r, s\}$. When the second possibility holds, G is isomorphic to $K_{p/2,p/2}$.

The second part of the theorem is obvious.

Theorem 2.3. For any tree T of order $p \neq 2, \gamma' \leq (p-1)/2$; equality holds if and only if T is isomorphic to the subdivision of a star.

Proof. First of all, by Theorem 1.4 and Theorem 2.1, $\gamma' \leq (p-1)/2$. It is clear that $\gamma' = (p-1)/2$ when T is the subdivision of a star. On the other hand, suppose T is a tree for which $\gamma' = (p-1)/2$. If $p \leq 5$ the result is trivial. Let p = 2n + 1, where $n \geq 3$. Since $\gamma' = n$, there exists an independent edge dominating set $S = \{e_1, e_2, \ldots, e_n\}$ such that the unique vertex v which is not covered by the edges in S is a non-pendant vertex of T; otherwise if v is a pendant vertex adjacent to u, then we may replace the edge e_i incident to u S. Arumugam and S. Velammal

with uv. Let $e_i = v_i u_i$ and suppose v is adjacent to u_1 and u_2 . Since T is a tree, v is adjacent to at most one end of each e_i . Now suppose there exists an edge, say e_3 , in S such that v is adjacent to neither u_3 nor v_3 . Since T is connected, we may assume that u_3 is adjacent to v_1 . Now $S \setminus \{e_1, e_2, e_3\} \cup \{v_1 u_3, v u_2\}$ is an edge dominating set of cardinality $\gamma' - 1$, which is a contradiction. Hence, v is adjacent to exactly one end vertex of each e_i and so T is isomorphic to the subdivision of a star.

We now proceed to characterize connected unicyclic graphs with $\gamma' = \lfloor p/2 \rfloor$. We denote by $C_{3,n}$ the graph obtained from a C_3 and $n \geq 0$ copies of K_2 by joining one end of each K_2 with a fixed vertex of C_3 . We denote by $C_{4,n}$ the graph obtained from C_4 by joining a vertex of C_4 with the center of $S(K_{1,n})$.

Theorem 2.4. Let G be a connected unicyclic graph. Then $\gamma' = \lfloor p/2 \rfloor$ if and only if G is isomorphic to either $C_4, C_5, C_7, C_{3,n}$ or $C_{4,n}$ for some $n \ge 0$.

Proof. Let G be a connected unicyclic graph with $\gamma' = \lfloor p/2 \rfloor$. If p is even then by Theorem 2.1, C_4 is the only connected unicyclic graph with $\gamma' = p/2$. Now let us assume that p is odd. Let C be the unique cycle of G. If G = C, it follows from Theorem 1.3 that G is isomorphic to either $C_{3,0}(=C_3), C_5$ or C_7 . Suppose $G \neq C$. Let $T_1, T_2, \ldots, T_r (r \geq 1)$ be the components of $G \setminus V(C)$. Let $p_0, p_1, p_2, \ldots, p_r$ denote the number of vertices in C, T_1, T_2, \ldots, T_r respectively. Then

(1)
$$\gamma'(G) \le \left\lceil \frac{p_0}{2} \right\rceil + \sum_{i=1}^r \left\lfloor \frac{p_i}{2} \right\rfloor.$$

We consider the following cases.

Case i. p_0 is even.

If $\gamma'(T_i) < (p_i - 1)/2$ for some *i* or if $\gamma'(T_i) = (p_i - 1)/2$ for at least two components, then it follows from (1) that $\gamma'(G) < (p - 1)/2$, which is a contradiction. Therefore, each component of $G \setminus V(C)$ is isomorphic to either K_2 or $S(K_{1,n})$ for some $n \ge 0$ and at most one component of $G \setminus V(C)$ is isomorphic to $S(K_{1,n})$. Since *p* is odd, it follows that exactly one component, say T_1 , is isomorphic to $S(K_{1,n})$. Now if $r \ge 2$ then we choose an edge dominating set containing an edge *e* of *G* such that *e* dominates the edge of T_2 as well as two edges of *C*. Hence it follows from (1) that

$$\gamma'(G) \le \frac{p_0 - 2}{2} + \frac{p_1 - 1}{2} + \sum_{i=2}^r \left\lfloor \frac{p_i}{2} \right\rfloor < \frac{p - 1}{2},$$

which is a contradiction. Thus r = 1 and it follows from Theorem 1.3 that $p_0 = 4$. Hence G is isomorphic to $C_{4,n}$.

Case ii. p_0 is odd.

In this case, we claim that each T_i is isomorphic to K_2 . Suppose not. Since p is odd, it follows that there exist at least two components, say T_1, T_2 , each isomorphic to $S(K_{1,n})$ for some $n \ge 0$. If one more component, say T_3 , is isomorphic to $S(K_{1,n})$ then

$$\gamma'(G) \le \frac{p_0 + 1}{2} + \frac{p_1 + p_2 + p_3 - 3}{2} + \sum_{i=4}^r \left\lfloor \frac{p_i}{2} \right\rfloor < \frac{p - 1}{2},$$

which is a contradiction. Hence there are only two components that are subdivisions of stars. So, there exists a vertex of degree two in C or a component, say T_3 , isomorphic to K_2 . Then the term $\lceil p_0/2 \rceil$ in the right side of (1) can be replaced by $(p_0 - 1)/2$ and hence

$$\gamma'(G) \le \frac{p_0 - 1}{2} + \frac{p_1 - 1}{2} + \frac{p_2 - 1}{2} + \sum_{i=3}^r \left\lfloor \frac{p_i}{2} \right\rfloor < \frac{p - 1}{2}$$

which is again a contradiction. Hence it follows that each T_i is isomorphic to K_2 . Since $\gamma'(G) = (p-1)/2$, it follows that each component K_2 of $G \setminus V(C)$ has one end adjacent to a fixed vertex of C and $p_0 = 3$. Hence G is isomorphic to $C_{3,n}$ for some $n \ge 0$. The converse is obvious.

Theorem 2.5. Let T be any tree and let e = uv be an edge of maximum degree Δ' . Then $\gamma' = q - \Delta'$ if and only if diam $(T) \leq 4$ and deg $w \leq 2$ for every vertex $w \neq u, v$.

Proof. Let T be a tree with $\gamma' = q - \Delta'$. Let A denote the set of all pendant edges of T. Since E(T) - A is an edge dominating set of T, it follows that $|A| \leq \Delta'$ and hence deg $w \leq 2$ for all vertices $w \neq u, v$. Also, if diam $(T) \geq 5$, then there exists a non-pendant edge e of T such that $E(T) \setminus (A \cup \{e\})$ is an edge dominating set. Hence, $\gamma' \leq q - \Delta' - 1 < q - \Delta'$, which is a contradiction. Therefore, diam $(T) \leq 4$. Conversely, let T be a tree with diam $(T) \leq 4$ and deg $w \leq 2$ for all vertices $w \neq u, v$, where e = uv is an edge of maximum degree in T. If diam(T) = 2 or 3, then $\gamma' = q - \Delta' = 1$. If diam(T) = 4, then each non-pendant edge of T is adjacent to a pendant edge of T and hence the set S of all non-pendant edges of T forms a minimum edge dominating set and $\gamma' = |S| = q - \Delta'$.

Theorem 2.6. For any connected unicyclic graph G = (V, E) with cycle $C, \gamma' = q - \Delta'$ if and only if one of the following holds.

S. Arumugam and S. Velammal

(i). $G = C_3$.

(ii). $C = C_3 = (u_1 u_2 u_3 u_1), \deg u_1 \ge 3, \deg u_2 = \deg u_3 = 2, d(u_1, w) \le 2$ for all vertices w not on C and $\deg w \ge 3$ for at most one vertex w not on C.

(iii). $C = C_3 = (u_1u_2u_3u_1), \deg u_1 \ge 3, \deg u_2 \ge 3, \deg u_3 = 2, all vertices$ not on C adjacent to u_1 have degree at most 2 and all vertices whose distance from u_1 is 2 are pendant vertices.

(iv). $C = C_3, \deg u_1 = 3, \deg u_2 \ge 3, \deg u_3 \ge 3$ and all vertices not on C are pendant vertices.

(v). $G = C_4$.

(vi). $C = C_4$, either exactly one vertex of C or two adjacent vertices of C have degree at least 3 and all vertices not on C are pendant vertices.

Proof. Suppose $\gamma' = q - \Delta'$. Let S denote the set of all pendant edges of G and let |S| = k. Since $E \setminus (S \cup \{e_1\})$ is an edge dominating set for any edge e_1 of C, $\gamma' \leq q - k - 1$ so that $k \leq \Delta' - 1$. Let e = uv be an edge of maximum degree Δ' . If both u and v are not on C then $k = \Delta' - 1$ and there exist edges e_1 and e_2 on C such that $E \setminus (S \cup \{e_1, e_2\})$ is an edge dominating set of cardinality $q - \Delta' - 1$ which is a contradiction. Hence, u or v lies on C and $k \geq \Delta' - 2$. We consider the following cases.

Case i. $k = \Delta' - 2$.

In this case, all the vertices other than u and v have degree either one or two. Hence $C = C_3$ or C_4 and G is isomorphic to one of the graphs described in (i), (ii), (iii), (v) or (vi).

Case ii. $k = \Delta' - 1$.

In this case, there exists a unique edge e on C such that $E \setminus (S \cup \{e\})$ is a minimum edge dominating set of G. It follows that $C = C_3$ and G is isomorphic to the graph described in (iv).

The converse is obvious.

Theorem 2.7. For any connected graph $G, \gamma' = q - \beta_1$ if and only if G is isomorphic to C_4 or the subdivision graph of a star.

Proof. Suppose $\gamma' = q - \beta_1$. Since $\gamma' \leq p/2$ and $\beta_1 \leq p/2$ we have $\gamma' + \beta_1 \leq p$ and hence $q \leq p$. If q = p, then p is even, $\gamma' = \beta_1 = p/2$ and G is unicyclic.

Hence it follows from Theorem 2.4 that $G = C_4$. If q = p - 1, then p is odd, $\gamma' = \beta_1 = (p - 1)/2$ and G is a tree. Hence it follows from Theorem 2.3 that G is isomorphic to the subdivision of a star. The converse is obvious.

178

Theorem 2.8. For any (p,q)-graph $G, \gamma'+d' = q+1$ if and only if $G = C_3$ or $K_{1,p-1}$ or mK_2 .

Proof. Suppose $\gamma' + d' = q + 1$. Since $\gamma' d' \leq q$, we have $(d'-1)(q-d') \leq 0$. Further, $d' \geq 1$ and $q \geq d'$. So, (q-d')(d'-1) = 0. Hence q = d' or d' = 1. If d' = 1, then G is isomorphic to mK_2 . If q = d', then $G = C_3$ or $K_{1,p-1}$. The converse is obvious.

Acknowledgement

Thanks are due to the referee for his helpful comments.

References

- R. B. Allan and R. Laskar, On domination and indpendent domination of a graph, *Discrete Math.* 23 (1978), 73-76.
- 2. G. Chartrand and S. Schuster, On the independence number of complementary graphs, *Trans. New York Acad. Sci., Series II* **36** (3) (1974), 247-251.
- 3. F. Harary, Graph Theory, Addison-Wesley, Reading Mass., 1969.
- 4. S. R. Jayaram, Line domination in graphs, Graphs Combin. 3 (1987), 357-363.
- S. Mitchell and S. T. Hedetniemi, Edge domination in trees, Congr. Numer. 19 (1977), 489-509.

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India