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EDGE DOMINATION IN GRAPHS

S. Arumugam and S. Velammal

Abstract. Let G be a (p, q)-graph with edge domination number γ′

and edge domatic number d′. In this paper we characterize connected
graphs for which γ′ = p/2 and graphs for which γ′ + d′ = q + 1. We
also characterize trees and unicyclic graphs for which γ′ = bp/2c and
γ′ = q −∆′, where ∆′ denotes the maximum degree of an edge in G.

1. Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops
or multiple edges. Terms not defined here are used in the sense of Harary [3].

A subset S of V is called a dominating set of G if every vertex not in
S is adjacent to some vertex in S. The domination number γ(G) (or γ for
short) of G is the minimum cardinality taken over all dominating sets of G. A
dominating set S is called an independent dominating set if no two vertices of
S are adjacent. The independent domination number γi(G) (or γi for short)
of G is the minimum cardinality taken over all independent dominating sets
of G.

The concept of edge domination was introduced by Mitchell and Hedet-
niemi [5]. A subset X of E is called an edge dominating set of G if every edge
not in X is adjacent to some edge in X. The edge domination number γ′(G)
(or γ′ for short) of G is the minimum cardinality taken over all edge dominat-
ing sets of G. The maximum order of a partition of E into edge dominating
sets of G is called the edge domatic number of G and is denoted by d′(G) (or d′

for short). An edge dominating set X is called an independent edge dominat-
ing set if no two edges in X are adjacent. The independent edge domination
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number γ′i(G) (or γ′i for short) of G is the minimum cardinality taken over
all independent edge dominating sets of G. The edge independence number
β1(G) (or β1 for short) is defined to be the number of edges in a maximum
independent set of edges of G.

A path with n vertices is denoted by Pn. The graph S(G) obtained from
G by subdividing each edge of G exactly once is called the subdivision of G.
The degree of an edge e = uv of G is defined by deg e = deg u + deg v − 2.
For a real number x, bxc denotes the greatest integer less than or equal to x
and dxe denotes the smallest integer greater than or equal to x. We need the
following theorems.

Theorem 1.1. [1]. If G is K1,3-free, then γ = γi.

Since L(G) is K1,3-free, we have the following.

Corollary 1.2. For any graph G, γ′ = γ′i.

Theorem 1.3. [4]. γ′(Cp) = dp/3e for p ≥ 3.

Theorem 1.4. [2]. For any (p, q)-graph G, γ′ ≤ bp/2c.

Theorem 1.5. [4]. For any (p, q)-graph G, γ′ ≤ q −∆′ where ∆′ denotes
the maximum degree of an edge in G.

Theorem 1.6. [4]. For any (p, q)-graph G, γ′ ≤ q − β1 + q0 where q0 is
the number of isolated edges in G.

Theorem 1.7. [4]. For any (p, q)-graph G, γ′ + d′ ≤ q + 1.

In this paper we consider the problem of characterizing the class of graphs
which attain the upper bounds given in Theorems 1.4, 1.5, 1.6 and 1.7.

2. Main Results

Theorem 2.1. For any connected graph G of even order p, γ′ = p/2 if
and only if G is isomorphic to Kp or Kp/2,p/2.

To prove this theorem, we need the following result.

Lemma 2.2. A connected graph G is either a complete graph or a complete
bipartite graph if G has the following property: Whenever any two vertices are
joined by a path of length 3, then they are adjacent.
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Proof. By the hypothesis, distance between any two vertices is at most 2.
Therefore diam(G) ≤ 2. If diam(G) = 1, then G is a complete graph. So,
assume that diam(G) = 2.

Let a be any vertex with deg a < p−1 where p is the order ofG. Let us show
that G is complete bipartite with the bipartition {V1, V2} where V2 = N(a).

If x, y are any two distinct vertices in V1\{a}, then x, y are non-adjacent
for otherwise the non-adjacent vertices a and y would be joined by a path of
length 3, contradicting the hypothesis.

Let b be any vertex in V1\{a}. Then there exists a vertex x in V2 such that
x is adjacent to both a and b. If y is any other vertex in V2, then (bxay) is a
path of length 3 and therefore by the hypothesis b and y are adjacent. Thus
every vertex in V1 is adjacent to all the vertices in V2.

Next let us show that no two vertices in V2 are adjacent. Suppose x, y are
two distinct vertices in V2. Let b be any vertex in V1\{a}. (Note that V1\{a}
is non-empty since deg a < p − 1.) Then x, y are non-adjacent for otherwise
the non-adjacent vertices a and b would be joined by a path of length 3.

Thus it follows that G is a complete bipartite graph.

Proof of Theorem 2.1. Suppose γ′(G) = p/2. Let us first show that the
hypothesis of Lemma 2.2 holds. Suppose (abcd) is a path of length 3 in G. Let
S be an independent edge dominating set in G\{a, b, c, d}. Then S ∪ {ab, cd}
is an edge dominating set in G. Therefore |S| + 2 ≥ γ′(G) = p/2. Since
S ∪ {ab, cd} is an independent edge dominating set in G, it follows that |S| =
(p− 4)/2. Therefore a and d are adjacent for otherwise S ∪ {bc} would be an
edge dominating set of cardinality γ′ − 1.

Hence by Lemma 2.2, G is either complete or complete bipartite. Since
for any complete bipartite graph Kr,s, γ

′(Kr,s) = min{r, s}. When the second
possibility holds, G is isomorphic to Kp/2,p/2.

The second part of the theorem is obvious.

Theorem 2.3. For any tree T of order p 6= 2, γ′ ≤ (p − 1)/2; equality
holds if and only if T is isomorphic to the subdivision of a star.

Proof. First of all, by Theorem 1.4 and Theorem 2.1, γ′ ≤ (p− 1)/2. It is
clear that γ′ = (p − 1)/2 when T is the subdivision of a star. On the other
hand, suppose T is a tree for which γ′ = (p−1)/2. If p ≤ 5 the result is trivial.
Let p = 2n + 1, where n ≥ 3. Since γ′ = n, there exists an independent edge
dominating set S = {e1, e2, . . . , en} such that the unique vertex v which is not
covered by the edges in S is a non-pendant vertex of T ; otherwise if v is a
pendant vertex adjacent to u, then we may replace the edge ei incident to u
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with uv. Let ei = viui and suppose v is adjacent to u1 and u2. Since T is a tree,
v is adjacent to at most one end of each ei. Now suppose there exists an edge,
say e3, in S such that v is adjacent to neither u3 nor v3. Since T is connected,
we may assume that u3 is adjacent to v1. Now S\{e1, e2, e3} ∪ {v1u3, vu2} is
an edge dominating set of cardinality γ′ − 1, which is a contradiction. Hence,
v is adjacent to exactly one end vertex of each ei and so T is isomorphic to
the subdivision of a star.

We now proceed to characterize connected unicyclic graphs with γ′ =
bp/2c. We denote by C3,n the graph obtained from a C3 and n(≥ 0) copies
of K2 by joining one end of each K2 with a fixed vertex of C3. We denote by
C4,n the graph obtained from C4 by joining a vertex of C4 with the center of
S(K1,n).

Theorem 2.4. Let G be a connected unicyclic graph. Then γ′ = bp/2c if
and only if G is isomorphic to either C4, C5, C7, C3,n or C4,n for some n ≥ 0.

Proof. Let G be a connected unicyclic graph with γ′ = bp/2c. If p is even
then by Theorem 2.1, C4 is the only connected unicyclic graph with γ′ = p/2.
Now let us assume that p is odd. Let C be the unique cycle of G. If G = C, it
follows from Theorem 1.3 that G is isomorphic to either C3,0(= C3), C5 or C7.
Suppose G 6= C. Let T1, T2, . . . , Tr(r ≥ 1) be the components of G\V (C). Let
p0, p1, p2, . . . , pr denote the number of vertices in C, T1, T2, . . . , Tr respectively.
Then

γ′(G) ≤
⌈
p0

2

⌉
+

r∑
i=1

⌊
pi
2

⌋
.(1)

We consider the following cases.

Case i. p0 is even.

If γ′(Ti) < (pi − 1)/2 for some i or if γ′(Ti) = (pi − 1)/2 for at least
two components, then it follows from (1) that γ′(G) < (p − 1)/2, which is a
contradiction. Therefore, each component of G\V (C) is isomorphic to either
K2 or S(K1,n) for some n ≥ 0 and at most one component of G\V (C) is
isomorphic to S(K1,n). Since p is odd, it follows that exactly one component,
say T1, is isomorphic to S(K1,n). Now if r ≥ 2 then we choose an edge
dominating set containing an edge e of G such that e dominates the edge of
T2 as well as two edges of C. Hence it follows from (1) that

γ′(G) ≤ p0 − 2
2

+
p1 − 1

2
+

r∑
i=2

⌊
pi
2

⌋
<
p− 1

2
,
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which is a contradiction. Thus r = 1 and it follows from Theorem 1.3 that
p0 = 4. Hence G is isomorphic to C4,n.

Case ii. p0 is odd.

In this case, we claim that each Ti is isomorphic to K2. Suppose not. Since
p is odd, it follows that there exist at least two components, say T1, T2, each
isomorphic to S(K1,n) for some n ≥ 0. If one more component, say T3, is
isomorphic to S(K1,n) then

γ′(G) ≤ p0 + 1
2

+
p1 + p2 + p3 − 3

2
+

r∑
i=4

⌊
pi
2

⌋
<
p− 1

2
,

which is a contradiction. Hence there are only two components that are sub-
divisions of stars. So, there exists a vertex of degree two in C or a component,
say T3, isomorphic to K2. Then the term dp0/2e in the right side of (1) can
be replaced by (p0 − 1)/2 and hence

γ′(G) ≤ p0 − 1
2

+
p1 − 1

2
+
p2 − 1

2
+

r∑
i=3

⌊
pi
2

⌋
<
p− 1

2

which is again a contradiction. Hence it follows that each Ti is isomorphic to
K2. Since γ′(G) = (p − 1)/2, it follows that each component K2 of G\V (C)
has one end adjacent to a fixed vertex of C and p0 = 3. Hence G is isomorphic
to C3,n for some n ≥ 0. The converse is obvious.

Theorem 2.5. Let T be any tree and let e = uv be an edge of maximum
degree ∆′. Then γ′ = q − ∆′ if and only if diam(T ) ≤ 4 and degw ≤ 2 for
every vertex w 6= u, v.

Proof. Let T be a tree with γ′ = q−∆′. Let A denote the set of all pendant
edges of T . Since E(T ) − A is an edge dominating set of T , it follows that
|A| ≤ ∆′ and hence degw ≤ 2 for all vertices w 6= u, v. Also, if diam(T ) ≥ 5,
then there exists a non-pendant edge e of T such that E(T )\(A ∪ {e}) is an
edge dominating set. Hence, γ′ ≤ q−∆′−1 < q−∆′, which is a contradiction.
Therefore, diam(T ) ≤ 4. Conversely, let T be a tree with diam(T ) ≤ 4 and
degw ≤ 2 for all vertices w 6= u, v, where e = uv is an edge of maximum
degree in T . If diam(T ) = 2 or 3, then γ′ = q −∆′ = 1. If diam(T ) = 4, then
each non-pendant edge of T is adjacent to a pendant edge of T and hence the
set S of all non-pendant edges of T forms a minimum edge dominating set and
γ′ = |S| = q −∆′.

Theorem 2.6. For any connected unicyclic graph G = (V,E) with cycle
C, γ′ = q −∆′ if and only if one of the following holds.
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(i). G = C3.
(ii). C = C3 = (u1u2u3u1), deg u1 ≥ 3, deg u2 = deg u3 = 2, d(u1, w) ≤ 2

for all vertices w not on C and degw ≥ 3 for at most one vertex w not on C.
(iii). C = C3 = (u1u2u3u1), deg u1 ≥ 3, deg u2 ≥ 3, deg u3 = 2, all vertices

not on C adjacent to u1 have degree at most 2 and all vertices whose distance
from u1 is 2 are pendant vertices.

(iv). C = C3, deg u1 = 3,deg u2 ≥ 3, deg u3 ≥ 3 and all vertices not on C
are pendant vertices.

(v). G = C4.
(vi). C = C4, either exactly one vertex of C or two adjacent vertices of C

have degree at least 3 and all vertices not on C are pendant vertices.

Proof. Suppose γ′ = q − ∆′. Let S denote the set of all pendant edges
of G and let |S| = k. Since E\(S ∪ {e1}) is an edge dominating set for any
edge e1 of C, γ′ ≤ q − k − 1 so that k ≤ ∆′ − 1. Let e = uv be an edge of
maximum degree ∆′. If both u and v are not on C then k = ∆′− 1 and there
exist edges e1 and e2 on C such that E\(S ∪ {e1, e2}) is an edge dominating
set of cardinality q −∆′ − 1 which is a contradiction. Hence, u or v lies on C
and k ≥ ∆′ − 2. We consider the following cases.

Case i. k = ∆′ − 2.

In this case, all the vertices other than u and v have degree either one or
two. Hence C = C3 or C4 and G is isomorphic to one of the graphs described
in (i), (ii), (iii), (v) or (vi).

Case ii. k = ∆′ − 1.

In this case, there exists a unique edge e on C such that E\(S ∪ {e})
is a minimum edge dominating set of G. It follows that C = C3 and G is
isomorphic to the graph described in (iv).

The converse is obvious.

Theorem 2.7. For any connected graph G, γ′ = q− β1 if and only if G is
isomorphic to C4 or the subdivision graph of a star.

Proof. Suppose γ′ = q − β1. Since γ′ ≤ p/2 and β1 ≤ p/2 we have
γ′ + β1 ≤ p and hence q ≤ p. If q = p, then p is even, γ′ = β1 = p/2 and G is
unicyclic.

Hence it follows from Theorem 2.4 that G = C4. lf q = p − 1, then p is
odd, γ′ = β1 = (p− 1)/2 and G is a tree. Hence it follows from Theorem 2.3
that G is isomorphic to the subdivision of a star. The converse is obvious.
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Theorem 2.8. For any (p, q)-graph G, γ′+d′ = q+1 if and only if G = C3
or K1,p−1 or mK2.

Proof. Suppose γ′+d′ = q+1. Since γ′d′ ≤ q, we have (d′−1)(q−d′) ≤ 0.
Further, d′ ≥ 1 and q ≥ d′. So, (q− d′)(d′ − 1) = 0. Hence q = d′ or d′ = 1. If
d′ = 1, then G is isomorphic to mK2. If q = d′, then G = C3 or K1,p−1. The
converse is obvious.
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