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BOUNDEDNESS STABILITY PROPERTIES OF
LINEAR AND AFFINE OPERATORS

Michael Edelstein, Heydar Radjavi and Kok-Keong Tan

Abstract. Let E be a vector space in which some notion of boundedness
is defined. Then T : E → E is said to have the boundedness stability
property (BSP) if for each x ∈ E, the sequence (Tnx )∞n=1 is bounded
whenever a subsequence (Tnix)∞i=1 is bounded. It is shown that (1)
every affine operator on a finite-dimensional Banach space has the (BSP);
(2) every affine operator on an infinite-dimensional vector space has the
functional (BSP); (3) when E is an infinite-dimensional Banach space,
an affine operator T on E has the (BSP) if its linear part AT = T −T (0)
is a compact perturbation of a bounded linear operator with spectral
radius less than one and (4) when E is a Hilbert space, every normal or
subnormal bounded linear operator has the (BSP). Some results on affine
operators on a Hilbert space whose linear parts are normal or subnormal
are also obtained. Finally, some problems are posed.

1. Introduction

LetX be a vector space over the field Φ which is either the real field R or the
complex field C. Then a map T : X → X is an affine operator if the operator
AT : X → X, defined by ATx = Tx−T0 for all x ∈ X, is linear. (AT is called
the linear part of T .) Let T : X → X and x0 ∈ X. Then x0 is a fixed point of
T if T (x0) = x0. Suppose some notion of boundedness is defined in the vector
space X. Then T : X → X is said to have the boundedness stability property
(BSP) if for each x ∈ X, the sequence (T n(x))∞n=1 is bounded whenever a
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subsequence (T ni(x))∞i=1 is bounded. It is clear from the definition that if X
is a Banach space, T, S : X → X are bounded linear operators such that T
has the (BSP) (where bounded means bounded in norm) and S is similar to
T , then S also has the (BSP). Also, it is easy to see that if X is a Banach
space, T : X → X is an affine operator such that ‖AT‖ ≤ 1 with 1 6∈ σ(AT )
(the spectrum of AT ), then T has the (BSP) (where bounded means bounded
in norm).

In this paper, we first show that if X is a finite-dimensional Banach space,
then every (linear or) affine operator on X has the (BSP) (where bounded
means bounded in norm). Next, as an application, when X is any (infinite-
dimensional) vector space, it is shown that every (linear or) affine operator
on X has the (BSP) (where bounded means functionally bounded as defined
below). When X is an infinite-dimensional Banach space, it is also shown that
an affine operator T on X has the (BSP) if its linear part AT is either compact,
a compact perturbation of a strict contraction, a quasi-nilpotent operator, a
Riesz operator or a compact perturbation of operators with Spectral radii
less than 1. Moreover, it is proved that every normal or subnormal bounded
linear operator on a Hilbert space also has the (BSP). Some results on affine
operators whose linear parts are normal or subnormal bounded linear operators
on a Hilbert space are also given. Finally, some remarks are made and some
problems are posed.

2. The Finite-Dimensional Case

We shall denote by N the set of all natural numbers. Let N = [aij] be an
m × m matrix. Then N is a Jordan cell if aij = 1 whenever j = i + 1 for
i = 1, · · · ,m − 1 and aij = 0 otherwise. If x = [x1, · · · , xm] is a (row) vector,
we shall denote by xt the transpose of x; i.e. the (column) vector

 x1
...
xm

 .

Lemma 1. Let I be the m×m identity matrix, N be the m×m Jordan
cell, λ ∈ C and A = λI + N . If for some m × 1 vector x0, a subsequence
(Anix0)∞i=1 of (Anx0)∞n=1 is bounded, then (Anx0)∞n=1 is itself bounded.

Proof. The assertion is clearly true if x0 = 0. Now assume x0 6= 0. Let
x0 = [x1, · · · , xm]t and let m0 = max{i ∈ {1, · · · ,m} : xi 6= 0}. Note that for
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each p = 0, 1, 2, · · ·,

Am+p = (λI +N)m+p

=
m−1∑
j=0

(
m+ p

j

)
λm+p−jN j .

It follows that for each p = 0, 1, 2, · · ·,

Am+px0 =
m−1∑
j=0

(
m+ p

j

)
λm+p−jN jx0

=



m0−1∑
j=0

(
m+ p

j

)
λm+p−jxj+1

...
m0−k∑
j=0

(
m+ p

j

)
λm+p−jxj+k

...
λm+pxm0

0
...
0




(m0 rows)

 (m−m0 rows) .

Let ni = m + pi for all i ≤ i0. Since (Anix0)∞i=1 is bounded, (λm+pixm0)∞i=1 is
bounded; as xm0 6= 0, we must have |λ| ≤ 1.

Case 1. Suppose m0 = 1. Then for each p = 0, 1, 2, · · · , Am=px0 =
[λm+px1, 0, · · · , 0]t so that (Anx0)∞n=1 is bounded as |λ| ≤ 1.

Case 2. Suppose m0 ≥ 2. Since
(
λm+pixm0−1 + λm+pi−1

(m+pi
1

)
xm0

)∞
i=1

is
bounded and xm0 6= 0, we must have |λ| < 1. Let α = max

1≤i≤m0
|xi|. Then for

each k = 1, · · · ,m0,∣∣∣∣∣∣
m0−k∑
j=0

(
m+ p

j

)
λm+p−jxj+k

∣∣∣∣∣∣
≤

mo−k∑
j=0

(
m+ p

j

)
|λ|m+p−jα→ 0 as p→∞,

which shows that Anx0 → 0 as n→∞ so that (Anx0)∞n=1 is bounded. 2
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Let (X, ‖ · ‖) be a real Banach space. LetXC = X×X. If (x1, y1), (x2, y2) ∈
XC , define (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and if z = (x, y) ∈ XC and
α = a+ib where a, b,∈ R define az = (ax−by, bx+ay). Then XC is a complex
vector space. Define

|(x, y)| = ‖x‖+ ‖y‖,

‖|(x, y)‖| = 1√
2

sup{|eiθ(x, y)| : θ ∈ [0, 2π]}

for each (x, y) ∈ XC , then (XC , ‖| · ‖|) is a complex Banach space. Clearly
r 7−→ (x, 0) is an isometry from X into XC . The space (XC , ‖| · ‖|) is called
the complexification of (X, ‖ · ‖) (see, e.g. [8]). Now if A : X → X is a
bounded (real) linear operator, define AC : XC → XC . by AC(x, y) = (Ax, Ay)
for all x, y ∈ X. Then AC is a complex linear operator on XC such that
‖|AC‖| = ‖A‖, AnC(x, 0) = (Anx, 0) and ‖|AnC(x, 0)‖| = ‖Anx‖ for all x ∈ X
and for all n ∈ N. The operator AC is called the complexification of A (see,
e.g. [8]). Note that

(a) ‖|AnC‖| = ‖An‖ for all n ∈ N;

(b) A is compact if and only if AC is compact;

(c) A is finite-rank if and only if AC is finite-rank;

(d) A is a strict contraction (i.e., ‖A‖ < 1) if and only if AC is a strict
contraction.

Theorem 1. Let X be a, finite-dimensional Banach space and A : X → X
be linear. Then A has the (BSP).

Proof. Let dim X = m. Case 1. If X is a complex Banach space, without
loss of generality, we may assume that X = Cm. Furthermore, we may, by the
Jordan canonical form, assume that A is of the form A1⊕· · ·⊕Ar, where each
Ak is the sum of a scalar matrix and a Jordan cell. Then the assertion of the
(BSP) of A follows easily from Lemma 1.

Case 2. Suppose X is a real Banach space. Let XC = X × X be the
complexification of X and AC be the complexification of A. Then x 7−→
(x, 0) is an isometry from X into XC . Since (Anix0)∞i=1 is bounded in X, the
subsequence (AniC (x0, 0))∞i=1 of (AnC(x0, 0))∞n=1 is also bounded in XC . Hence by
Case 1, the sequence (AnC(x0, 0))∞n=1 is bounded in XC . Therefore (Anx0)∞n=1

is bounded in X. 2

The following simple fact can be easily proved by induction; its proof is
thus omitted:
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Lemma 2. Let E be a vector space, A : E → E be a linear operator,
a ∈ E and T : E → E be the affine operator defined by T (x) = Ax+ a for all
x ∈ E. If η ∈ E is a fixed point of T , then for each x ∈ E,

T n(x)− η = An(x− η) for all n ∈ N.

Let E be a vector space over the field Φ(= C or R) and S be a non-empty
subset of E. Then S is said to be functionally bounded in E [4] if for each
linear functional f on E, f(S) is bounded in Φ. The following simple result
is Lemma 2.4 in [4]:

Lemma 3. Let E be a vector space and S be a non-empty subset of E. If
S is functionally bounded in E, then the linear span of S is finite-dimensional.

The following result is Theorem 2.2 in [4]:

Lemma 4. Let E be a vector space and T : E → E be an affine operator.
If T has no fixed point in E, then there exists a linear functional f on E such
that for each x ∈ E, f(T n(x))→∞ as n→∞.

As an application of Theorem 1, we have:

Theorem 2. Let E be a vector space and T : E → E be affine. Then T
has the functional (BSP); i.e., for each x ∈ E, if a subsequence (T ni(x))∞i=1 of
(T n(x))∞n=1 is functionally bounded in E, then (T n(x))∞n=1 is itself functionally
bounded in E.

Proof. Let A : E → E be linear and a ∈ E be such that T (x) = Ax + a
for all x ∈ E.

Let x ∈ E be such that (T ni(x))∞i=1 is functionally bounded in E. By
Lemma 4, T has a fixed point η ∈ E. If x = η, then clearly (T n(x))∞n=1

is functionally bounded. Thus we may assume that x 6= η. It follows that
{T ni(x)−η : i ∈ N} is also functionally bounded in E. By Lemma 3, {T ni(x)−
η : i ∈ N} spans a finite-dimensional subspace of E so that {T ni(x)−η : i ∈ N}
is linearly dependent. By Lemma 2, {Ani(x− η) : i ∈ N} is linearly dependent
and hence {An(x− η) : n ∈ N} is linearly dependent.

If z = x − η, then z 6= 0. Let p be the smallest positive integer such
that Apz is a linear combination of {z,Az, · · · , Ap−1z}. Then it is easy to
verify that the whole sequence (Anz)∞n=1 lies in the subspace F of E which
is spanned by {z,Az, · · · , Ap−1z}. Now equip F with the Euclidean topology;
then F is isometrically isomorphic to Φp (for Φ = C or R). Note that (Aniz)∞i=1

is functionally bounded in E and is hence functionally bounded in F . As every
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linear functional on F is continuous on F and functional boundedness in F
is equivalent to boundedness in F . (Aniz)∞i=1 is bounded in F . By Theorem
1, (Anz)∞n=1 is bounded in F and is therefore functionally bounded in E. By
Lemma 2 again, (T n(x)− η)∞n=1 is functionally bounded in E. It follows that
(T n(x))∞n=1 is functionally bounded in E. 2

Theorem 2 answers the Conjecture in [4] in the affirmative.
Again, since in a finite-dimensional Banach space, functional boundedness

is equivalent to boundedness (in norm), we have the following immediate con-
sequence of Theorem 2 extending Theorem 1 from linear operators to affine
operators:

Theorem 3. Let X be a finite-dimensional Banach space and T : X → X
be an affine operator. Then T has the (BSP).

3. The Infinite-Dimensional Case

Let X be the complex Hilbert space `2 of all sequences x = (xn)∞n=1 of
complex numbers with ‖x‖ = (

∑∞
n=1 |xn|2)1/2 < ∞. Let {e1, e2, · · ·} be the

standard orthonormal basis for X and S be the forward shift operator on X,
i.e., the bounded linear operator defined by Sei = ei+1 for all i ∈ N. Let S∗

be the (Hilbert space) adjoint of S (the backward shift). In [9], it is shown
that for each α > 1, the operator A = αS∗ has a dense orbit, i.e., there
exists a vector x0 ∈ X such that {Anx0 : n ∈ N} is dense in X. It follows
that there are bounded subsequences of (Anx0)∞n=1 while the whole sequence
(Anx0)∞n=1 is not bounded. This shows that Theorem 1 cannot be extended
to infinite-dimensional Banach spaces without additional assumptions on A.
Also, in [3, Theorem 2.1], it is shown that there exists a continuous affine
operator T : X → X such that the sequence (T n0)∞n=1 is unbounded while its
subsequence (T n!0)∞n=1 converges to 0. This shows that Theorem 3 cannot be
extended to infinite-dimensional Banach spaces without additional assunptions
on T (or on its linear part AT )

Let (X, ‖ · ‖) be a Banach space and A : X → X be a bounded lin-
ear operator. Then the spectral radius of A, denoted by r(A), is defined as
limn→∞ ‖An‖1/n. Note that if (X, ‖ · ‖) is a complex Banach space, then by
Gel’fand’s theorem, r(A) = sup{|λ| : λ ∈ σ(A)}, where σ(A) is the spectrum
of A.

Lemma 5. Let X be a complex Banach space and A : X → X be a
bounded linear operator. Suppose σ(A) = σ1 ∪ σ2 ∪ σ3 where σ1, σ2 and σ3

are all closed, σ1 is in the interior of the unit circle, σ2 is on the unit circle
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and σ3 is in the exterior of the unit circle. Let X = X1 ⊕ X2 ⊕ X3 be the
Riesz decomposition of X [7] with corresponding A = A1 ⊕A2 ⊕A3 such that
σi = σ(Ai), i = 1, 2, 3. If x0 = x1 ⊕ x2 ⊕ x3 is any vector in X with xi ∈ Xi

for i = 1, 2, 3, then (Anix0)∞i=1 is bounded in X if and only if x3 = 0 and
(Ani2 x2)∞i=1 is bounded in X2.

Proof. Since r(A1), the spectral radius of A1, is strictly less than 1, An1 → 0
as n → ∞. Since r(A3) > 1 (so that r(A−1

3 ) < 1), (Ani3 x3)∞i=1 is bounded if
and only if x3 = 0. Hence (Anix0)∞i=1 is bounded if and only if x3 = 0 and
(Ani2 x2)∞i=1 is bounded. 2

Lemma 6. Let X be a complex Banach space and T : X → X be affine.
Suppose A = AT satisfies the same hypotheses as in Lemma 5. Assume X2 is
finite-dimensional. Then T has the (BSP).

Proof. Let a = T (0) = a1⊕a2⊕a3 and let x0 = x1⊕x2⊕x3, where xi, ai ∈
Xi for i = 1, 2, 3, be such that a subsequence (T ni(x0))∞i=1 of (T n(x0))∞n=1 is
bounded. Let T = T1 ⊕ T2 ⊕ T3 corresponding to A = A1 ⊕ A2 ⊕ A3; then
Tj(xj) = Ajxj + aj for j = 1, 2, 3. Since 1 6∈ σ(A1) ∪ σ(A3), we can define
ηj = (Ij −Aj)−1aj for j = 1, 3. Then Tj(ηj) = ηj so that ηj is a fixed point of
Tj, j = 1, 3. Since (T nij (xj))∞i=1 is bounded, by Lemma 2, (Anij (xj − ηj))∞i=1 is
bounded for j = 1, 3. By Lemma 5, x3 = η3 so that (An3 (x3−η3))∞n=1 is trivially
bounded. Since r(A1) < 1, (An1 (x1 − η1))∞n=1 is clearly bounded. By Lemma
2 again, (T nj (xj) − ηj)∞n=1 is also bounded for j = 1, 3. Since X2, is finite-
dimensional, (T n2 (x2))∞n=1 is bounded by Theorem 3. Therefore (T n(x0))∞n=1 is
bounded. 2

Recall that a bounded linear operator A on a Banach space X is quasi-
nilpotent if r(A) = 0. In the case when the Banach space X is complex, this is
equivalent to the condition σ(A) = {0}. If (X, ‖·‖) is a real Banach space and
AC is the complexification of A, then r(AC) = r(A) so that A is quasi-nilpotent
if and only if AC is quasi-nilpotent. A Riesz operator A on a complex Banach
space is a bounded linear operator for which the non-zero elements in σ(A)
behave like those for compact operators. More precisely, a bounded linear
operator A is a Riesz operator if and only if for each λ 6= 0, N(A − λI) (the
null space of A−λI, where I is the identity operator) and R(A−λI) (the range
space of A−λI) have finite dimension and finite codimension respectively (see
[2]). It follows that if ε > 0 is given, then A = S + K where S and K are
bounded linear operators such that r(S) < ε and K is of finite rank.

Theorem 4. Let X be a Banach space and T : X → X be an affine
operator. If A = AT is a compact perturbation of an operator with spectral
radius less than 1, then T has the (BSP).
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Proof. Case 1. Suppose X is a complex Banach space. Suppose A = S+K,
where S,K : X → X are bounded linear operators such that r(S) < 1 and K
is compact. Let η(S) be the polynomially convex hull of σ(S); i.e., the smallest
set containing σ(S) with a connected complement). Then by Theorem 5.7.4
in [1], σ(A)\η(S) is contained in the set of isolated eigenvalues λ with finite-
rank associated riesz operator (see Theorem 3.3.4 in [1]) and the accumulation
points of σ(A)\η(S) are in η(S). (Here, I is again the identity operator on
X.) Since σ(S) is in the interior of the unit circle, the intersection of the unit
circle with σ(A) has the properties of σ2) in Lemma 6. The conclusion follows
from Lemma 6.

Case 2. Suppose X is a real Banach space. Let A = S + K, where
S,K : X → X are bounded linear operators such that r(S) < 1 and K
is compact. Let XC = X × X be the complexification of X and AC , SC
and KC be the complexifications of A,S and K, respectively. Then XC is a
complex Banach space, r(SC) < 1, KC is compact and AC = SC +KC . Define
TC : XC → XC by TC(x, y) = AC(x, y) + (a, 0) for all (x, y) ∈ XC . Then by
Case 1, TC has the (BSP) so that T also has the (BSP). 2

By the remark just preceding Theorem 4, a Riesz operator is a special case
of a compact perturbation of an operator with spectral radius less than 1.
Also strict contractions and quasinilpotent operators have spectral radii less
than 1. Thus Theorem 4 implies the following

Corollary 1. Let X be a Banach space and T : X → X be an affine
operator. Assume that A = AT is a bounded linear operator in any of the
following classes:

(1) compact operators,

(2) compact perturbations of strict contractions,

(3) quasi-nilpotent operators,

(4) Riesz operators.

Then T has the (BSP).

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm
‖ · ‖. Let HC = H ×H. If (x1, y2), (x2, y2) ∈ HC , define (x1, y1) + (x2, y2) =
(x1 + x2, y1 + y2) and if z = (x, y) ∈ HC and α = a + ib where a, b ∈ R,
define αz = (ax − by, bx + ay). Then HC is a complex vector space. Define
[·, ·] : HC ×HC → C by

[(x1, y1), (x2, y2)] = 〈x1, x2〉+ i〈y1, x2〉 − i〈x1, y2〉+ 〈y1, y2〉,
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for each (x1, y1), (x2, y2) ∈ HC , then [·, ·] is an inner product on HC . If
‖|(x, y)‖| = ([(x, y), (x, y)])1/2, then ‖|(x, y)‖| = (‖x‖2 + ‖y‖2)1/2 for all x, y ∈
H. Hence HC is a Hilbert space. Clearly x 7−→ (x, 0) is an isometry frorm H
into HC . The space HC is called the complexification of H (see e.g., [6]). Now
if A : H → H is a bounded (real) linear operator, define AC : HC → HC by
AC(x, y) = (Ax,Ay) for all x, y ∈ H. Then AC is a complex linear operator on
HC such that ‖|AC‖| = ‖A‖, AnC(x, 0) = (Anx, 0) and ‖|AnC(x, 0)‖| = ‖Anx‖
for all x ∈ H and for all n ∈ N. The operator AC is called the complexification
of A. Note that

(a) A is normal if and only if AC is normal.

(b) σ(AC) ∩ R= σ(A).

(c) A is subnorma1 if and only if AC is subnormal.

When A is a bounded normal or subnormal linear operator on a Hilbert
space, Lemma 6 can be improved as follows:

Theorem 5. Let H be a Hilbert space and A : H → H be a bounded
normal linear operator. Then A has the (BSP).

Proof. Case 1. Suppose H is a complex Hilbert space. Since A is normal,
by the spectral theorem for normal operators (see, e.g. [7]), there exists a
finite Borel measure space (X,µ) and a, bounded measurable function φ on
X such that A is unitarily equivalent to Mφ on L2(X,µ) defined by Mφf =
φf for all f ∈ L2(X,µ). It is sufficient to show that for f0 ∈ L2(X,µ), if
(
∫
X |φni f0|2dµ)∞i=1 is bounded, then (

∫
X |φnf0|2dµ)∞n=1 is bounded. Let M =

sup
i≥1

∫
X

|φni f0|2dµ,

X1 = φ−1{z ∈ C : |z| ≤ 1} and X2 = φ−1{z ∈ C : |z| > 1}.

For a given n ∈ N, there exists i ∈ N such that ni ≤ n ≤ ni+1. It follows that∫
X

|φnf0|2dµ =
∫
X1

|φnf0|2dµ+
∫
X2

|φnf0|2dµ

≤
∫
X1

|φnif0|2dµ+
∫
X2

|φni+1f0|2dµ

≤
∫
X

|φnif0|2dµ+
∫
X

|φni+1f0|2dµ

≤ 2M.

Therefore (
∫
X |φnf0|2dµ)∞n=1 is bounded.
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Case 2. Suppose H is a real Hilbert space. Let HC = H = H × H be
the complexification of H and AC be the complexification of A. Then HC is
a complex Hilbert space and AC is a bounded norma1 linear operator on HC

such that AC(x, y) = (Ax,Ay) and ‖|(x, y)‖|2 = ‖x‖2 + ‖y‖2 for all x, y ∈ H.
Since (Anix0)∞i=1 is bounded in H, (AniC (x0, 0))∞i=1 is bounded in HC . Hence by
Case 1, (AnC(x0, 0))∞n=1 is bounded in HC . Therefore (Anx0)∞n=1 is bounded in
H. 2

Corollay 2. Let H be a Hilbert space and A : H → H be a bounded
subnormal linear operator. Then A has the (BSP).

Proof. By definition, there exist a Hilbert space Ĥ ⊃ H and a normal
operator Â on Ĥ such that ÂH ⊂ H and A = Â|H. If x0 ∈ H, then Amx0 =
Âmx0 for all m = 1, 2, · · ·. Thus the conclusion follows from Theorem 5. 2

Theorem 6. Let H be a Hilbert space and T : H → H be affine. If
A = AT is a bounded normal linear operator such that 1 6∈ σ(A), then T has
the (BSP).

Proof. Since 1 6∈ σ(A), we may take η = (I−A)−1a, where I is the identity
operator on H and a = T (0); then η is a fixed point of T . Suppose x ∈ H such
that (T ni(x))∞i=1 is bounded; by Lemn1a 2, (Ani(x − η))∞i=1 is also bounded.
By Theorem 5, (An(x − η))∞n=1 is bounded . By Lemma 2 again, (T n(x))∞n=1

is therefore bounded. 2

Corollary 3. Let H be a Hilbert space and T : H → H be affine. If
A = AT is a bounded subnormal linear operator such that 1 6∈ σ(A), then T
has the (BSP).

Proof. Case 1. Suppose H is a complex Hilbert space. Let Â be the
minimal normal extension of A, then σ(Â) ⊂ σ(A) (see, e.g. [5, Problem
200]). Thus 1 6∈ σ(A) and the conclusion now follows from Theorem 6.

Case 2. Suppose H is a real Hilbert space. Let HC be the complexification
of H and AC be the complexification of A. Then AC is a bounded subnormal
linear operator on HC . Since 1 6∈ σ(A) = σ(AC) ∩ R, we have 1 6∈ σ(AC).
Define TC : HC → HC by TC(x, y) = AC(x, y) + (a, 0) for all (x, y) ∈ HC .
Suppose x ∈ H such that (T ni(x))∞i=1 is bounded; then (T niC (x, 0))∞i=1 is also
bounded so that (T nC(x, 0))∞n=1 is bounded by Case 1. Therefore (T n(x))∞n=1 is
bounded. 2

Theorem 7. Let H be a complex Hilbert space and T : H → H be an
affine operator. If A = AT is a bounded normal linear operator such that 1 is
an isolated point in σ(A), then T has the (BSP).
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Proof. Since 1 is an isolated point in σ(A), it is an eigenvalue of A (this fact
can be proved by applying the spectral theorem for normal operators which is
used in proving Theorem 5; see e.g. [7]). Let H1 = N(A − I) and H2 = H⊥1 ,
where I is the identity operator on H. Then A = I ⊕ A2 and T = T1 ⊕ T2

corresponding to the decomposition H = H1 ⊕H2, where 1 6∈ σ(A2).
Let a = T (0) = a1⊕a2 and let x = x1⊕x2, where ai, xi ∈ Hi for i = 1, 2, be

such that (T ni(x))∞i=1 is bounded. The assumption that (T ni(x))∞i=1 is bounded
implies that a1 = 0 and (T ni2 (x2))∞i=1 is bounded. By Theorem 6, (T n2 (x2))∞n=1

is bounded. Therefore (T n(x))∞n=1 is also bounded. 2

Corollary 4. Let H be a complex Hilbert space and T : H → H be an
affine operator. If A = AT is a bounded subnormal linear operator such that
1 is an isolated point in σ(A), then T has the (BSP).

Proof. Let Â be the minimal normal extension of A. Since σ(Â) ⊂ σ(A),
1 has to be an isolated point of σ(A) if it belongs to the set. (It actually
does, because σ(A)\σ(Â) has the property that each bounded component of
the complement of σ(Â) is either entirely contained in it or is disjoint from it,
see e.g. [5, Problem 201]). The conclusion now follows from Theorem 7. 2

We remark that if H is a real Hilbert space, the conclusions of Theorem 7
and Corollary 4 remain valid if the condition “1 is an isolated point in σ(A)” is
replaced by “1 is an isolated point in σ(AC), where AC is the complexification
of A”.

Finally, we shall provide an example showing that the conclusion of The-
orem 7 may be false if the given Hilbert space is real instead of complex.

Example 1. Let X be the complex Hilbert space `2 of all sequences
x = (xn)n=1∞ of complex numbers with ‖x‖ = (

∑∞
n=1 |xn|2)1/2 < ∞. Define

A : X → X by

Ax = (e2πi/n!xn)∞n=1 for each x = (xn)∞n=1 ∈ X.

Let a = (an)∞n=1, where an = 1 − e2πi/n! for each n ≥ 1; then a ∈ X. Define
T : X → X by T (x) = Ax+ a for all x ∈ X. Then as shown in [3]:

(a) A is linear and unitary;

(b) the sequence (T k(0))∞k=1 is unbounded but contains a subsequence
(T k!(0))∞k=1 which converges to 0;

(c) σ(A) = {e2πi/n! : n ∈ N} ∪ {1}.
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Let A∗ be the adjoint of A and a = (an)∞n=1, where an denotes the complex
conjugate of an. Let H = X ×X and

B =

[
A 0
0 A∗

]
and b =

[
a
a

]
.

Define S : H → H by S(x) = Bx+ b for all x ∈ H. Then

(a)’ B is linear and unitary;
(b)’ the sequence (Sk(0))∞k=1 is unbounded but contains a subsequence (Sk!(0))∞k=1

which converges to 0 (by observing that A is diagonal relative to the
standard basis and so is A∗).

(c)’ σ(B) = σ(A) ∪ σ(A∗).

Let I be the identity operator on X and define

M =
1√
2

[
I I
iI −iI

]
.

Then M is unitary and

M−1 =
1√
2

[
I −iI
I iI

]
.

Define B0, T0 : H → H and b0 ∈ H by B0 = MBM−1, T0(x) = B0x + b0 for
all x ∈ H and b0 = Mb. Then

(a)” B0 is linear and unitary;
(b)” the sequence (T k0 (0))ik=1nfty is unbounded but contains a subsequence

(T k!
0 (0))∞k=1 which converges to 0.

(c)” σ(B0) ∩ R = {1}.

However,

B0 =
1
2

[
A+A∗ −iA+ iA∗

iA− iA∗ A+A∗

]
and B0 =

1√
2

[
a+ a
i(a− a)

]
,

which show that both B0 and b0 are real. We can now consider H as a real
Hilbert space. Then T0 : H → H is affine such that

(a)” ’ its linear part is B0 which is unitary and hence normal;
(b)” ’ 1 is isolated in σ(B0);
(c)” ’ T0 does not have the (BSP) by (b)”.
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This shows the hypothesis that the Hilbert space H is complex in Theorem 7
is essential.

4. Remarks

In this section, we shall make some observations and pose some problems
suggesting that further work may be fruitful.

First we note the following:
(1) Suppose (X, ‖ · ‖) is a Banach space, T, S : X → X are affine and R :

X → X is bounded linear and invertible. If T has the (BSP), AS = RATR
−1

and S0 = RT0, then S also has the (BSP).
(2) Suppose H is a Hilbert space and T : H → H is bounded linear with

the (BSP). Then its adjoint T ∗ may not have the (BSP). For example, if S is
the forward shift operator as defined in the first paragraph of the preceding
section, then 2S is subnormal (in fact, S is an isometry, so it can be extended
to a unitary operator). Thus 2S has the (BSP), but, as remarked before, 2S∗

fails to have the (BSP).
Let E be a vector space over the field Φ(= C or R) and B be a non-

empty subset of E. Denote by ac(B) the absolutely convex hull of B; i.e.,
ac(B) = {

∑m
j=1 λjxj : λj ∈ Φ and xj ∈ B for all j = 1, · · · ,m with

∑m
j=1 |λj| ≤

1, m ∈ N}. The set B is said to be linearly bounded in E if for each x ∈ E
with x 6= 0, the set {λ ∈ Φ : λx ∈ ac(B)} is bounded in Φ. It is easy to see
that

(a) B is functionally bounded in E if and only if ac(B) is functionally
bounded in E;

(b) If B is functionally bounded in E, then B is linearly bounded in E;
(c) If B is linearly bounded in E, B need not be functionally bounded in

E;
(d) If E is finite-dimensional, then B is functionally bounded in E if and

only if B is linearly bounded in E.

Problem 1. Let E be a vector space and T : E → E be affine. (1) Does
T have the linear (BSP); i.e., for any x ∈ E, if a subsequence (T ni(x))∞i=1 of
(T n(x))∞n=1 is linearly bounded in E, then is (T n(x))∞n=1 itself linearly bounded
in E? (2) If for some x0 ∈ E, a subsequence (T ni(x0))∞i=1 of (T n(x0))∞n=1 is
linearly bounded in E, does T have a fixed point in E?

Let E be a vector space over the field Φ(= C or R) and B be a non-empty
subset of E. The set B is said to be radially bounded in E if for each x ∈ E
with x 6= 0, the set λ ∈ Φ : λx ∈ B} is bounded in Φ. It is easy to see that
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(a) If B is functionally bounded in E, then B is radially bounded in E,.

(b) If B is radially bounded in E, B need not be functionally bounded in
E.

Problem 2. Let E be a vector space and T : E → E be affine. (1) Does
T have the radial (BSP); i.e., for any x ∈ E, if a subsequence (T ni(x))∞i=1 of
(T n(x))∞n=1 is radially bounded in E, then is (T n(x))∞n=1 itself radially bounded
in E? (2) If for some x0 ∈ E, a subsequence (T ni(x0))∞i=1 of (T n(x0))n=1∞ is
radially bounded in E, does T have a fixed point in E?

As noted earlier, if (X, ‖ · ‖) is a Banach space, T, S : X → X are bounded
linear operators such that T has the (BSP) and S is similar to T , then S also
has the (BSP). However, we pose the following

Problem 3. Let (X, ‖ · ‖) be a non-reflexive Banach space and T, S :
X∗ → X∗ bounded linear operators. Suppose T has the w∗ (BSP); i.e., for
each x0 ∈ X∗, if a subsequence (T ni(x0))∞i=1 of (T n(x0))∞n=1 is w∗ bounded,
then (T n(x0))∞n=1 is itself w∗ bounded. Suppose S similar to T . Does S also
have the w∗ (BSP)?

Last but not least, we pose the following:

Problem 4. Let (X, ‖ · ‖) be a non-reflexive Banach space and T : X∗ →
X∗ be a bounded linear operator belonging to any one of the classes (1)− (4)
in Corollary 1. Does T have the w∗ (BSP)?
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