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FIXED POINTS, MINIMAX INEQUALITIES AND
EQUILIBRIA OF NONCOMPACT ABSTRACT ECONOMIES∗

Xieping Ding

Abstract. Several new fixed point theorems in H-space are first proved.
Next, by applying the fixed point theorems, some minimax inequalities
and existence theorems of maximal elements for LF correspondences and
LF -majorized correspondences in H-spaces are obtained. Finally, using
the existence theorems of maximal elements, some equilibrium existence
theorems for one-person games, qualitative games and noncompact ab-
stract economies with LF -majorized correspondences in H-spaces are ob-
tained. Our theorems improve and generalize most known results due
to Border, Borglin-Keiding, Ding-Kim-Tan, Ding-Tan, Ding-Tarafdar,
Mehta-Tarafdar, Shafer-Sonnenschein, Tan-Yuan, Tarafdar, Toussaint,
Tulcea, Yannelis and Yannelis-Prabhakar etc.

1. Introduction

Recently, Ding-Kim-Tan [7, 8], Ding-Tan [10, 11, 12], Ding-Zhuang [14],
Tan-Yuan [24, 25], Tian [32, 33] have proved some very general equilibrium
existence theorems for noncompact abstract economies (= generalized games)
with an infinite number of agents, with infinitely dimensional strategy spaces
and with majorized type preference correspondences defined on noncompact
strategy sets of agents. These theorems improve and generalize most known
results due to Borglin-Keiding [4], Shafer-sonnenschein [21], Tarafdar [30],
Toussaint [34], Tuclea [35, 36], Yannelis-Prabhakar [38] and others. To my
best knowledge, all the above existence theorems are proved by assuming that
the strategy sets are nonempty convex or nonempty compact convex subsets
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of topological vector spaces. The assumptions are very restrictive since the
strategy sets of agents generally are not compact and convex in any topology
of commodity spaces; the commodity spaces may not have the linear structure
and various kinds of preference and constraint correspondences will be encoun-
tered in general economic situations. Thus, it is important and of interest to
establish some equilibrium existence theorems for an abstract economy with
noncompact and nonconvex strategy sets of agents.

Tarafdar [31] and Ding [6] have established some equilibrium existence
theorems for qualitative games and abstract economies under H-space setting
without linear structure which generalize some known results under the setting
of topological vector spaces.

In this paper, we shall first introduce the notions of correspondence of class
LF , LF -majorant of φ at x and LF -majorized correspondence in H-space.
These notions generalize the corresponding definitions of Borglin-Keiding [4],
Toussaint [34], Tulcea [35, 36], Ding-Kim-Tan [7], Ding-Tan [10, 11, 12], Tan-
Yuan [25] and Ding-Tarafdar [13]. Next some new fixed point theorems for
set-valued mappings with noncompact domain in H-space are proved un-
der very weak coercive condition and some equivalent forms are also given.
These theorems unify and generalize many known results in the literature. As
applications. an existence theorem of maximal elements for LF -majorized
correspondence is obtained which generalizes the corresponding results of
Borglin-Keiding [4], Yannelis [37], Yannelis-Prabhaka [38], Toussaint [34], Tul-
cea [35, 36], Ding-Kim-Tan [7], Ding-Tan [10, 11, 12], Tan-Yuan [25] and Ding-
Tarafdar [13]. By applying earlier results, several equilibrium existence the-
orems of one-person games and qualitative games with an infinite number of
agents and with LF -majorized preference correspondences are proved under
H-space setting. Finally, some equilibrium existence theorems of an abstract
economy with an infinite number of agents and with LF -majorized correspon-
dences defined on noncompact and nonconvex strategy sets of agents are ob-
tained under H-space setting. Our results are new and generalize most known
results in the economies literature mentioned above.

2. Preliminaries

Let A be a subset of a topological space X. We shall denote by 2A the
family of all subsets of A, by intX(A) the interior of A in X, and by clX(A)
the closure of A in X. A subset A of X is said to be compactly open (resp.,
closed) in X if for each nonempty compact subset K of X, A ∩ K is open
(resp., closed) in K. If X and Y are topological spaces and T, S : X → 2Y

are two correspondences, then T ∩ S : X → 2Y is a corresopndence defined
by (T ∩ S)(x) = T (x) ∩ S(x) for each x ∈ X. The graph of T is the set
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Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)} and the correspondence T : X → 2Y is
defined by T (x) = {y ∈ X : (x, y) ∈ clX×Y (Gr(T ))} (the set clX×Y (Gr(T )) is
called the adherence of the graph of T ) and the correspondence cl T : X → 2Y

is defined by (cl T )(x) = clY (T (x)) for each x ∈ X. it is easy to see that
(cl T )(x) ⊂ T (x) for each x ∈ X.

The following notions, which were introduced by Bardaro-Ceppitelli [1, 2],
were motivated by the earlier works of Horvath in [18, 19].

A pair (E, {ΓA}) is said to be an H-space if E is a topological space and
{ΓA} is a family of contractible subsets of E indexed by A ∈ F(E) such that
ΓA ⊂ ΓA′ whenever A ⊂ A′ where F(E) denotes the family of all nonempty
finite subsets of E. Clearly, each topological vector space and its convex subset
are all H-spaces with ΓA = co(A) for each A ∈ F(E) where co(A) is the convex
hull of A. A subset D of an H-space (E, {ΓA}) is said to be (i) H-convex if
ΓA ⊂ D for each A ∈ F(D) and (ii) weakly H-convex if ΓA ∩D is contractible
for each A ∈ F(D).

Following Tarafdar [29], for a nonempty subset D of an H-space (E, {ΓA}),
we define the H-convex hull of D, denoted by H-co(D), as

H-co(D) = ∩{B ⊂ X : D ⊂ B and B is H-convex}.

By Lemma 1 of Tarafdar [29], we have

H-co(D) = ∪{H-co(A) : A ∈ F(D)}.

Let D be a nonempty set, (X, {ΓA}) be an H-space and G : D → 2X

be a correspondence. The correspondence H-coG : D → 2X is defined by
(H-coG)(x) = H-co(G(x)) for each x ∈ D.

The following notions are more general than the corresponding notions
due to Ding-Tan [10, 12], Tan-Yuan [25] and Ding-Tarafdar [13]. Let X be a
topological space, Y be a nonempty subset of an H-space (E, {ΓA}). θ : X → E
be a map and φ : X → 2Y be a correspondence. Then (1) φ is said to be of class
Lθ,F if (a) for each x ∈ X,H-co(φ(x)) ⊂ Y and θ(x) 6∈ H-co(φ(x)) for each x ∈
X and (b) there exists a correspondence ψ : X → 2Y such that ψ(x) ⊂ φ(x)
for each x ∈ X and for each y ∈ Y, ψ−1(y) = {x ∈ X : y ∈ ψ(x)} is compactly
open in X and {x ∈ X : φ(x) 6= ∅} = {x ∈ X : ψ(x) 6= ∅}; (2) (φx, ψx, Nx)
is called a Lθ,F -majorant of φ at x if φx, ψx : X → 2Y and Nx is an open
neighborhood of x in X such that (a) for each z ∈ Nx, φ(z) ⊂ φx(z) and
θ(z) 6∈ H-co(φx(z)), (b) for each z ∈ X, ψx(z) ⊂ φx(z) and H-co(φx(z)) ⊂ Y
and (c) for each y ∈ Y, ψ−1

x (y) is compactly open in X; (3) φ is called Lθ,F -
majorized if for each x ∈ X with φ(x) 6= ∅, there exists an Lθ,F -majorant
(φx, ψx, Nx) of φ at x such that for any nonempty finite subset A of the set
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28 Ding Xie-Ping

{x ∈ X : φ(x) 6= ∅}, we have

{z ∈ ∩x∈ANx : ∩x∈AH-co(φx(z)) 6= ∅}

= {z ∈ ∩x∈ANx : ∩x∈AH-co(ψx(z)) 6= ∅}.

It is clear that every correspondence of class Lθ,F is Lθ,F -majorized. We
note that our notions of the correspondence φ being of class Lθ,F and Lθ,F -
majorized correspondence generalize the corresponding notions of Ding-Tan
[10, 12], Ding-Kim-Tan [7], Tan-Yuan [25], Ding-Tarafdar [13] and Tulcea [35].
In this paper, we shall deal mainly with either the case (I) X = Y and is a
nonempty H-space and θ = IX , the identity mapping on X, or the case (II)
X = Πi∈IXi and θ = πj : X → Xj is the projection of X onto Xj and Xj is
an H-space. In both cases (I) and (II), we shall write LF in place of Lθ,F .

3. Fixed Point Theorems

Lemma 3.1. Let D be a topological space, (X, {ΓA}) be an H-space and
F : D → 2X be such that F−1(y) is compactly open in D for each y ∈ X.
Then the correspondence H-co F : D → 2X satisfies that (H-co F )−1(y) is
also compactly open in D for each y ∈ X.

Proof. For any fixed y ∈ X and for any nonempty compact subset C of
D, let x ∈ (H-co F )−1(y) ∩ C, then x ∈ C and y ∈ H-co(F (x)). By Lemma 1
of Tarafdar [29], there exists a finite set A of F (x) such that y ∈ H − co(A).
Hence we have that x ∈ F−1(y)∩C for each y ∈ A and each F−1(y)∩C is open
in C since each F−1(y) is compactly open in D. Let U = ∩y∈A(F−1(y) ∩ C),
then U is an open neighborhood of x in C. If z ∈ U , then z ∈ C and y ∈ F (z)
for all y ∈ A and hence A ⊂ F (z) and y ∈ H-co(A) ⊂ H-co(F (z)). It follows
that

z ∈ (H-co F )−1(y) ∩ C for all z ∈ U.

Therefore (H-co F )−1(y) ∩C is open in C and so (H-co F )−1(y) is compactly
open in D for each y ∈ X.

The following result is Corollary 1 of Ding-Tan [9].

Lamma 3.2. Let (X, {ΓA}) be an H-space and G : X → 2X be such that

(1) G is an H-KKM mapping,

(2) for each x ∈ X, G(x) is closed in X and for some x0 ∈ X, G(x0) is
compact.
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Then ∩x∈XG(x) 6= ∅.

We shall first show the following main fixed point theorem.

Theorem 3.1. Let (X, {ΓA}) be an H-space, F,G : X → 2X and K be a
nonempty compact subset of X such that

(1) for each x ∈ X, F (x) ⊂ G(x),
(2) for each y ∈ X, F−1(y) is compactly open in X,
(3) for each N ∈ F(X), there exists a compact weakly H-convex subset LN

of X with N ⊂ LN such that for each nonempty compact subset C of X,

LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K,

(4) for each x ∈ K, F (x) 6= ∅.

Then there exists ŷ ∈ X such that ŷ ∈ H-co(G(ŷ)).

Proof. Suppose that the conclusion does not hold. Then for each x ∈
X, x 6∈ H-co(G(x)). By assumption (2) and Lemma 3.1, for each nonempty
compact subset C of X and for each y ∈ X, (H-co F )−1(y) ∩ C is open in C
and (H-co F )−1(y) is compactly open in X for each y ∈ X.

For each x ∈ X, let

T (x) = clX(X\(H-coG)−1(x)) ∩K, and

S(x) = (X\(H-co F )−1(x)) ∩K.

We shall prove that the family {T (x) : x ∈ X} has the finite intersection
property. Let N ∈ F(X). By (3) there exists a compact weakly H-convex
subset LN of X with N ⊂ LN and hence (LN , {ΓA ∩ LN}) is a compact
H-space. Define two mappings T0, S0 : LN → 2LN by

T0(x) = clLN ((X\(H-coG)−1(x)) ∩ LN ), and

S0(x) = (X\(H-co F )−1(x)) ∩ LN

for each x ∈ LN . Then we have

(a) for each x ∈ LN , S0(x) is closed in LN since (H-co F )−1(x) is compactly
open and LN is compact,

(b) for each x ∈ LN , T0(x) ⊂ S0(x) by (1) and (a),
(c) for each x ∈ LN , T0(x) is compact,
(d) T0 is an H-KKM mapping. Indeed, it is enough to show that the mapping

T ∗ : LN → 2LN defined by
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30 Ding Xie-Ping

T ∗(x) = (X\(H-coG)−1(x)) ∩ LN for each x ∈ LN ,

is an H-KKM mapping. If this were false, then there exists A ∈ F(LN ) and a
point z ∈ H − co(A) such that

z 6∈ ∪x∈AT ∗(x)

= ∪x∈A[(X\(H-coG)−1(x)) ∩ LN ]

= (X\ ∩x∈A (H-coG)−1(x)) ∩ LN .

It follows that z ∈ ∩x∈A(H-coG)−1(x) and hence A ⊂ H-co(G(z)). Therefore
we have

z ∈ H-co(A) ⊂ H-co(G(z)),

which contradicts the fact that for each x ∈ X, x 6∈ H-co((G(x)). Hence T ∗

is an H-KKM mapping and so T0 is also an H-KKM mapping. By applying
Lemma 3.2, we have

∅ 6= ∩x∈LNT0(x)

= ∩x∈LN clLN ((X\(H-coG)−1(x))∩LN )

⊂ ∩x∈LN clX(x\(H-coG)−1(x)) ∩ LN .

Take ŷ ∈ ∩x∈LN clLN ((X\(H-coG)−1(x)) ∩ LN ). By assumption (3), we must
have ŷ ∈ K and hence

ŷ ∈ ∩x∈LN clX(X\(H-coG)−1(x)) ∩K

= ∩x∈LNT (x)

⊂ ∩x∈NT (x).

That is, the family {T (x) : x ∈ X} has the finite intersection property. By
the compactness of K,∩x∈XT (x) 6= ∅. By (1) and (2), we have T (x) ⊂ S(x)
for each x ∈ X and hence

∅ 6= ∩x∈XS(x)

= ∩x∈X(X\(H-co F )−1(x)) ∩K

= K ∩ (X\ ∪x∈X (H-co F )−1(x))

= K\ ∪x∈X (H-co F )−1(x).

But, by the assumption (4), for each x ∈ K, F (x) 6= ∅ and hence

K ⊂ ∪x∈X(H-co F )−1(x))
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which is a contradiction. Therefore the conclusion must hold.

Corollary 3.1. Let X be a nonempty convex subset of a topological vector
space and F,G : X → 2X be such that

(1) for each x ∈ X, F (x) ⊂ G(x),
(2) for each y ∈ X, F−1(y) is compactly open in X,
(3) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X\K, there is an x ∈
co(X0 ∪{y}) with y 6∈ clC((X\(coG)−1(x))∩C) for any nonempty com-
pact subset C of X,

(4) for each x ∈ K, F (x) 6= ∅.
Then there exists a point ŷ ∈ X such that ŷ ∈ co(G(ŷ)).

Proof. For each A ∈ F(X), let ΓA = co(A), then (X, {ΓA}) is an H-space.
Since X0 is compact and convex, for each N ∈ F(X), LN = co(X0∪N) is also
a nonempty compact and convex subset of X with N ⊂ LN . Now we claim
that condition (3) implies condition (3) of Theorem 3.1. Indeed, if condition
(3) of Theorem 3.1 does not hold, then there exist a finite set N ∈ F(X) and
a nonempty compact subset C of X such that

LN ∩ ∩x∈LN clC((X\(coG)−1(x)) ∩ C) 6⊂ K.

Thus there exists a point y ∈ LN\K such that y ∈ clC((X\(coG)−1(x)) ∩ C)
for all x ∈ LN which contradicts assumption (3) since y ∈ LN implies co(X0 ∪
{y}) ⊂ LN . The conclusion of Corollary 3.1 follows from Theorem 3.1.

Remark 3.1. Corollary 3.1 is Theorem 3.1 of Ding-Tarafdar [13] which
improves and generalizes Theorem 3” of Ding-Tan [11] (also see Lemma 1 of
Ding-Tan [12]). Corollary 3.1 also generalizes Theorems 2.4’, 2.4” and 2.4”’ of
Tan-Yuan [25], Theorem 1 of Ding-Tan [10], Theorem 1 of Tarafdar [26] (also
Theorem 1 in [20]), Theorem 2 of Tarafdar [28] and Theorem 1.2 of Tarafdar
[27].

Corollary 3.2. Let (x, {ΓA}) be an H-space, G : X → 2X and K be a
nonempty compact subset of X such that

(1) for each y ∈ X, G−1(y) is compactly open in X,
(2) for each N ∈ F(X), there exists a nonempty compact weakly H-convex

subset LN of X with N ⊂ LN such that for each y ∈ LN\K, there is an
x ∈ LN with x ∈ H − co(G(y))

(3) for each x ∈ K, G(x) 6= ∅.
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Then there exists a point ŷ ∈ X such that ŷ ∈ H-co(G(ŷ)).

Proof. Condition (2) implies that for each N ∈ F(X),

LN\K ⊂ ∪x∈LN (H-coG)−1(x)

and hence

LN ∩ ∩x∈LN (X\(H-coG)−1(x)) = LN ∩ (X\ ∪x∈LN (H-coG)−1(x))

= LN\ ∪x∈LN (H-coG)−1(x) ⊂ K.

Thus for any nonempty compact subset C of X, we have

LN ∩ ∩x∈LN ((X\(H-coG)−1(x)) ∩ C) ⊂ K ∩ C ⊂ K.

By assumption (1) and Lemma 3.1, (H-coG)−1(x) is compactly open in X for
each x ∈ X. It follows that each (X\(H-coG)−1(x))∩C is closed in C and so

clC((X\(H-coG)−1(x)) ∩ C) = X\(H-coG)−1(x)) ∩ C.

Hence we have

LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K.

By applying Theorem 3.1 with F = G, there exists a point ŷ ∈ X such that
ŷ ∈ H-co(G(ŷ)).

Remark 3.2. Corollary 3.2 improves and generalizes Theorem 3” of Ding-
Tan [11] (also see, Lemma 1 of Ding-Tan [12]).

The following are some equivalent versions of Theorem 3.1.

Theorem 3.2. Let (X, {ΓA}) be an H-space, F,G : X → 2X and K be a
nonempty compact subset such that

(1) for each x ∈ X, F (x) ⊂ G(x) and G(x) is H-convex,

(2) for each y ∈ X, F−1(y) is compactly open in X,

(3) for each N ∈ F(X) there exists a compact weakly H-convex subset LN
with N ⊂ LN such that for any nonempty compact subset C of X,

LN ∩ ∩x∈LN clC((X\G−1(x)) ∩ C) ⊂ K,

(4) for each y ∈ K, F (y) 6= ∅.
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Then there exists a point ŷ ∈ X such that ŷ ∈ G(ŷ).

Theorem 3.3. Let (X, {ΓA}) be an H-space, G : X → 2X and K be a
nonempty compact subset of X such that

(1) for each y ∈ X, G−1(y) contains a compactly open subset Oy (which
may be empty) of X,

(2) for each N ∈ F(X), there exists a compact weakly H-convex subset LN
with N ⊂ LN such that for any nonempty compact subset C of X,

LN ∩ ∩x∈LN clC((X\(H-co )−1(x)) ∩ C) ⊂ K

and K ⊂ ∪x∈XOy.

Then there exists a point ŷ ∈ X such that ŷ ∈ H-co(G(ŷ)).

Theorem 3.4. Let (X, {ΓA}) be an H-space, G : X → 2X and K be a
nonempty compact subset of X such that

(1) for each x ∈ X, G(x) is H-convex,

(2) for each y ∈ X, G−1(y) contains a compactly open subset Oy (which
may be empty) of X,

(3) condition (3) of Theorem 3.2 holds and K ⊂ ∪x∈XOy.

Then there exists a point ŷ ∈ X such that ŷ ∈ G(ŷ).

Sketch of Proofs:

(1) Theorem 3.1 ⇐⇒ Theorem 3.2 and Theorem 3.3 ⇐⇒ Theorem 3.4 are
obvious.

(2) Theorem 3.1 =⇒ Theorem 3.3: Define a mapping F : X → 2X by
F (x) = {y ∈ X : x ∈ Oy} for each x ∈ X.

(3) Theorem 3.3 =⇒ Theorem 3.1: For each y ∈ X. Iet Oy = F−1(y) where
F is given in Theorem 3.1.

Remark 3.3. Theorem 3.2 generalizes Theorem 2.4’ of Tan-Yuan [25]
to H-space and the coercive condition (3) in Theorem 3.2 is weaker than the
condition (d) in Theorem 2.4’ of Tan-Yuan [25]. Theorem 3.3 improves and
extends Theorem 3.3 of Ding-Tarafdar [13] and Theorem 2.4”” of Tan-Yuan
[25] to H-space and in turn generalizes Theorem 1 of Tarafdar [26], Theorem 2
of Tarafdar [28] and Theorem 1.2 of Tarafdar [27] and the corresponding results
of Ding-Tan [7], Metha-Tarafdar [20], Border [3], Browder [5] and Yannalis
[37].
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34 Ding Xie-Ping

4. Minimax Inequalities

In this section, we shall show some minimax inequalities in H-space which
generalize some recent results in the literature.

Let (X, {ΓA}) be an H-space and ψ : X ×X → R∪ {±∞}. ψ(x, y) is said
to be γ-H-diagonally quasiconcave (in short, γ-HDQCV) in x for some γ ∈ R∪
{±∞}, if for any A ∈ F(X) and for any x0 ∈ H−co(A), minx∈A ψ(x, x0) ≤ γ.
Clearly, the notion “ψ(x, y) is γ-HDQCV in x” is a generalization of the notion
“ψ(x, y) is γ-DQCV in x” introduced by Zhou-Chen [40].

Lemma 4.1. Let (X, {ΓA}) be an H-space and ψ : X ×X → R∪ {±∞}.
Then the following conditions are equivalent:

(1) ψ(x, y) is 0-HDQCV in x,

(2) the map x 7−→ F (x) = {y ∈ X : ψ(x, y) ≤ 0} is H-KKM,

(3) for each x ∈ X, x 6∈ H-co(G(x)) where G(y) = {x ∈ X : ψ(x, y) > 0}
for each y ∈ X.

Proof. (1) =⇒ (2). Suppose (1) holds. If (2) does not hold, then there
exists A ∈ F(X) such that H−co(A) 6⊂ ∪x∈AF (x). Choose any x0 ∈ H-co(A)
such that x0 6∈ ∪x∈AF (x). It follows that ψ(x, x0) > 0 for all x ∈ A and hence
minx∈A ψ(x, x0) > 0 which contradicts (1).

(2) =⇒ (1). Suppose (2) holds. If (1) is not true, then there exists A ∈
F(X) and x0 ∈ H-co(A) such that minx∈A ψ(x, x0) > 0. Hence we have
x0 6∈ F (x) for all x ∈ A so that x0 6∈ ∪x∈AF (x) which contradicts (2).

(1) =⇒ (3). Suppose (1) holds. If there exists a point x0 ∈ X such that
x0 ∈ H-co(G(x0)). By Lemma 1 of Tarafdar [29], there exists A ∈ F(G(x0))
such that x0 ∈ H-co(A) and hence ψ(x, x0) > 0 for all x ∈ A which contradicts
(1).

(3) =⇒ (1). Suppose (3) holds. If ψ(x, y) is not 0-HDQCV in x, then there
exist A ∈ F(X) and x0 ∈ H-co(A) such that ψ(x, x0) > 0 for all x ∈ A. Hence
we have A ⊂ G(x0) and so x0 ∈ H-co(A) ⊂ H-co(G(x0)). This contradicts
(3).

Theorem 4.1. Let (X, {ΓA}) be an H-space, φ, ψ : X ×X → R ∪ {±∞}
and K be a nonempty compact subset of X such that

(a) for each (x, y) ∈ X ×X, φ(x, y) ≤ ψ(x, y),

(b) for each x ∈ X, y 7−→ φ(x, y) is lower semicontinuous (in short, l.s.c.)
on each nonempty compact subset C of X,

(c) ψ(x, y) is 0-HDQCV in x,
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(d) for each N ∈ F(X), there exists a compact weakly H-convex subset LN
of X with N ⊂ LN such that for any nonempty compact subset C of X,

LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K,

where G(y) = {x ∈ X : ψ(x, y) > 0} and (H-coG)−1(x) = {y ∈ X : x ∈
H-co(G(y))}.

Then there exists ŷ ∈ X such that φ(x, ŷ) ≤ 0 for all x ∈ X.

Proof. Define the maps F,G : X → 2X by

F (y) = {x ∈ X : φ(x, y) > 0}, G(y) = {x ∈ X : ψ(x, y) > 0}

for each y ∈ X, respectively. Then conditions (1), (2) and (3) of Theorem 3.1
are satisfied by asumptions (a), (b) and (d). By assumption (c) and Lemma
4.1, the conclusion of Theorem 3.1 does not hold. Hence condition (4) of
Theorem 3.1 is not true and so there exists a point ŷ ∈ K such that F (ŷ) = ∅.
This shows that φ(x, ŷ) ≤ 0 for all x ∈ X.

In fact, Theorem 3.1 and Theorem 4.1 are equivalent.

Proof of Theorem 3.1 using Theorem 4.1. Define φ, ψ : X ×X → R by

φ(x, y) =

{
1 if x ∈ F (y),
0 if x 6∈ F (y);

ψ(x, y) =

{
1 if x ∈ G(y),
0 if x 6∈ G(y).

By assumptions (1), (2) and (3) of Theorem 3.1, conditions (a), (b) and (d) of
Theorem 4.1 are satisfied. If the conclusion of Theorem 3.1 does not hold, by
Lemma 4.1, ψ(x, y) is 0-HDQCV in x. By applying Theorem 4.1, there exists
ŷ ∈ K such that ψ(x, ŷ) ≤ 0 for all x ∈ X and hence x 6∈ G(ŷ) for all x ∈ X.
Therefore G(ŷ) = ∅ which contradicts assumption (4) of Theorem 3.1. Hence
the conclusion of Theorem 3.1 must hold.

The following results are direct consequences of Theorem 4.1.

Corollary 4.1. Let X be a nonempty convex subset of a topological vector
space and φ, ψ : X ×X → R ∪ {±∞} be such that

(a) for each (x, y) ∈ X ×X, φ(x, y) ≤ ψ(x, y),
(b) for each x ∈ X, y 7−→ φ(x, y) is l.s.c. on each nonempty compact subset

C of X,
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(c) ψ(x, y) is 0-DQCV in x, (see, [40])
(d) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X\K, there is an x ∈
co(X0 ∪ {y}) satisfying y 6∈ clC((X\(coG)−1(x))∩C) for any nonempty
compact subset C of X, where G(y) = {x ∈ X : ψ(x, y) > 0} for each
y ∈ X and (coG)−1(x) = {y ∈ X : x ∈ co(G(y))}.

Then there exists ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X.

Proof. For each A ∈ F(X), let ΓA = co(A). Then (X, {ΓA}) is an H-
space. Assumptions (a), (b) and (c) imply that conditions (a), (b) and (c) of
Theorem 4.1 are satisfied. For each N ∈ F(X), let LN = co(X0 ∪ N), then
LN is a nonempty compact convex subset of X with N ⊂ LN . If condition (d)
of Theorem 4.1 does not hold, then for some N ∈ F(X) and some nonempty
compact subset C of X,

LN ∩ ∩x∈LN clC((X\(coG)−1(x)) ∩ C) 6⊂ K.

Therefore there is a y ∈ LN\K such that y ∈ clC((X\(coG)−1(x)) ∩ C) for
each x ∈ LN . This contradicts assumption (d) of the Corollary since y ∈ LN
implies co(X0 ∪ {y}) ⊂ LN . Hence condition (d) of Theorem 4.1 holds. The
conclusion follows from Theorem 4.1.

Corollary 4.2. Let X be a nonempty convex subset of a topological vector
space and φ, ψ : X ×X → R ∪ {±∞} be such that

(1) conditions (a), (b) and (c) of Corollary 4.1 hold,
(2) there exist a nonempty closed and compact subset K of X and an x0 ∈ X

such that ψ(x0, y) > 0 for all y ∈ X\K.

Then there exists ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X.

Proof. If X0 = {x0}, then X0 is a nonempty compact convex subset of X
and x0 ∈ co(X0 ∪ {y}) for any y ∈ X\K. Let G(y) = {x ∈ X : ψ(x, y) > 0}
for each y ∈ X. Assumption (2) implies

X\K ⊂ {y ∈ X : ψ(x0, y) > 0} = G−1(x0) ⊂ (coG)−1(x0)

and hence X\(coG)−1(x0) ⊂ K. It follows that

clC((X\(coG)−1(x)) ∩ C) ⊂ K

for any nonempty compact subset C of X. Therefore for each y ∈ X\K,
there exists x0 ∈ co(X0 ∪ {y}) such that y 6∈ clC((X\(coG)−1(x0) ∩ C). The
conclusion of the Corollary follows from Corollary 4.1.
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Remark 4.1. Corollary 4.2 is Theorem 2.2 of Tan-Yuan [25]. Hence
Theorem 4.1 improves and generalizes Theorem 2.2 of Tan-Yuan [25] to H-
spaces.

The following results are equivalent formulations of Theorem 4.1.

Theorem 4.2. (First Geometric Form) Let (X, {ΓA}) be an H-space,
B ⊂ D ⊂ X ×X and K be a nonempty compact subset of X such that

(1) for each x ∈ X, the set {y ∈ X : (x, y) ∈ B} is compactly open in X,
(2) for each A ∈ F(X) and for each y ∈ H-co(A), there excists x ∈ A such

that (x, y) 6∈ D,
(3) for each N ∈ F(X), there exists a nonempty compact weakly H-convex

subset LN of X with N ⊂ LN such that for any nonempty compact subset
C of X,

LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K,

where G(y) = {x ∈ X : (x, y) ∈ D} and (H-coG)−1(x) = {y ∈ X : x ∈
H-co(G(y))}.

Then there exists ŷ ∈ K such that {x ∈ X : (x, ŷ) ∈ B} = ∅.

Theorem 4.3. (Second Geometric Form) Let (X, {ΓA}) be an H-space,
M ⊂ L ⊂ X ×X and K be a nonempty compact subset of X such that

(1) for each x ∈ X, the set {y ∈ X : (x, y) ∈ L} is compactly closed in X,
(2) for each A ∈ F(X) and for each y ∈ H-co(A), there exists x ∈ A such

that (x, y) ∈M ,
(3) for each N ∈ F(X), there exists a nonempty compact weakly H-convex

subset LN of X with N ∈ LN such that for any nonempty compact subset
C of X,

LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K,

where G(y) = {x ∈ X : (x, y) 6∈ M} and (H-coG)−1(x) = {y ∈ X : x ∈
H-co(G(y))}.

Then there exists ŷ ∈ K such that X × {ŷ} ⊂ L.

Sketch of Proofs:

(1) Theorem 4.1 =⇒ Theorem 4.2. Let φ, ψ : X ×X → R be the character-
istic functions of B and D, respectively.

(2) Theorem 4.2 =⇒ Theorem 4.1. Define B = {(x, y) ∈ X ×X : φ(x, y) >
0} and D = {(x, y) ∈ X ×X : ψ(x, y) > 0}.
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(3) Theorem 4.2 =⇒ Theorem 4.3. Let B = X ×X\L and D = X ×X\M .

(4) Theorem 4.3 =⇒ Theorem 4.2. Let L = X ×X\B and M = X ×X\D.

Remark 4.2. Theorems 4.2 and 4.3 improve and generalize Theorems 2.2’
and 2.2” of Tan-Yuan [25] and the corresponding results of Shih-Tan [22, 23],
Yen [39] and Ky Fan [16].

5. Existence of Maximal Elements

Let X be a topological space and T : X → 2X be a correspondence. A
point x0 ∈ X is said to be a maximal element of T if T (x0) = ∅.

The following result is an equivalent formulation of Theorem 3.1.

Theorem 5.1. Let (X, {ΓA}) be an H-space, F,G : X → 2X and K be a
nonempty compact subset of X such that

(1) for each x ∈ X, F (x) ⊂ G(x) and for each x ∈ K, x 6∈ H-co(G(x)),
(2) for each y ∈ X, F−1(y) is compactly open in X,
(3) for each N ∈ F(X), there exists a compact weakly H-convex subset LN

of X with N ⊂ LN such that for any nonempty compact subset C of X,
LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K.

Then there exists ŷ ∈ K such that F (ŷ) = ∅, i.e. ŷ is a maximal element of
F .

Remark 5.1. Theorem 5.1 improves and generalizes Theorem 2.2”’ of
Tan-Yuan [25] to H-space.

Theorem 5.2. Let (X, {ΓA}) be an H-space, G : X → 2X be of class LF
and K be a nonempty compact subset of X. Suppose that for each N ∈ F(X),
there exists a compact weakly H-convex subset LN of X with N ⊂ LN such
that for any nonempty compact subset C of X,

LN ∩ ∩x∈LN clC((X\(H-coG)−1(x)) ∩ C) ⊂ K.

Then there exists ŷ ∈ K such that G(ŷ) = ∅.

Proof. Since G is of class LF , we have

(a) for each x ∈ X, x 6∈ H-co(G(x)),
(b) there exists a correspondence F : X → 2X such that (1) for each x ∈

X,F (x) ⊂ G(x); (2) for each y ∈ X, F−1(y) is compactly open in X;
(3) {x ∈ X : F (x) 6= ∅} = {x ∈ X : G(x) 6= ∅}.
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Suppose G(x) 6= ∅ for all x ∈ K, then by (3), F (x) 6= ∅ for each x ∈ K. By
applying Theorem 3.1, there exists a point ŷ ∈ K such that ŷ ∈ H − co(G(ŷ))
which contradicts (a). Hence there must exist an ŷ ∈ K such that G(ŷ) = ∅.

Remark 5.2. Theorem 5.2 generalizes Theorem 4.1 of Ding-Tarafdar
[13], Theorems 3 and 4 of Ding-Tan [10] and Theorem 3.2 of Tan-Yuan [25] to
H-spaces.

Lemma 5.1. Let X be a regular topological space, Y be a nonempty subset
of an H-space (E, {ΓA}). Let θ : X → E and P : X → 2Y be Lθ,F -majorized.
If each open subset of X containing the set B = {x ∈ X : P (x) 6= ∅} is
paracompact, then there exists a correspondence φ : X → 2Y of class Lθ,F
such that P (x) ⊂ φ(x) for all x ∈ X.

Proof. Since P is Lθ,F -majorized, for each x ∈ B, let Nx be an open
neighborhood of x in X and ψx, φx : X → 2Y be such that

(1) for each z ∈ Nx, P (z) ⊂ φx(z) and θ 6∈ H-co(φx(z)),

(2) for each z ∈ X, ψx(z) ⊂ φx(z) and H-co(φx(z)) ⊂ Y ,

(3) for each y ∈ Y, ψ−1
x (y) is compactly open in X,

(4) for each A ∈ F(B),

{z ∈ ∩x∈ANx : ∩x∈AH-co(φx(z)) 6= ∅}

= {z ∈ ∩x∈ANx : ∩x∈AH-co(ψx(z)) 6= ∅}.

Since X is regular, for each x ∈ B, there exists an open neighborhood Gx of
x in X such that clXGx ⊂ Nx. Let G = ∪x∈BGx, then G is open in X which
contains B so that G is paracompact by the assumption. By Theorem VIII.1.4
of Dugundji [15, p. 162], the open covering {Gx} of G has an open precise
neighborhood-finite refinement {G′x}. For each x ∈ B, we define ψ′x, φ

′
x : G→

2Y by

ψ′x(z) =

{
H-co(ψx(z)) if z ∈ G ∩ clXG′x,

Y if z 6∈ G ∩ clXG′x,

φ′x(z) =

{
H-co(φx(z)) if z ∈ G ∩ clXG′x,

Y if z 6∈ G ∩ clXG′x.

Then we have

( i ) for each z ∈ G, ψ′x(z) ⊂ φ′x(z) by (2),

(ii) {z ∈ G : ψ′x(z) 6= ∅} = {z ∈ G : φ′x(z) 6= ∅} by (4), and

(iii) for each y ∈ Y ,
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(ψ′x)−1(y) = {z ∈ G : y ∈ ψ′x(z)}

= {z ∈ G ∩ clXG′x : y ∈ ψ′x(z)} ∪ {z ∈ G\clXG′x : y ∈ ψ′x(z)}

= {z ∈ G ∩ clXG′x : y ∈ H-co(ψx(z))} ∪ {z ∈ G\clXG′x : y ∈ Y }

= [(G ∩ clXG′x) ∩ (H-coψx)−1(y)] ∪ (G\clXG′x)

= (G ∩ (H-coψx)−1(y)) ∪ (G\clXG′x).

It follows from (3) and Lemma 3.1 that for each nonempty compact subset C
of X, (ψ′x)−1(y) ∩ C = (G ∩ (H-coψx)−1(y) ∩ C) ∪ ((G\clXG′x) ∩ C) is open
in C.

Now define ψ, φ : X → 2Y by

ψ(z) =

{
∩x∈Bψ′x(z) if z ∈ G,

∅ if z ∈ X\G;

φ(z) =

{
∩x∈Bφ′x(z) if z ∈ G,
∅ if z ∈ X\G.

Let z ∈ X be given. Clearly, (2) implies ψ(z) ⊂ φ(z) and H-co(φ(z)) ⊂ Y .
If z ∈ X\G, then φ(z) = ∅ so that θ(z) 6∈ H-co(φ(z)); if z ∈ G, then z ∈
G ∩ clXG′x for some x ∈ B so that φ′x(z) = H-co(φx(z)) and hence φ(z) ⊂ H-
co(φx(z)). As θ(z) 6∈ H-co(φ′x(z)) by (1) we must also have θ(z) 6∈ H-co(φ(z)).
Therefore θ(z) 6∈ H-co(φ(z)) for all z ∈ X. Now we show that for each
y ∈ Y, ψ−1(y) is compactly open in X. Indeed, let y ∈ Y be such that
ψ−1(y) 6= ∅ and C be a nonempty compact subset of X; fix an arbitrary
u ∈ ψ−1(y) ∩ C = {z ∈ X : y ∈ ψ(z)} ∩ C = {z ∈ G : y ∈ ψ(z)} ∩ C. Since
{G′x} is a neighborhood- finite refinement, there exists an open neighborhood
Mu, of u in G such that {x ∈ B : Mu ∩ clXG′x 6= ∅} = {x1, · · · , xn}. Note that
for each x ∈ B with x 6∈ {x1, · · · , xn}, ∅ = Mu ∩ G′x = Mu ∩ clXG′x so that
ψ′x(z) = Y for all z ∈Mu. Thus we have

ψ(z) = ∩x∈Bψ′x(z) = ∩ni=1ψ
′
xi(z)

for all z ∈Mu. It follows that

ψ−1(y) = {z ∈ X : y ∈ ψ(z)} = {z ∈ G : y ∈ ∩x∈Bψ′x(z)}

⊂ {z ∈Mu : y ∈ ∩x∈Bψ′x(z)}

= {z ∈Mu : y ∈ ∩ni=1ψ
′
xi(z)}

= Mu ∩ {z ∈ G : y ∈ ∩ni=1ψ
′
xi(z)}

= Mu ∩ [∩ni=1(ψ′xi)
−1(y)].
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But then M ′u = Mu ∩ [∩ni=1(ψ′xi)
−1(y)] ∩ C is an open neighborhood of u in

C such that M ′u ⊂ ψ−1(y) ∩C since (ψ′xi)
−1(y) is compactly open in X. This

shows that for each y ∈ Y, ψ−1(y) is compactly open in X. Next we claim
{z ∈ X : φ(z) 6= ∅} = {z ∈ X : ψ(z) 6= ∅}. Indeed, for each w ∈ X with
φ(w) 6= ∅, we must have w ∈ G. Since {G′x} is neighborhood- finite, the set
{x ∈ B : w ∈ clXG′x} = {x′1, · · · , x′m} is finite so that if x 6∈ {x′1, · · · , x′m}, then
w 6∈ clXG′x and φ′x(w) = ψ′x(w) = Y . Thus we have

φ(w) = ∩x∈Bφ′x(w) = ∩mi=1H-co(φ′x′i(w)),

ψ(w) = ∩x∈Bψ′x(w) = ∩mi=1H-co(ψ′x′i(w)).

Since w ∈ ∩mi=1clXG
′
x′i
⊂ ∩mi=1Nx′i

, it follows form (4) that ψ(w) 6= ∅. Hence
{z ∈ X : φ(z) 6= ∅} ⊂ {z ∈ X : ψ(z) 6= ∅}. Conversely, (2) implies that
{z ∈ X : ψ(z) 6= ∅} ⊂ {z ∈ X : φ(z) 6= ∅}. Therefore

{z ∈ X : ψ(z) 6= ∅} = {z ∈ X : φ(z) 6= ∅}.

This shows that φ is of class Lθ,F . To complete the proof, it remains to show
that P (z) ⊂ φ(z) for each z ∈ X. Indeed, let z ∈ X with P (z) 6= ∅. Note
then z ∈ G. For each x ∈ B, if z ∈ G\clXG′x, then φ′x(z) = Y ⊂ P (z)
and if z ∈ G ∩ clXG′x, we have z ∈ clXG

′
x ⊂ clXGx ⊂ Nx so that by (1),

P (z) ⊂ φx(z) ⊂ φ′x(z). It follows that P (z) ⊂ φ′x(z) for each x ∈ B so that
P (z) ⊂ ∩x∈Bφ′x(z) = φ(z).

Remark 5.2. Lemma 5.1 generalizes Lemma 2 of Ding-Tan [10, 12],
Lemma 2 of Ding-Kim-Tan [7], Lemma 3.1 of Tan-Yuan [25] and Proposition
1 of Tulcea [35] to H-spaces.

As an application of Theorem 3.1 and Lemma 5.1, we shall now present
the following result concerning the existence of a maximal element.

Theorem 5.3. Let (X, {ΓA}) be a paracompact H-space, P : X → 2X be
an LF - majorized correspondence and K be a nonempty compact subset of X.
Suppose that for each N ∈ F(X), there exists a nonempty compactly weakly
H-convex subset LN of X with N ⊂ LN such that for any nonempty compact
subset C of X,

LN ∩ ∩x∈LN clC((X\(H-co P )−1(x)) ∩ C) ⊂ K.

Then there exists a ŷ ∈ K such that P (ŷ) = ∅.

Proof. We first prove that for each x ∈ X\K, P (x) 6= ∅. Indeed, for
x ∈ X\K, L{x} is a nonempty compact subset of X with {x} ⊂ L{x} and by
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the assumption, we must have

x 6∈ ∩x∈L{x}clL{x}((X\(H-co P )−1(x)) ∩ L{x}).

It follows that there exists a y ∈ L{x} such that x ∈ (H-co P )−1(y) and
hence y ∈ H-co(P (x)) and P (x) 6= ∅. Now suppose that the conclusion of
the theorem does not hold. Then P (x) 6= ∅ for all x ∈ X and hence the
set {x ∈ X : P (x) 6= ∅} = X is paracompact. By Lemma 5.1, there exists
a correspondence φ : X → 2X of class LF such that P (x) ⊂ φ(x) for each
x ∈ X. It follows that for each N ∈ F(X) and for any nonempty compact
subset C of X,

LN ∩ ∩x∈LN clC((X\(H-co φ)−1(x)) ∩ C)

⊂ LN ∩ ∩x∈LN clC((X\(H-co P )−1(x)) ∩ C) ⊂ K.

By Theorem 5.2, there exists an ŷ ∈ K such that φ(ŷ) = ∅ so that P (ŷ) = ∅.
which is a contradiction. Therefore there exists a point ŷ ∈ K such that
P (ŷ) = ∅.

Remark 5.3. Theorem 5.3 generalizes Theorem 1 of Ding-Tan [12] and
Theorem 3.3 of Tan-Yuan [25] to H-spaces and in turn generalizes Theorem 5 of
Ding-Tan [10], Corollary 1 of Borglin-Keiding [4]. Theorem 2.2 of Toussaint
[34], Theorem 2 of Tulcea [35], Theorem 5.1 and Corollary 5.1 of Yannelis-
Prabhakar [38] and Theorem 2 of Yannelis [37] to H-spaces.

6. Equilibrium Existence Theorems

Let I be a (possibly infinite) set of agents. For each i ∈ I, let its choice or
strategy set Xi be a nonempty subset of a topological space. Let X = Πi∈IXi.
For each i ∈ I, let Pi : X → 2Xi be a preference correspondence. Following
the notion of Gale and Mas-Colell [17], the collection Γ = (Xi, Pi)i∈I will be
called a qualitative game. A point x ∈ X is said to be an equilibrium of the
game Γ if Pi(x) = ∅ for all i ∈ I. For each i ∈ I, let Ai be a subset of Xi.
Then for each fixed k ∈ I, we define∏

j∈I,j 6=k
Aj ⊗Ak = {x = (xi)i∈I : xi ∈ Ai for all i ∈ I}.

An abstract economy (=generalized game) is a family of quadruples Γ =
(Xi, Ai, Bi, Pi)i∈I where I is a (finite or infinite) set of agents (players) such
that for each i ∈ I,Xi is a nonempty subset of a topological space and
Ai, Bi : X = Πi∈IXi → 2Xi are constraint correspondences and Pi : X → 2Xi
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is a preference correspondence. When I = {1, · · · , N} where N is a positive
integer, Γ = (Xi, Ai, Bi, Pi)i∈I is also called an N -person game. An equilib-
rium point of Γ is a point x ∈ X such that for each i ∈ I, xi ∈ Bi(x) and
Ai(x) ∩ Pi(x) = ∅. we remark that when each Xi is a nonempty subset of a
topological vector space and Bi(x) = clXiBi(x) (which is the case when Bi has
a closed graph; in particular, when cl Bi is u.s.c. with closed values), the defi-
nitions of an abstract economy and an equilibrium point coincide with that of
Ding-Kim-Tan [7] and Ding-Tan [10, 12]; and if in addition, Ai = Bi for each
i ∈ I, the definitions of an abstract economy and an equilibrium point coincide
with the standard definitions; e.g. in Borglin Keiding [4], Tulcea [35, 36] and
Yannelis-Prabhakar [38].

As an application of Theorem 5.2, we shall prove the following equilibrium
existence theorem for a one-person game.

Theorem 6.1. Let (X,ΓA}) be an H-space, A,B, P : X → 2X and K be
a nonempty compact subset of X such that

(1) for each x ∈ X, H-co(A(x)) ⊂ B(x),

(2) for each y ∈ X, A−1(y) is compactly open in X,

(3) A ∩ P is of class LF ,

(4) for each N ∈ F(X), there exists a compact weakly H-convex subset LN
of X with N ⊂ LN such that for any nonempty compact subset C of X,

LN ∩ ∩x∈LN clC((X\(H-coA ∩ P )−1(x)) ∩ C) ⊂ K,

(5) for each x ∈ K, A(x) 6= ∅.
Then there exists a point x̂ ∈ K such that x̂ ∈ B(x̂) and A(x̂) ∩ P (x̂) = ∅.

Proof. If M = {x ∈ X : x 6∈ B(x)}, then M is open in X. Define
φ : X → 2X by

φ(x) =

{
A(x) ∩ P (x) if x 6∈M,
A(x) if x ∈M.

Since A ∩ P is of class LF , for each x ∈ X, x 6∈ H-co(A(x) ∩ P (x)) and there
exists a correspondence β : X → 2X such that

(a) for each x ∈ X, β(x) ⊂ A(x) ∩ P (x),

(b) for each y ∈ X, β−1(y) is compactly open in X, and

(c) {x ∈ X : β(x) 6= ∅} = {x ∈ X : A(x) ∩ P (x) 6= ∅}.
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Now define a correspondence ψ : X → 2X by

ψ(x) =

{
β(x) if x 6∈M,
A(x) if x ∈M.

Clearly for each x ∈ X, ψ(x) ⊂ φ(x) and {x ∈ X : ψ(x) 6= ∅} = {x ∈
X : φ(x) 6= ∅} by (c). For each y ∈ X, it is easy to see that ψ−1(y) =
(M ∪ β−1(y)) ∩A−1(y) and is compactly open in X by (2) and (b). For each
x ∈ X, if x ∈ M , then x 6∈ B(x), it follows from (1) that x 6∈ H-co(φ(x)); if
x 6∈M , then x 6∈ H-co(A(x)∩P (x)) = H-co(φ(x)) since x 6∈ H-co(A(x)∩P (x))
for all x ∈ X. This shows that φ is of class LF . By (4) and the definition of
φ, for each N ∈ F(X) and for any nonempty compact subset C of X, we have

LN ∩ ∩x∈LN clC((X\(H-co φ)−1(x)) ∩ C) ⊂ K.

By applying Theorem 5.2, there exists a point x̂ ∈ K such that φ(x̂) = ∅.
Since for each x ∈ K, A(x) 6= ∅ and the assumption (4) implies that A(x) 6= ∅
for all x ∈ X\K. Hence A(x) 6= ∅ for all x ∈ X so that we must have x̂ ∈ B(x̂)
and A(x̂) ∩ P (x̂) = ∅.

Remark 6.1. Theorem 6.1 improves and generalizes Theorem 5.1 of Ding-
Tarafdar [13], Theorem 4 of Ding-Tan [11], Theorem 4.1 of Tan-Yuan [25] and
Theorem 6 of Ding-Tan [10] to H-spaces.

As an application of Theorem 5.3, we shall show the following equilibrium
existence theorem for a noncompact qualitative game in H-spaces.

Theorem 6.2. Let Γ = (Xi, Pi)i∈I , be a qualitative game such that X =
Πi∈IXi is paracompact. Suppose the following conditions are satisfied:

(1) for each i ∈ I, (Xi, {ΓAi}) is an H-space,
(2) for each i ∈ I, Pi : X → 2Xi is an LF -majorized correspondence,
(3) ∪i∈I{x ∈ X : Pi(x) 6= ∅} = ∪i∈IintX{x ∈ X : Pi(x) 6= ∅},
(4) For each N ∈ F(X) there exists a compact weakly H-convex subset LN

of X with N ⊂ LN and there exists a nonempty compact subset K of X
such that for each y ∈ X\K, there is an x ∈ LN with y 6∈ clC((X\(H-
co Pi)−1(x))∩C) for each i ∈ I and for any nonempty compact subset C
of X.

Then Γ has an equilibrium point in K.

Proof. For each x ∈ X, let I(x) = {i ∈ I : Pi(x) 6= ∅}. For each
i ∈ I, define a correspondnce P ′i : X → 2X by P ′i (x) = Πj∈I,j 6=iXj ⊗ Pi(x).
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Furthermore, define the correspondence P : X → 2X by

P (x) =

{
∩i∈I(x)H-co(P ′i (x)) if I(x) 6= ∅,

∅ if I(x) = ∅.

Then for each x ∈ X, P (x) 6= ∅ if and only if I(x) 6= ∅. Now we prove that P
is an LF -majorized correspondence. For each x ∈ X with P (x) 6= ∅, by (3), let
i(x) ∈ I be such that x ∈ intX{z ∈ X : Pi(x)(z) 6= ∅} and by (2), N(x) be an
open neighborhood of x in X and φi(x), ψi(x) : X → 2Xi be correspondences
such that

( i ) for each z ∈ N(x), Pi(x)(z) ⊂ φi(x)(z) and zi(x) 6∈ H-co(φi(x)(z)),

(ii) for each z ∈ X, ψi(x)(z) ⊂ φi(x)(z),

(iii) for each y ∈ Xi(x), ψ
−1
i(x)(y) is compactly open in X,

(iv) for each finite subset {x1, · · · , xn} of the set {x ∈ X : P (x) 6= ∅} with
i(x1) = · · · = i(xn),

{z ∈ ∩nj=1N(xj) : ∩nj=1H-co(ψi(xj)(z)) 6= ∅}

= {z ∈ ∩nj=1N(xj) : ∩nj=1H-co(φi(xj)(z)) 6= ∅}.

Without loss of generality we may assume thatN(x) ⊂ intX{z ∈ X : Pi(x)(z) 6=
∅} so that Pi(x)(z) 6= ∅ and hence i(x) ∈ I(z) for all z ∈ N(x). Let x ∈ X be
such that P (x) 6= ∅; define φ′i(x), ψ

′
i(x) : X → 2X by

ψ′i(x)(z) =
∏

j∈I,j 6=i(x)

Xj ⊗H-co(ψi(x)(z)),

φ′i(x)(z) =
∏

j∈I,j 6=i(x)

Xj ⊗H-co(φi(x)(z))

for each x ∈ X. Then we have
(a) for each z ∈ N(x), by (i),

P (z) = ∩i∈I(z)H-co(P ′i (z)) ⊂ H-co(P ′i∈i(x)(z))

=
∏

j∈I,j 6=i(x)

Xj ⊗H-co(Pi(x)(z))

⊂
∏

j∈I,j 6=i(x)

Xj ⊗H-co(φi(x)(z))

= φ′i(x)(z)

and zi(x) 6∈ H-co(φ′i(x)(z));
(b) for each z ∈ X, by (ii), ψ′i(x)(z) ⊂ φ

′
i(x)(z);
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(c) for each y ∈ X, (ψ′i(x))
−1(y) = (H-coψ−1

i(x)(yi(x)) is compactly open in
X by (iii) and Lemma 3.1;

(d) for any finite set A of {x ∈ X : P (x) 6= ∅}, let ∪{I(x) : x ∈ A} =
{i1, · · · , ik} where i1, · · · , ik are all distinct and for each t = 1, · · ·, k let At =
{x ∈ A : i(x) = it}. Note that for each z ∈ X,

∩x∈AH-co(ψ′i(x)(z)) = ∩x∈A
∏

j∈I,j 6=i(x)

Xj ⊗H-co(ψi(x)(z))

= ∩kt=1

∏
j∈I,j 6=it

Xj ⊗ (∩x∈AtH-co(ψi(x)(z))

so that for each z ∈ ∩x∈AN(x), if ∩x∈AH-co(ψ′i(x)(z)) = ∅, then there exists
m ∈ {1, · · · , k} such that ∩x∈AmH-co(ψi(x)(z)) = ∅; it follows from (iv) that
∩x∈AmH-co(φi(x)(z)) = ∅. Thus

∩x∈AH-co(φ′i(x)(z)) = ∩x∈A
∏

j∈I,j 6=i(x)

Xj ⊗H-co(φi(x)(z))

= ∩kt=1

∏
j∈I,j 6=it

Xj ⊗ (∩x∈AtH-co(φi(x)(z))

= ∅.

From this fact together with (b), we conclude that

{z ∈ ∩x∈AN(x) : ∩x∈AH-co(ψi(x)(z)) 6= ∅}

= {z ∈ ∩x∈AN(x) : ∩x∈AH-co(φi(x)(z)) 6= ∅}.

This shows that P is LF -majorized. By (4), for each y ∈ X\K, there exists
an x ∈ LN such that for any nonempty compact subset C of X

y 6∈ ∪i∈IclC((X\(H-co Pi)−1(xi)) ∩ C)

= clC(∪i∈I(X\(H-co Pi)−1(xi)) ∩ C)

= clC((X\ ∩i∈I (H-co Pj)−1(xi)) ∩ C),

and Pi(y) 6= ∅ for each y ∈ X\K and i ∈ I. Hence I(y) = I for each y ∈ X\K.
By the definition of P ′i and P , we have

H-co(P (y)) = ∩i∈IH-co(P ′i (y)) =
∏
i∈I

H-co(Pi(y)).

It follows that
(H-co P )−1(x) = {y ∈ X : x ∈ H-co(P (y))}

= {y ∈ X : x ∈
∏
i∈I

H-co(Pi(y))}

= {y ∈ X : y ∈ (H-co Pi)−1(xi) for each i ∈ I}

= ∩i∈I(H-co Pi)−1(xi).
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Thus we have that for each y ∈ X\K, there exists an x ∈ LN such that
y 6∈ clC((X\(H-co P )−1(x)) ∩ C) for any nonempty compact subset C of X.
It follows that for each N ∈ F(X) and for any nonempty compact subset C
of X,

LN ∩ ∩x∈LN clC((X\(H-co P )−1(x)) ∩ C) ⊂ K.
By applying Theorem 5.3, there exists a point x̂ ∈ K such that P (x̂) = ∅.
This implies I(x̂) = ∅ and therefore Pi(x̂) = ∅ for each i ∈ I, i.e. x̂ is an
equilibrium point of Γ.

Remark 6.2. Theorem 6.2 improves and generalizes Theorem 5.2 of Ding-
Tarafdar [13], Theorem 3 of Ding-Tan [12] Theorem 4.2 of Tan-Yuan [25]
and Theorem 7 of Ding-Tan [10] to H-spaces. In Theorem 6.2, if for each
i ∈ I, (Xi, {ΓAi}) is compact H-space, then X =

∏
i∈I Xi is also a compact

H-space. By letting LN = K = X for each N ∈ F(X), the condition (4)
of Theorem 6.2 is satisfied trivially. Hence Theorem 6.2 also improves and
generalizes Theorem 2.4 of Toussaint [34] and Proposition 3 of Tulcea [35] in
several aspects which in turn generalize the fixed point theorem of Gale and
Mas-Colell [17].

As an application of Theorem 6.2, we shall prove the following equilibrium
existence theorem for a noncompact abstract economy in H-spaces.

Theorem 6.3. Letr Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such
that X =

∏
i∈I Xi is paracompact. Suppose that for each i ∈ I,

(1) (Xi, {ΓAi}) is an H-space,
(2) for each x ∈ X, Ai(x) is nonempty and H-co(Ai(x)) ⊂ Bi(x),
(3) for each y ∈ X, A−1

i (y) is compactly open in X,
(4) Ai ∩ Pi is LF -majorized,
(5) Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

(6) for each N ∈ F(X), there exists a compact weakly H-convex subset LN of
X with N ⊂ LN and there exists a nonempty compact subset K of X such
that for each y ∈ X\K, there is an x ∈ LN satifying y 6∈ clC((X\(H-
coAi ∩ Pi)−1(xi)) ∩ C) for each i ∈ I and for any nonempty compact
subset C of X.

Then Γ has an equilibrium point in K.

Proof. For each i ∈ I, let Fi = {x ∈ X : xi 6∈ Bi(x)}, then Fi is open in
X. For each i ∈ I, define the correspondence Qi : X → 2Xi by

Qi(x) =

{
(Ai ∩ Pi)(x) if x 6∈ Fi,

Ai(x) if x ∈ Fi.
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We shall prove that the qualitative game Γ = (Xi, Qi)i∈I satisfies all the
hypotheses of Theorem 6.2. For each i ∈ I, the set

{x ∈ X : Qi(x) 6= ∅} = {x ∈ Fi : Qi(x) 6= ∅} ∪ {x ∈ X\Fi : Qi(x) 6= ∅}

= Fi ∪ {x ∈ X\Fi : (Ai ∩ Pi)(x) 6= ∅}

= Fi ∪ [(X\Fi) ∩ Ei]

= Fi ∪ Ei

is open in X and hence condition (3) of Theorem 6.2 is satisfied. By (4), for
each x ∈ Ei, there exist an open neighborhood Nx of x in X and correspon-
dences ψx, φx : X → 2Xi such that

(a) for each z ∈ Nx, (Ai ∩ Pi)(z) ⊂ φx(z) and zi 6∈ H-co(φx(z)),

(b) for each z ∈ X, ψx(z) ⊂ φx(z),

(c) for each y ∈ X, ψ−1
x (y) is compactly open in X,

(d) for each nonempty finite set A ⊂ Ei,

{z ∈ ∩x∈ANx : ∩x∈AH-co(ψx(z)) 6= ∅}

= {z ∈ ∩x∈ANx : ∩x∈AH-co(φx(z)) 6= ∅}.

Now for each x ∈ X with Qi(x) 6= ∅, let

M(x) =

{
Fi if x ∈ Fi,
Nx if x 6∈ Fi,

and define the correspondences Φx, Ψx : X → 2Xi by

Φx(z) =

{
φx(z) if z 6∈ Fi,
Ai(z) if z ∈ Fi,

Ψx(z) =

{
ψx(z) if z 6∈ Fi,
Ai(z) if z ∈ Fi.

Then for each x ∈ X with Qi(x) 6= ∅, M(x) is an open neighborhood of x in
X such that

( i ) for each z ∈ M(x), Qi(z) ⊂ Φx(z) and zi 6∈ H-co(Φx(z)) by (2) and
(a),

(ii) for each z ∈ X, Ψx(z) ⊂ Φx(z) by (b),
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(iii) for each y ∈ Xi,
Ψ−1
x (y) = {z ∈ X\Fi : y ∈ Ψx(z)} ∪ {z ∈ Fi : y ∈ Ψx(z)}

= {z ∈ X\Fi : y ∈ ψx(z)} ∪ {z ∈ Fi : y ∈ Ai(z)}

= [(X\Fi) ∩ ψ−1
x (y)] ∪ (Fi ∩A−1

x (y))

= [Fi ∪ ψ−1
x (y)] ∩A−1

x (y)

is compactly open in X by (3),(c) and Fi being open in X. Now let A
be a finite subset of {x ∈ X : Qi(x) 6= ∅}.

Then A = A1 ∪A2 where A1 = {x ∈ A : x ∈ Fi} and A2 = {x ∈ A : x 6∈ Fi}.

Case 1. If A1 = ∅, then by (d),

{z ∈ ∩x∈AM(x) : ∩x∈AH-co(Ψx(z)) 6= ∅}

= {z ∈ ∩x∈A2M(x) ∩ Fi : ∩x∈A2H-co(Ψx(z)) 6= ∅}

∪{z ∈ ∩x∈A2M(x)\Fi : ∩x∈A2H-co(Ψx(z)) 6= ∅}

= {z ∈ ∩x∈A2M(x) ∩ Fi : Ai(z) 6= ∅}

∪{z ∈ ∩x∈A2M(x)\Fi : ∩x∈A2H-co(ψx(z)) 6= ∅}

= {z ∈ ∩x∈A2M(x) ∩ Fi : Ai(z) 6= ∅}

∪{z ∈ ∩x∈A2M(x)\Fi : ∩x∈A2H-co(φx(z)) 6= ∅}

= {z ∈ ∩x∈A2M(x) ∩ Fi : ∩x∈A2H-co(Φx(z)) 6= ∅}

∪{z ∈ ∩x∈A2M(x)\Fi : ∩x∈A2H-co(Φx(z)) 6= ∅}

= {z ∈ ∩x∈AM(x) : ∩x∈AH-co(Φx(z)) 6= ∅}.

Case 2. If A1 6= ∅, then

{z ∈ ∩x∈AM(x) : ∩x∈AH-co(Ψx(z)) 6= ∅}

= {z ∈ ∩x∈A1M(x) ∩ ∩x∈A2M(x) : ∩x∈AH-co(Ψx(z)) 6= ∅}

= {z ∈ Fi ∩ ∩x∈A2M(x) : ∩x∈AH-co(Ψx(z)) 6= ∅}

= {z ∈ Fi ∩ ∩x∈A2M(x) : ∩x∈AH-co(Φx(z)) 6= ∅}

= {z ∈ ∩x∈AM(x) : ∩x∈AH-co(Φx(z)) 6= ∅},

since Ψx(z) = Φx(z) = Ai(z) for each z ∈ Fi. This shows that for each
i ∈ I, Qi is LF -majorized.

Finally, by (6), for each N ∈ F(X) there exists a compact weakly H-convex
subset LN of X with N ⊂ LN and there exists a nonempty compact subset
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K of X such that for each y ∈ X\K, there is an x ∈ LN satisfying y 6∈
clC((X\(H-coQi)−1(xi)) ∩ C) for each i ∈ I and for any nonempty compact
subset C ofX. By Theorem 6.2, there exists a point x̂ ∈ K such thatQi(x̂) = ∅
for all i ∈ I. By (2) and the definition of Qi, this implies that for each
i ∈ I, x̂i ∈ Bi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Corollary 6.1. Let (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that
X =

∏
i∈I Xi is paracompact. Suppose that for each i ∈ I,

(1) Xi is a nonempty convex subset of a topological vector space,

(2) for each x ∈ X, Ai(x) is nonempty and co(Ai(x)) ⊂ Bi(x),

(3) for each y ∈ Xi, A
−1
i (y) is compactly open in X,

(4) Ai ∩ Pi is LF -majorized,

(5) Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

(6) there exist a nonempty compact convex subset X0 of X and a nonempty
compact subset K of X such that for each y ∈ X\K, there is an x ∈
co(X0 ∪ {y}) satisfying

y 6∈ clC((X\(coAi ∩ Pi)−1(xi)) ∩ C)

for each i ∈ I and for any nonempty compact subset C of X.

Then Γ has an equilibrium point in K.

Proof. For each i ∈ I and for each Ai ∈ F(Xi), let ΓAi = co(Ai). Then
each (Xi, {ΓAi}) is an H-space. Since X0 is a compact convex subset of X,
for each N ∈ F(X), if LN = co(X0 ∪ N), then LN is a nonempty compact
H-convex subset of X with N ⊂ LN . Hence condition (6) implies that the
condition (6) of Theorem 6.3 holds. The conclusion of Corollary 6.1 follows
from Theorem 6.3.

Remark 6.3. Corollary 6.1 is Theorem 5.3 of Ding-Tarafdar [13] which
improves and generalizes Theorem 4 of Ding-Tan [12], Theorem 3 of Tulcea
[35] (also see Theorem 4 of Tulcea [36]).

Corollary 6.2. Under the hypotheses of Corollary 6.1, if the coercive
condition (6) of Corollary 6.1 is replaced by the following condition:

(6)’ there exist a nonempty closed and compact subset K of X and a point
x0 = (x0

i )i∈I ∈ X such that x0
i ∈ co(Ai(y) ∩ Pi(y)) for all i ∈ I and for

all y ∈ X\K.
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Then Γ has an equilibrium point in K.

Proof. We claim that the coercive condition (6)’ implies the condition (6)
of Corollary 6.1. By (6)’, for each i ∈ I,

X\K ⊂ (coAi ∩ Pi)−1(x0
i )

and hence
X\(coAi ∩ Pi)−1(x0

i ) ⊂ K.

Since K is closed and compact, we have

clC((X\(coAi ∩ Pi)−1(x0
i )) ∩ C) ⊂ K ∩ C ⊂ K

for any nonempty compact subset C of X. Now let X0 = {x0}. Then X0
is a nonempty compact convex subset of X and x0 ∈ co(X0 ∪ {y}) for all
y ∈ X. It is easy to see that the condition (6) of Corollary 6.1 is satisfied.
The conclusion follows from Corollary 6.1.

Remark 6.4. Corollary 6.2 is Theorem 5.4 of Ding-Tarafdar [13] which
generalizes Theorem 4.3 of Tan-Yuan [23] to Ai ∩ Pi being LF -majorized for
each i ∈ I. Hence Corollary 6.2 positively answers the open question presented
by Tan-Yuan in [23]. Corollary 6.2 also generalizes Theorem 8 of Ding-Tan
[10], Theorem 3 of Tulcea [33] and Theorem 4 of Tulcea [34] in several aspects.
Therefore Theorem 6.3 further improves and generalizes the above results to
H-spaces.

Corollary 6.3. Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such
that X =

∏
i∈I Xi is paracompact. Suppose that for each i ∈ I,

(1) (Xi, {ΓAi}) is an H-space,

(2) for each x ∈ X, Ai(x) is nonempty, H-co(Ai(x)) ⊂ Bi(x) and xi 6∈ H-
co(Pi(x)),

(3) for each y ∈ Xi, A
−1
i (y) and P−1

i (y) are open in X,

(4) for each N ∈ F(X), there exists a compact weakly H-convex subset LN
of X with N ⊂ LN and there exists a nonempty compact subset K of X
such that for each y ∈ X\K there is an x ∈ LN satisfying

y 6∈ clC((X\(H-coAi ∩ Pi)−1(x)) ∩ C)

for any nonempty compact subset C of X.
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Then Γ has an equilibrium point in K.

Proof. Since {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} = ∪y∈Xi(A
−1
i (y) ∩ P−1

i (y)), by
(3), the conditions (3) and (5) of Theorem 6.3 are satisfied. Since for each
i ∈ I and for each y ∈ Xi, (Ai ∩ Pi)−1(y) = A−1

i (y) ∩ P−1
i (y) is open in X,

for given any x ∈ {z ∈ X : (Ai ∩ Pi)(z) 6= ∅}, let Nx = X, ψx = φx = Ai ∩ Pi.
Then it is easy to see that the condition (4) of Theorem 6.3 is also satisfied.
The conclusion follows from Theorem 6.3.

Remark 6.5. Corollary 6.3 generalizes Corollary 5.1 of Ding-Tarafdar
[13] to H-spaces. Note that for any xi ∈ Xi, (H-coAi ∩ Pi)−1(xi) is open in
X by the condition (3) of Corollary 6.3 and Lemma 3.1 and hence for any
nonempty compact subset C of X, we have

clC((X\(H-coAi ∩ Pi)−1(xi)) ∩ C)

= (X\(H-coAi ∩ Pi)−1(xi)) ∩ C.

It follows that y 6∈ clC((X\(H-coAi∩Pi)−1(xi))∩C) implies xi ∈ H-co(Ai(y)∩
Pi(y)). Hence Corollary 6.3 also generalizes Corollary 1 of Ding-Tan [12] to
H-spaces. Corollary 6.3 also in turn generalizes Corollary 4.4 of Tan-Yuan
[23], Corollary 1 of Ding-Tan [10], Corollary 2 of Tulcea [35], Theorem 2.5 of
Toussaint [34] and Theorem 6.1 of Yannelis-Prabhakar [38] to H-spaces.
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