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BOUNDEDNESS OF MULTILINEAR COMMUTATORS OF
CALDERÓN-ZYGMUND OPERATORS ON ORLICZ SPACES OVER

NON-HOMOGENEOUS SPACES

Xing Fu, Dachun Yang* and Wen Yuan

Abstract. Let (X , d, μ) be a metric measure space satisfying both the up-
per doubling and the geometrically doubling conditions. In this paper, the au-
thors prove that multilinear commutators of Calderón-Zygmund operators with
RBMO(μ) functions are bounded on Orlicz spaces, especially, on Lp(μ) with
p ∈ (1,∞). The weak type endpoint estimate of multilinear commutators of
Calderón-Zygmund operators with Orlicz type functions in Oscexp Lr (μ) for
r ∈ [1,∞) is also presented.

1. INTRODUCTION

The classical theory of singular integrals has been well developed into a large branch
of analysis on spaces of homogeneous type in the sense of Coifman and Weiss [5, 6].
Recall that a metric space (X , d) equipped with a nonnegative measure μ is called a
space of homogeneous type if (X , d, μ) satisfies the measure doubling condition: there
exists a positive constant Cμ such that, for any ball B(x, r) := {y ∈ X : d(x, y) < r}
with x ∈ X and r ∈ (0,∞), μ(B(x, 2r)) ≤ Cμμ(B(x, r)). This measure doubling
condition plays an important role in the classical Calderón-Zygmund theory.
However, in recent years, many results in the classical theory of Calderón-Zygmund

operators on Rd have been proved still valid with the Lebesgue measure m replaced
by a Radon measure μ satisfying the polynomial growth condition (see, for example,
[22, 23, 24, 25, 26, 27, 17, 3, 7, 8]). Recall that a Radon measure μ on Rd is said
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to satisfy the polynomial growth condition, if there exist positive constants C0 and
κ ∈ (0, d] such that, for all x ∈ Rd and r ∈ (0,∞),

(1.1) μ(B(x, r)) ≤ C0r
κ,

where B(x, r) := {y ∈ Rd : |y − x| < r}. Tolsa [22, 24] introduced the Hardy space
H1(μ) and its dual, the space of functions with regularized bounded mean oscillation,
RBMO(μ), with respect to μ as in (1.1), and proved that Calderón-Zygmund operators
are bounded from H1(μ) to L1(μ). Later, Chen, Meng and Yang [3] showed that
Calderón-Zygmund operators are bounded on H1(μ). Nazarov, Treil and Volberg [17]
established the Tb theorem in this setting. The analysis on such non-doubling spaces
has been proved by Tolsa in [25, 26, 27] to play a striking role in solving the long-
standing open Painlevé’s problem and Vitushkin’s conjecture.
However, as pointed out by Hytönen in [9], the measures satisfying (1.1) do not

include the doubling measures as special cases. In [9], Hytönen introduced a new class
of metric measure spaces satisfying the so-called geometrically doubling and the upper
doubling conditions (see, respectively, Definitions 1.1 and 1.3 below). This new class
of metric measure spaces, which are called non-homogeneous spaces, includes both
the spaces of homogeneous type and metric spaces with polynomial growth measures
as special cases. In this new setting, Hytönen [9] introduced the RBMO(μ) space and
established the corresponding John-Nirenberg inequality. Later, Bui and Duong [2],
and Hytönen, Da. Yang and Do. Yang [12] independently introduced the atomic Hardy
space H1(μ) and proved that the dual space of H1(μ) is RBMO(μ). Lin and Yang
[14] introduced and investigated the space RBLO(μ), a subset of RBMO(μ), and
obtained the boundedness of the maximal Calderón-Zygmund operators from L∞(μ)
into RBLO(μ). Hytönen, Liu, Da. Yang and Do. Yang [10] and Liu, Da. Yang and
Do. Yang [15] established some equivalent characterizations for the boundedness of
Carderón-Zygmund operators on Lp(μ) with p ∈ (1,∞) and its endpoint boundedness.
In 1976, Coifman, Rochberg and Weiss [4] proved that the commutator [b, T ] of a

Calderón-Zygmund operator T with a function b ∈ BMO(Rd) defined by

[b, T ](f)(x) := b(x)T (f)(x)− T (bf)(x), x ∈ Rd,

is bounded on Lp(Rd) for all p ∈ (1,∞). From then on, there appeared a lot of
literatures on the boundedness of commutators on various function spaces over different
underlying spaces, and their applications in the theory of partial differential equations
and harmonic analysis. In particular, for a Radon measure μ on Rd satisfying the
growth condition (1.1), Tolsa [22] established the boundedness on Lp(μ) with p ∈
(1,∞) of commutators of Carderón-Zygmund operators with RBMO(μ) functions.
The Lp(μ)-boundedness of multilinear commutators of Carderón-Zygmund operators
with RBMO(μ) functions or some Orlicz type functions were further obtained in [7].
In [2], on non-homogeneous spaces (X , d, μ), the Lp(μ)-boundedness of commutators
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of Carderón-Zygmund operators with RBMO(μ) functions was also obtained under
the additional assumption: there exists m ∈ (0,∞) such that

(1.2) λ(x, ar) = amλ(x, r) for all x ∈ X and a, r ∈ (0,∞),

where λ is the dominating function of the measure μ (see, for example, Definition 1.3
below).
As a generalization of Lp(Rd), the Orlicz space was originally introduced by

Birnbaum-Orlicz in [1] and Orlicz in [18]. Since then, the theory of Orlicz spaces has
been well developed and widely used in various branches of mathematics, for exam-
ple, probability, statistics, potential theory, partial differential equations, and harmonic
analysis (see, for example, [16, 20, 21]).
Let (X , d, μ) be a non-homogeneous space in the sense of Hytönen [9]. In this

paper, we prove that, without the additional assumption (1.2), the multilinear commu-
tators of Calderón-Zygmund operators with RBMO(μ) functions are bounded on some
Orlicz spaces LΦ(μ), especially, on Lp(μ) with p ∈ (1,∞). This, even for the commu-
tator, also essentially improves the result about the Lp(μ)-boundedness of commutators
obtained in [2]. We also establish a weak type estimate for multilinear commutators of
Calderón-Zygmund operators with some Orlicz type functions in OscexpLr (μ).
To state the main results of this paper, we first recall some necessary notions and

notation. The following notions of geometrically doubling and upper doubling metric
measure spaces were originally introduced by Hytönen [9] (see also [10, 15]).

Definition 1.1. A metric space (X , d) is called geometrically doubling if there
exists some N0 ∈ N such that, for any ball B(x, r) ⊂ X , there exists a finite ball
covering {B(xi, r/2)}i of B(x, r) such that the cardinality of this covering is at most
N0.

Remark 1.2. Let (X , d) be a metric space. In [9], Hytönen showed that the
following statements are mutually equivalent:
(i) (X , d) is geometrically doubling.
(ii) For any ε ∈ (0, 1) and any ball B(x, r) ⊂ X , there exists a finite ball covering

{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most
N0ε

−n, here and in what follows, N0 is as in Definition 1.1 and n := log2 N0.
(iii) For every ε ∈ (0, 1), any ball B(x, r) ⊂ X contains at most N0ε

−n centers of
disjoint balls {B(xi, εr)}i.

(iv) There existsM ∈ N such that any ball B(x, r) ⊂ X contains at most M centers
{xi}i of disjoint balls {B(xi, r/4)}M

i=1.

Definition 1.3. A metric measure space (X , d, μ) is called upper doubling if μ is
a Borel measure on X and there exist a dominating function λ : X × (0,∞) → (0,∞)
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and a positive constant Cλ, depending on λ, such that for each x ∈ X , r → λ(x, r) is
non-decreasing and, for all x ∈ X and r ∈ (0,∞),

(1.3) μ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2).

Remark 1.4. (i) Obviously, a space of homogeneous type is a special case of upper
doubling spaces, with the dominating function λ(x, r) := μ(B(x, r)). On the other
hand, the Euclidean space Rd with any Radon measure μ as in (1.1) is also an upper
doubling measure space by taking the dominating function λ(x, r) := C0r

κ.
(ii) Let (X , d, μ) be an upper doubling space and λ a dominating function on

X × (0,∞) as in Definition 1.3. It was proved in [12] that there exists another
dominating function λ̃ such that λ̃ ≤ λ, C

λ̃
≤ Cλ and, for all x, y ∈ X with d(x, y) ≤

r,

(1.4) λ̃(x, r) ≤ C
λ̃
λ̃(y, r).

Thus, in what follows, we always assume that λ satisfies (1.4).

We now recall the coefficient δ(B, S) introduced in [9], which is analogous to the
quantity KQ,R introduced by Tolsa [22] (see also [23, 24]).

Definition 1.5. For any two balls B ⊂ S, define

δ(B, S) := 1 +
∫

2S\B

1
λ(cB, d(x, cB))

dμ(x),

where cB is the center of the ball B.

Though the measure doubling condition is not assumed uniformly for all balls in
the space (X , d, μ) satisfying the geometrically and upper doubling conditions, it was
shown in [9] that there are still many balls which have the following (α, β)-doubling
property.

Definition 1.6. Let α, β ∈ (1,∞). A ball B ⊂ X is called (α, β)-doubling if
μ(αB) ≤ βμ(B).

To be precise, it was proved in [9, Lemma 3.2] that if a metric measure space
(X , d, μ) is upper doubling and α, β ∈ (1,∞) satisfying β > C

log2 α
λ =: αν , then for

any ball B ⊂ X , there exists some j ∈ Z+ := N ∪ {0} such that αjB is (α, β)-
doubling. Moreover, let (X , d) be geometrically doubling, β > αn with n := log2 N0

and μ a Borel measure on X which is finite on bounded sets. Hytönen [9, Lemma
3.3] showed that for μ-almost every x ∈ X , there exist arbitrary small (α, β)-doubling
balls centered at x. Furthermore, the radius of these balls may be chosen to be of the
form α−jr for j ∈ N and any preassigned number r ∈ (0,∞). Throughout this paper,
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for any α ∈ (1,∞) and ball B, the smallest (α, βα)-doubling ball of the form αjB

with j ∈ Z+ is denoted by B̃α, where

(1.5) βα := max{α3n, α3ν} + 30n + 30ν = α3 max{n,ν} + 30n + 30ν.

In what follows, by a doubling ball we mean a (6, β6)-doubling ball and B̃6 is simply
denoted by B̃.
Now we recall the following notion of RBMO(μ) from [9].

Definition 1.7. Let ρ ∈ (1,∞). A function f ∈ L1
loc (μ) is said to be in the space

RBMO(μ) if there exist a positive constant C and, for any ball B ⊂ X , a number fB

such that

(1.6)
1

μ(ρB)

∫
B
|f(x) − fB| dμ(x) ≤ C

and, for any two balls B and B1 such that B ⊂ B1,

(1.7) |fB − fB1| ≤ Cδ(B, B1).

The infimum of the positive constants C satisfying both (1.6) and (1.7) is defined to
be the RBMO(μ) norm of f and denoted by ‖f‖RBMO(μ).

From [9, Lemma 4.6], it follows that the space RBMO(μ) is independent of
ρ ∈ (1,∞).
The following notion of Carlderón-Zygmund operators comes from [11].

Definition 1.8. A function K ∈ L1
loc ((X × X )\{(x, y) : x = y}) is called a

Calderón-Zygmund kernel if there exists a positive constant CK , depending on K ,
such that
(i) for all x, y ∈ X with x 	= y,

(1.8) |K(x, y)| ≤ CK
1

λ(x, d(x, y))
;

(ii) there exist positive constants δ ∈ (0, 1] and cK , depending on K , such that, for
all x, x̃, y ∈ X with d(x, y) ≥ cKd(x, x̃),

(1.9) |K(x, y)− K(x̃, y)|+ |K(y, x)− K(y, x̃)| ≤ CK
[d(x, x̃)]δ

[d(x, y)]δλ(x, d(x, y))
.

A linear operator T is called a Calderón-Zygmund operatorwith kernelK satisfying
(1.8) and (1.9) if, for all f ∈ L∞(μ) with bounded support and x 	∈ supp f ,

(1.10) Tf(x) :=
∫
X

K(x, y)f(y) dμ(y).
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A new example of operators with kernel satisfying (1.8) and (1.9) is the so-called
Bergman-type operator appearing in [28]; see also [11] for an explanation. Notice that
(1.8) and (1.9) are more general than the conditions satisfied by the classical Calderón-
Zygmund operators.
Let Φ be a convex Orlicz function on [0,∞), namely, a convex increasing function

satisfying Φ(0) = 0, Φ(t) > 0 for all t ∈ (0,∞) and Φ(t) → ∞ as t → ∞. Let

(1.11) aΦ := inf
t∈(0,∞)

tΦ′(t)
Φ(t)

and bΦ := sup
t∈(0,∞)

tΦ′(t)
Φ(t)

.

We refer to [16] for more properties of aΦ and bΦ.
The Orlicz space LΦ(μ) is defined to be the space of all measurable functions f

on (X , d, μ) such that
∫
X Φ(|f(x)|) dμ(x) < ∞; moreover, for any f ∈ LΦ(μ), its

Luxemburg norm in LΦ(μ) is defined by

‖f‖LΦ(μ) := inf
{

t ∈ (0,∞) :
∫
X

Φ(|f(x)|/t) dμ(x) ≤ 1
}

.

For any sequence	b := (b1, · · · , bk) of functions, the multilinear commutator T�b
of

the Calderón-Zygmund operator T and 	b is defined by setting, for all suitable functions
f and x ∈ X ,

(1.12) T�b
f(x) := [bk, [bk−1, · · · , [b1, T ] · · · ]]f(x),

where

(1.13) [b1, T ]f(x) := b1(x)Tf(x)− T (b1f)(x).

The first main result of this paper is the following boundedness of multilinear
commutators on Orlicz spaces.

Theorem 1.9. Let k ∈ N, bi ∈ RBMO(μ) for all i ∈ {1, · · · , k}, Φ a convex
Orlicz function satisfying that 1 < aΦ ≤ bΦ < ∞. Assume that T is a Calderón-
Zygmund operator which is bounded on L2(μ). Then the multilinear commutator T�b
in (1.12) is bounded on Orlicz spaces LΦ(μ), namely, there exists a positive constant
C such that for all f ∈ LΦ(μ),

‖T�b
f‖LΦ(μ) ≤ C‖b1‖RBMO(μ) · · · ‖bk‖RBMO(μ)‖f‖LΦ(μ).

Remark 1.10. (i) Let Φ1(t) := tp for all t ∈ (0,∞) with p ∈ (1,∞). Then Φ1

is a convex Orlicz function with aΦ1 = bΦ1 = p ∈ (1,∞), and LΦ1(μ) = Lp(μ).
In this case, Theorem 1.9 when k = 1 also essentially improves [2, Theorem 7.6] by
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removing the additional assumption (1.2); moreover, if X = Rd and μ is as in (1.1),
then Theorem 1.9 is just [7, Theorem 2].
(ii) We remark that there exist non-trivial convex Orlicz functions satisfying the

assumption of Theorem 1.9. For example, if Φ2(t) := tp ln(e + t) for all t ∈ [0,∞)
with p ∈ (1,∞), then 1 < p = aΦ2 ≤ bΦ2 < ∞; if Φ3(t) := tp/ ln(e + t) for all
t ∈ [0,∞) with p ∈ (2,∞), then 1 < aΦ3 ≤ bΦ3 = p < ∞.
The endpoint counterpart of Theorem 1.9 is also considered in this paper. To

this end, we first recall the following Orlicz type function space OscexpLr (μ) (see,
for example, Pérez and Trujillo-González [19] for Euclidean spaces, and [7] for non-
doubling measures).
In what follows, let L1

loc (μ) be the space of all locally μ-integrable functions on
X . For all balls B and f ∈ L1

loc (μ), mB(f) denotes the mean value of f on ball B,
namely,

(1.14) mB(f) :=
1

μ(B)

∫
B

f dμ.

Definition 1.11. For r ∈ [1,∞), a function f ∈ L1
loc (μ) is said to belong to the

space OscexpLr(μ) if there exists a positive constant C1 such that
(i) for all balls B,

‖f − mB̃(f)‖expLr, B,μ/μ(2B)

:= inf
{

λ ∈ (0,∞) :
1

μ(2B)

∫
B

exp
( |f − m

B̃
(f)|

λ

)r

dμ ≤ 2
}

≤ C1,

(ii) for all doubling balls Q ⊂ R,
|mQ(f) − mR(f)| ≤ C1δ(Q, R).

The OscexpLr(μ) norm of f , ‖f‖Oscexp Lr (μ), is then defined to be the infimum of
all positive constants C1 satisfying (i) and (ii).

Remark 1.12. Obviously, for any r ∈ [1,∞), OscexpLr(μ) ⊂ RBMO(μ). More-
over, from [9, Corollary 6.3], it follows that Osc expL1(μ) = RBMO(μ).

Now we state another main result of this paper.

Theorem 1.13. Let k ∈ N, ri ∈ [1,∞) and bi ∈ OscexpLri (μ) for i ∈ {1, · · · , k}.
Let T and T�b

be as in (1.10) and (1.12), respectively. If T is bounded on L2(μ),
then there exists a positive constant C such that, for all λ ∈ (0,∞) and all bounded
functions f with bounded support,

μ({x ∈ X : |T�b
f(x)| > λ}) ≤ CΦ1/r(‖b1‖Osc exp Lr1 (μ) · · · ‖bk‖Osc exp Lrk (μ))

×
∫
X

Φ1/r

( |f(y)|
λ

)
dμ(y),

where 1/r=1/r1+· · ·+1/rk and, for all t∈(0,∞) and s∈(0,∞), Φs(t)=t logs(2+t).
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Remark 1.14. Theorem 1.13 generalizes [7, Theorem 4] by taking X = Rd,
d(x, y) = |x − y| and μ being as in (1.1).

To prove Theorem 1.9, we first establish an interpolation theorem on Orlicz spaces
in Theorem 2.2 below, which is obtained via a variant of the method for the classical
Marcinkiewicz interpolation theorem and some properties of Orlicz functions. Let
δ̃(B, S) be the discrete version of δ(B, S), which was first introduced by Bui and
Duong in [2] (see also (3.3) below). Via introducing a sharp maximal function M̃#f ,
associated with δ̃(B, S), in Definition 3.6 below and fully applying the properties of
δ(B, S) and δ̃(B, S) (see Lemmas 3.1 and 3.5 below), we prove in Theorem 3.10 below
that, without the assumption (1.2), the commutators of Calderón-Zygmund operators
and RBMO(μ) functions are bounded on Lp(μ) for all p ∈ (1,∞). When (1.2) holds,
this result was already obtained in [2, Theorem 7.6]. Comparing with the proof of [2,
Theorem 7.6], the main new ingredients appearing in our approach used for the proof
of Theorem 3.10 are that we replace the sharp maximal functionM#f in [2] by M̃#f
here and that we observe that δ̃(B, S) preserves most of the properties of δ(B, S) (see
Lemma 3.5 below), which further induce a stronger version (see Theorem 3.8 below)
of [2, Theorem 4.2] and hence lead us to avoid the assumption (1.2). Combining the
aforementioned interpolation theorem on Orlicz spaces and the Lp(μ)-boundedness of
commutators in Theorem 3.10, we further show Theorem 1.9.
To establish the weak type endpoint estimate of multilinear commutators in Theorem

1.13, we need a generalized Hölder’s inequality in the non-homogeneous setting (see
Lemma 4.1 below), which is a generalization of [19, Lemma 2.3], and the Calderón-
Zygmund decomposition in the non-homogeneous setting obtained by Bui and Duong
[2].
The organization of this paper is as follows. In Section 2, we establish an inter-

polation theorem on Orlicz spaces. In Section 3, we show Theorem 1.9. Section 4 is
devoted to the proof of Theorem 1.13.
Finally, we make some conventions on notation. Throughout the whole paper, C

stands for a positive constant which is independent of the main parameters, but it may
vary from line to line. Constants with subscripts, such as C0, do not change in different
occurrences. Furthermore, we use C(ρ, α, · · ·) to denote a positive constant depending
on the parameter ρ, α, · · · . For any ball B and f ∈ L1

loc (μ), mB(f) denotes the mean
value of f over B as in (1.14); the center and the radius of B are denoted, respectively,
by cB and rB. If f ≤ Cg, we then write f � g; if f � g � f , we then write f ∼ g.
For any subset E of X , we use χE to denote its characteristic function.

2. AN INTERPOLATION THEOREM

In this section, we establish an interpolation theorem of Orlicz spaces, which plays
a key role in the proof of Theorem 1.9.
We begin with some properties of the indices aΦ and bΦ.
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Proposition 2.1. Let Φ be a convex Orlicz function on [0,∞), aΦ and bΦ be as in
(1.11).
(i) If bΦ < ∞, then Φ satisfies the ∇2 condition, namely, there exists a positive
constant C such that, for all t ∈ (0,∞), Φ(2t) ≤ CΦ(t).

(ii) If bΦ < ∞, then Φ(t)/tbΦ is decreasing for t ∈ (0,∞). Moreover, for any given
λ ∈ [0, 1] and t ∈ (0,∞), Φ(λt) ≥ λbΦΦ(t).

(iii) Φ(t)/taΦ is increasing for t ∈ (0,∞). Moreover, for any given λ ∈ [1,∞) and
t ∈ (0,∞), Φ(λt) ≥ λaΦΦ(t).

(iv) Let 1 < p < aΦ ≤ bΦ < q < ∞. Then limt→0
Φ(t)
tp = 0 and limt→∞

Φ(t)
tq = 0.

Proof.

(i) By bΦ < ∞, we know that, for any t ∈ (0,∞), Φ′(t)
Φ(t)

≤ bΦ
t ; moreover, by the

fact that any convex function on [0,∞) is absolutely continuous on every finite
closed intervals of [0,∞), we see that

log
Φ(2t)
Φ(t)

=
∫ 2t

t

Φ′(s)
Φ(s)

ds ≤
∫ 2t

t

bΦ

s
ds = bΦ log 2.

Thus, we have Φ(2t) ≤ 2bΦΦ(t) for any t ∈ (0,∞). This shows (i).
(ii) For any given t1, t2 ∈ (0,∞), t1 ≤ t2, by the fundamental theorem of calculus,

we see that

Φ(t2)

tbΦ2
− Φ(t1)

tbΦ1
=
∫ t2

t1

sΦ′(s) − bΦΦ(s)
sbΦ+1

ds ≤ 0.

Then Φ(t)/tbΦ is decreasing for t ∈ (0,∞). Specially, for λ ∈ (0, 1] and
t ∈ (0,∞), Φ(t)

tbΦ
≤ Φ(λt)

(λt)bΦ
, that is, Φ(λt) ≥ λbΦΦ(t), which completes the proof

of (ii).
(iii) The proof of (iii) is similar to (ii). We omit the details.
(iv) For t ∈ (0, 1], since Φ(t)

taΦ is increasing on t, we then see that Φ(t)
taΦ ≤ Φ(1) < ∞.

This, combined with aΦ > p, implies that

lim
t→0

Φ(t)
tp

= lim
t→0

taΦ−p Φ(t)
taΦ

= 0.

For t ∈ [1,∞), since Φ(t)
taΦ is decreasing on t, Φ(t)

tbΦ
≤ Φ(1) < ∞. This, together

with bΦ < q, further implies that

lim
t→∞

Φ(t)
tq

= lim
t→∞ tbΦ−q Φ(t)

tbΦ
= 0,

which completes the proof of (iv) and hence Proposition 2.1.
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In what follows, for a convex Orlicz function Φ : [0,∞) → [0,∞), its inverse
Φ−1 is defined by setting, for all t ∈ [0,∞),

Φ−1(t) := inf{s ∈ (0,∞) : Φ(s) > t}.

With these conclusions, we establish the following interpolation theorem.

Theorem 2.2. Let α ∈ [0, 1), pi, qi ∈ (0,∞) satisfy 1/qi = 1/pi−α for i ∈ {1, 2},
p1 < p2 and T be a sublinear operator of weak type (pi, qi) for i ∈ {1, 2}. Then T is
bounded from LΦ(μ) to LΨ(μ), where Φ and Ψ are convex Orlicz functions satisfying
the following conditions: 1 < p1 < aΦ ≤ bΦ < p2 < ∞, 1 < q1 < aΨ ≤ bΨ < q2 <

∞ and, for all t ∈ (0,∞), Ψ−1(t) = Φ−1(t)t−α.

Proof. First, we show that LΦ(μ) ⊂ Lp1(μ)+Lp2(μ). To this end, for any given
λ ∈ (0,∞), we decompose f ∈ LΦ(μ) as

f(x) = f(x)χ{x∈X : |f(x)|>λ}(x) + f(x)χ{x∈X : |f(x)|≤λ}(x) =: fλ(x) + fλ(x)

for all x ∈ X . For the sake of simplicity, we assume that f 	≡ 0 on X . Then we claim
that fλ ∈ Lp1(μ) and fλ ∈ Lp2(μ). Indeed, by (i) and (iii) of Proposition 2.1, there
exists a positive constant C(λ), depending on λ, such that, for all x ∈ X satisfying
|f(x)| > λ, [ |f(x)|

λ

]aΦ

≤ Φ (|f(x)|/λ)
Φ(1)

≤ C(λ)
Φ(|f(x)|)

Φ(1)
,

which, together with p1 < aΦ, implies that∫
X
|fλ(x)|p1 dμ(x)

=
∫
{x∈X :|f(x)|>λ}

|f(x)|p1 dμ(x) ≤
∫
{x∈X :|f(x)|>λ}

|f(x)|aΦ−p1

λaΦ−p1
|f(x)|p1 dμ(x)

≤ C(λ)
λp1

Φ(1)

∫
X

Φ(|f(x)|) dμ(x) < ∞,

namely, fλ ∈ Lp1(μ).
Now we show fλ ∈ Lp2(μ). By (i) and (ii) of Proposition 2.1, there exists a

positive constant C(λ), depending on λ, such that, for all x ∈ X satisfying |f(x)| ≤ λ,[ |f(x)|
λ

]bΦ

≤ Φ (|f(x)|/λ)
Φ(1)

≤ C(λ)
Φ(|f(x)|)

Φ(1)
.

This, combined with bΦ < p2, implies that
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∫
X
|fλ(x)|p2 dμ(x) =

∫
{x∈X : |f(x)|≤λ}

|f(x)|p2 dμ(x)

≤ λp2−bΦ

∫
{x∈X : |f(x)|≤λ}

|f(x)|bΦ dμ(x)

≤ C(λ)
λp2

Φ(1)

∫
X

Φ(|f(x)|) dμ(x) < ∞,

namely, fλ ∈ Lp2(μ), which proves the previous claim, and hence LΦ(μ) ⊂ Lp1(μ) +
Lp2(μ).
Next we show that T is bounded from LΦ(μ) to LΨ(μ). To this end, let u be

a function on [0,∞) satisfying u−1(t) = Ψ−1(Φ(t)) for all t ∈ [0,∞). Then u−1

is nondecreasing function defined on [0,∞) such that u−1(t) → 0 as t → 0 and
u−1(t) → ∞ as t → ∞. We also let σ(f, λ) := μ ({x ∈ X : |f(x)| > λ}). Then by
the layer cake representation (see, for example, [13, Theorem 1.13]), we see that∫

X
Ψ(|Tf(x)|) dμ(x) =

∫ ∞

0
σ(Tf, λ) dΨ(λ)

≤
∫ ∞

0
σ(Tfu(λ), λ/2) dΨ(λ)

+
∫ ∞

0
σ(Tfu(λ), λ/2) dΨ(λ) =: I + II.

Since T is of weak type (p1, q1), we then see that

σ(Tfu(λ), λ/2) �
(

2
λ

)q1

‖fu(λ)‖q1

Lp1(μ)
,

which, together with p1 < q1 and Minkowski’s inequality, implies that

(2.1)

Ip1/q1

�
{∫ ∞

0

[∫
X
λ−p1|f(x)|p1χ{x∈X : |f(x)|>u(λ)}(x) dμ(x)

]q1/p1

dΨ(λ)

}p1/q1

�
∫
X

[∫ ∞

0
λ−q1|f(x)|q1χ{x∈X : |f(x)|>u(λ)}(λ) dΨ(λ)

]p1/q1

dμ(x)

�
∫
X
|f(x)|p1

[∫ u−1(|f(x)|)

0
λ−q1 dΨ(λ)

]p1/q1

dμ(x).

By integration by parts, together with u−1(t) → 0 as t → 0, (iii) and (iv) of
Proposition 2.1, we conclude that
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(2.2)

∫ u−1(|f(x)|)

0

1
λq1

dΨ(λ)

=
Ψ(u−1(|f(x)|))
[u−1(|f(x)|)]q1

+ q1

∫ u−1(|f(x)|)

0

Ψ(λ)
λq1+1

dλ

≤ Ψ(u−1(|f(x)|))
[u−1(|f(x)|)]q1

+q1

∫ u−1(|f(x)|)

0

Ψ(u−1(|f(x)|))
λq1+1

[
λ

u−1(|f(x)|)
]aΨ

dλ

=
aΨ

aΨ − q1

Ψ(u−1(|f(x)|))
[u−1(|f(x)|)]q1

� Φ(|f(x)|)
[u−1(|f(x)|)]q1

� Φ(|f(x)|)
|f(x)|q1

[Φ(|f(x)|)]q1α ∼ [Φ(|f(x)|)]q1/p1

|f(x)|q1
,

where the second and the third inequalities to the last one depend on the facts that for
any t ∈ (0,∞), Ψ(Ψ−1(t)) ≤ t, Ψ−1(t) = Φ−1(t)t−α and Φ−1(Φ(t)) ≥ t. Combining
(2.1) and (2.2), we conclude that

I �
[∫

X
Φ(|f(x)|) dμ(x)

]q1/p1

.

By a method similar to the estimate for I, we also see that

II �
[∫

X
Φ(|f(x)|) dμ(x)

]q2/p2

.

Combining the estimates for I and II, we further conclude that∫
X

Ψ(|Tf(x)|) dμ(x) �
[∫

X
Φ(|f(x)|) dμ(x)

]q1/p1

+
[∫

X
Φ(|f(x)|) dμ(x)

]q2/p2

.

By a standard argument, we then know that T is bounded from LΦ(μ) into LΨ(μ),
which completes the proof of Theorem 2.2.

In Theorem 2.2, if we take α = 0, we then immediately obtain the following
conclusion. We omit the details.

Corollary 2.3. Let T be a sublinear operator of weak type (p, p) for any p ∈
(1,∞). Then T is bounded on LΦ(μ), where Φ is a convex Orlicz function on [0,∞)
satisfying that

1 < aΦ ≤ bΦ < ∞.

3. PROOF OF THEOREM 1.9

In this section, we show Theorem 1.9. We begin with recalling some useful proper-
ties of δ in Definition 1.5 (see, for example, [9, Lemmas 5.1 and 5.2] and [12, Lemma
2.2]).
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Lemma 3.1. (i) For all balls B ⊂ R ⊂ S, δ(B, R) ≤ δ(B, S).
(ii) For any ρ ∈ [1,∞), there exists a positive constant C(ρ), depending on ρ, such

that, for all balls B ⊂ S with rS ≤ ρrB, δ(B, S) ≤ C(ρ).
(iii) For any α ∈ (1,∞), there exists a positive constant C(α), depending on α,

such that, for all balls B, δ(B, B̃α) ≤ C(α).
(iv) There exists a positive constant c such that, for all balls B ⊂ R ⊂ S,

δ(B, S) ≤ δ(B, R) + cδ(R, S).

In particular, if B and R are concentric, then c = 1.
(v) There exists a positive constant c̃ such that, for all balls B ⊂ R ⊂ S,

δ(R, S) ≤ c̃δ(B, S);

moreover, if B and R are concentric, then δ(R, S) ≤ δ(B, S).

Now we recall the following equivalent characterizations of RBMO(μ) established
in [12, Proposition 2.10].

Lemma 3.2. Let ρ ∈ (1,∞) and f ∈ L1
loc (μ). The following statements are

equivalent:
(a) f ∈ RBMO(μ);
(b) there exists a positive constant C such that, for all balls B,

1
μ(ρB)

∫
B

∣∣f(x) − m
B̃
f
∣∣ dμ(x) ≤ C

and, for all doubling balls B ⊂ S,

|mB(f)− mS(f)| ≤ Cδ(B, S).(3.1)

Moreover, let ‖f‖∗ be the infimum of all admissible constants C in (b). Then there ex-
ists a constant C̃ ∈ [1,∞) such that, for all f ∈ RBMO(μ), ‖f‖∗/C̃ ≤ ‖f‖RBMO(μ) ≤
C̃‖f‖∗.
Corollary 3.3. There exists a positive constant C such that, for all balls B, ρ ∈

(1,∞), r ∈ [1,∞) and f ∈ RBMO(μ),

(3.2)
{

1
μ(ρB)

∫
B

∣∣f(x) − m
B̃
f
∣∣r dμ(x)

}1/r

≤ C‖f‖RBMO(μ).

Moreover, the infimum of all positive constants C satisfying both (3.1) and (3.2)
is an equivalent RBMO(μ) norm of f .
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Proof. Let r ∈ [1,∞) and f ∈ RBMO(μ). By Minkowski’s inequality, [9,
Corollary 6.3], Hölder’s inequality, Lemmas 3.2 and 3.1(iii), we know that{

1
μ(ρB)

∫
B

∣∣f(x)− m
B̃
f
∣∣r dμ(x)

}1/r

�
{

1
μ(ρB)

∫
B

|f(x)− fB|r dμ(x)
}1/r

+
[

μ(B)
μ(ρB)

]1/r

|fB − mBf |+ |mBf − mB̃f |

� ‖f‖RBMO(μ) +
{

1
μ(ρB)

∫
B
|f(x)− fB |r dμ(x)

}1/r

+|mBf − m
B̃
f | � ‖f‖RBMO(μ),

which, together with Hölder’s inequality, then completes the proof of Corollary 3.3.

We also need to recall some known conclusions from [2, Sections 4.1 and 7.1] and
[9, Corollary 3.6].

Lemma 3.4. Let p ∈ (1,∞).
(i) Let r ∈ (1, p) and ρ ∈ (0,∞). The following maximal operators, defined by

setting, for all f ∈ Lp(μ) and x ∈ X ,

Mr,ρf(x) := sup
Q�x

[
1

μ(ρQ)

∫
Q
|f(x)|r dμ(x)

]1
r

,

Nf(x) := sup
Q�x,Q doubling

1
μ(Q)

∫
Q
|f(x)| dμ(x)

and
M(ρ)f(x) := sup

Q�x

1
μ(ρQ)

∫
Q

|f(x)| dμ(x),

are bounded on Lp(μ).
(ii) The Calderón-Zygmund operator T as in (1.10) is bounded on Lp(μ) if T is

bounded on L2(μ);
(iii) |f(x)| ≤ Nf(x) for almost every x ∈ X .

Recall that the sharp maximal operator M# in [2] is defined by setting, for all
f ∈ L1

loc (μ) and x ∈ X ,

M#f(x) := sup
B�x

1
μ(6B)

∫
B
|f(x)− mB̃f | dμ(x) + sup

(Q,R)∈Δx

|mQf − mRf |
δ(Q, R)

,
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whereΔx := {(Q, R) : x ∈ Q ⊂ R and Q, R are doubling balls}, and the maximal
operator T ∗, associated with the Calderón-Zygmund operator T , is defined by setting,
for all f ∈ L∞(μ) with bounded support and x ∈ X ,

T ∗f(x) := sup
ε>0

|Tεf(x)|,

where
Tεf(x) :=

∫
d(x y)≥ε

K(x, y)f(y) dμ(y).

The following discrete version, δ̃(B, S), of δ(B, S) defined in Definition 1.5, was
first introduced by Bui and Duong [2] in non-homogeneous spaces, which is more
close to the quantity KQ,R introduced by Tolsa [22] (see also [23, 24]) in the setting
of non-doubling measures. For any two balls B ⊂ S, let δ̃(B, S) be defined by

(3.3) δ̃(B, S) := 1 +
NB,S∑
k=1

μ(6kB)
λ(cB, 6krB)

,

where NB,S is the smallest integer satisfying 6NB,S rB ≥ rS . Then, obviously,
δ(B, S) � δ̃(B, S). As was pointed by Bui and Duong [2], in general, it is not
true that δ(B, S) ∼ δ̃(B, S) without the assumption (1.2).
As a variant of [22, Lemma 2.1], we have the following properties of δ̃(B, S).

Lemma 3.5. (i) For all balls B ⊂ R ⊂ S, δ̃(B, R) ≤ 2δ̃(B, S).
(ii) For any ρ ∈ [1,∞), there exists a positive constant C(ρ), depending on ρ, such

that, for all balls B ⊂ S with rS ≤ ρrB, δ̃(B, S) ≤ C(ρ).
(iii) There exists a positive constant C such that, for all balls B, δ̃(B, B̃) ≤ C.
(iv) There exists a positive constant c such that, for all balls B ⊂ R ⊂ S,

δ̃(B, S) ≤ δ̃(B, R) + cδ̃(R, S).

(v) There exists a positive constant c̃ such that, for all balls B ⊂ R ⊂ S,

δ̃(R, S) ≤ c̃δ̃(B, S).

Proof. The properties (i) and (ii) are obvious.
Let us prove (iii). To this end, let N be the first integer such that 6NB is doubling.

For k ∈ {1, · · · , N − 1}, we have μ(6k+1B) > β6μ(6kB). Thus, μ(6kB) < μ(6NB)

βN−k
6

for k ∈ {1, · · · , N − 1}. By this, together with (1.3) and the fact that β6 > C
log2 12
λ
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(see (1.5)), we conclude that

δ̃(B, 6NB) = 1 +
N∑

k=1

μ(6kB)
λ(cB, 6krB)

≤ 2 +
N−1∑
k=1

μ(6kB)
λ(cB, 6krB)

� 1 +
N−1∑
k=1

(
C

log2 12
λ

β6

)N−k
μ(6NB)

λ(cB, 6NrB)
� 1 +

∞∑
k=1

(
C

log2 12
λ

β6

)k

� 1,

which completes the proof of (iii).
Next we show (iv). Obviously, NB,R ≤ NB,S + 1. If NB,R = NB,S or NB,R =

NB,S + 1, there exists nothing to prove. If NB,R < NB,S, from the fact that NB,S ≤
NB,R + NR,S, 6NB,RrB ≥ rR, 6NB,R−1B ⊂ 2R and (1.3), it follows that

δ̃(B, S) ≤ δ̃(B, R) +
NB,S∑

k=NB,R+1

μ(6kB)
λ(cB, 6krB)

≤ δ̃(B, R) +
NB,R+NR,S∑
k=NB,R+1

μ(6kB)
λ(cB, 6krB)

≤ δ̃(B, R) +
NR,S∑
k=1

μ(6k+NB,RB)
λ(cB, 6k+NB,RrB)

≤ δ̃(B, R) +
NR,S∑
k=1

μ(6k+2R)
λ(cB, 6krR)

≤ δ̃(B, R) + c

NR,S∑
k=1

μ(6k+2R)
λ(cR, 6k+2rR)

≤ δ̃(B, R) + c

⎛⎝1 +
NR,S∑
k=1

μ(6kR)
λ(cR, 6krR)

⎞⎠
≤ δ̃(B, R) + cδ̃(R, S),

where c is a positive constant, which shows (iv).
For (v), we first prove that NB,R + NR,S ≤ NB,S + 1. Since

rR = 6−NR,S+16NR,S−1rR ≤ 6−NR,S+1rS ≤ 6−NR,S+16NB,SrB ≤ 6NB,S−NR,S+1rB,

we obtain NB,R ≤ NB,S − NR,S + 1. From this, 6NB,R−1rB < rR ≤ 6NB,RrB and
(1.3), it follows that

δ̃(R, S) ≤ 1 +
NR,S∑
k=1

μ(6k+NB,R B)
λ(cR, 6k+NB,R−1rB)

� 1 +
NB,R+NR,S∑
k=NB,R+1

μ(6kB)
λ(cR, 6k−1rB)

� 1 +
NB,S+1∑

k=NB,R+1

μ(6kB)
λ(cB, 6k−1rB)

� 1 +
NB,S∑
k=1

μ(6kB)
λ(cB, 6krB)

∼ δ̃(B, S),

which completes the proof of (v) and hence Lemma 3.5.

Now we introduce the maximal operator M̃# associated with δ̃.
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Definition 3.6. For all f ∈ L1
loc (μ) and x ∈ X , let

M̃#f(x) := sup
B�x

1
μ(6B)

∫
B
|f(x)− m

B̃
f | dμ(x) + sup

(Q,R)∈Δx

|mQf − mRf |
δ̃(Q, R)

,

where Δx := {(Q, R) : x ∈ Q ⊂ R and Q, R are doubling balls}.
Remark 3.7. The sharp maximal operator M̃# has the following useful properties.

(i) By the fact that, for all doubling balls Q ⊂ R, δ(Q, R) � δ̃(Q, R), we easily
see that M̃#f(x) � M#f(x) for all x ∈ X .

(ii) From (i), together with the corresponding properties of M# proved by Bui and
Duong in [2, Section 4.1], we infer that M̃# is of weak type (1, 1) and bounded
on Lp(μ) for all p ∈ (1,∞).

(iii) By an argument similar to that used in the proof of [22, Remark 6.1], we conclude
that M̃#|f |(x) ≤ 5β6M̃

#f(x) for all x ∈ X . We omit the details.
The following theorem is a variant of [2, Theorem 4.2].

Theorem 3.8. Let f ∈ L1
loc (μ) satisfying that

∫
X f(x) dμ(x) = 0 when ‖μ‖ :=

μ(X ) < ∞. Assume that, for some p ∈ (1,∞), inf{1, Nf} ∈ Lp(μ). Then there
exists a positive constant C, independent of f , such that

‖Nf‖Lp(μ) ≤ C‖M̃#f‖Lp(μ).

Proof. By Lemma 3.5 and Remark 3.7, repeating the argument used in the proof
of [2, Theorem 4.2], we obtain the desired conclusion. We omit the details, which
completes the proof of Theorem 3.8.

Remark 3.9. We observe that Theorem 3.8 improves [2, Theorem 4.2] by Remark
3.7(i).

We now establish the Lp(μ)-boundedness, for all p ∈ (1,∞), of commutators of
Calderón-Zygmund operators with RBMO(μ) functions without the assumption (1.2),
which essentially improves [2, Theorem 7.6].

Theorem 3.10. Let b ∈ RBMO(μ) and T be a Calderón-Zygmund operator which
is bounded on L2(μ). Then the commutator [b, T ] as in (1.13) is bounded on Lp(μ)
for all p ∈ (1,∞).

To prove Theorem 3.10, we need some technical lemmas adapting from [22].

Lemma 3.11. Let f ∈ RBMO(μ), q ∈ (0,∞) and, for all x ∈ X ,

fq(x) :=

{
f(x), if |f(x)| ≤ q,

q
f(x)
|f(x)|, if |f(x)| > q.

Then fq ∈ RBMO(μ) and there exists a positive constant C, independent of f , such
that ‖fq‖RBMO(μ) ≤ C‖f‖RBMO(μ).



2220 Xing Fu, Dachun Yang and Wen Yuan

Proof. It is obvious that ‖|f |‖RBMO(μ) � ‖f‖RBMO(μ), which further leads to

‖max{f, g}‖ � ‖f‖RBMO(μ) + ‖g‖RBMO(μ)

and
‖min{f, g}‖ � ‖f‖RBMO(μ) + ‖g‖RBMO(μ).

Then, by an argument similar to that used in the proof of [22, Lemma 3.3], we obtain
the desired result, which completes the proof of Lemma 3.11.

The following two lemmas are completely analogous to [22, Lemma 9.2] and [22,
Lemma 9.3]. We omit the details.

Lemma 3.12. There exists some positive constant P (big enough), depending only
on Cλ in (1.3), such that, if m ∈ N, B1 ⊂ B2 ⊂ · · · ⊂ Bm are concentric balls with
δ̃(Bi, Bi+1) > P for i ∈ {1, · · · , m − 1}, then there exists a positive constant C,
depending only on Cλ, such that

m−1∑
i=1

δ̃(Bi, Bi+1) ≤ Cδ̃(B1, Bm).

Lemma 3.13. There exists a positive constant P0 (big enough), depending on Cλ

in (1.3) and β6 as in (1.5) with α = 6, such that, if x ∈ X is some fixed point and
{fB}B�x is a collection of numbers such that |fB − fS | ≤ Cx for all doubling balls
B ⊂ S with x ∈ B such that δ̃(B, S) ≤ P0, then there exists a positive constant C,
depending only on Cλ, β6 and P0, such that

|fB − fS | ≤ Cδ̃(B, S)Cx for all doubling balls B ⊂ S with x ∈ B.

Now we sketch the proof of Theorem 3.10 and refer to [2, Theorem 7.6] for more
details.

Proof of Theorem 3.10. To show Theorem 3.10, it suffices to show that, for all
f ∈ Lp(μ) with p ∈ (1,∞) and x ∈ X ,

(3.4) M̃#([b, T ]f)(x) � ‖b‖RBMO(μ)[Mr,5f(x) + Mr,6(Tf)(x) + T∗f(x)].

We assume (3.4) for a moment and then show that [b, T ] is bounded on Lp(μ) for all
p ∈ (1,∞). Indeed, under the assumption that T is bounded on L2(μ), by Cotlar’s
inequality ([2, Theorem 6.6]), (i) and (ii) of Lemma 3.4, we conclude that T∗ is
bounded on Lp(μ) for all p ∈ (1,∞). This fact, together with (3.4), (i) and (ii) of
Lemma 3.4, implies that M̃#([b, T ]) is bounded on Lp(μ) for all p ∈ (1,∞). By
Lemma 3.11 and a standard limit argument, without loss of generality, we may assume
that b is a bounded function, which, together with (i) and (ii) of Lemma 3.4, implies
that inf{1, N ([b, T ]f)} ∈ Lp(μ) if f ∈ Lp(μ). We now consider two cases for ‖μ‖.
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Case (i) ‖μ‖ = ∞. In this case, applying Lemma 3.4(iii) and Theorem 3.8, we
know that [b, T ] is bounded on Lp(μ) for all p ∈ (1,∞).

Case (ii) ‖μ‖ < ∞. In this case, by Corollary 3.3 and the Lebesgue dominated
convergence theorem, we see that, for all r ∈ (1,∞),

(3.5)
[

1
μ(X )

∫
X
|b(x)− bX |rdμ(x)

]1/r

� ‖b‖RBMO(μ),

where bX := 1
μ(X )

∫
X b(y) dμ(y). Write

N ([b, T ]f)≤ N ([b, T ]f − mX ([b, T ]f))+ |mX ([b, T ]f)|.

Notice that
∫
X {[b, T ]f(x) − mX ([b, T ]f)} dμ(x) = 0. Then by Theorem 3.8, the

fact that M̃#([b, T ]f − mX ([b, T ]f) = M̃#([b, T ]f) and the Lp(μ)-boundedness of
M̃#([b, T ]) for all p ∈ (1,∞), we see that

‖N ([b, T ]f − mX ([b, T ]f))‖Lp(μ) � ‖M̃#([b, T ]f − mX ([b, T ]f))‖Lp(μ)

∼ ‖M̃#([b, T ]f)‖Lp(μ) � ‖f‖Lp(μ).

For the term |mX ([b, T ]f)|, we further write |[b, T ]f | ≤ |(b−bX )Tf |+|T ((b−bX )f)|,
which, together with Hölder’s inequality, (3.5) and the Lq(μ)-boundedness of T for all
q ∈ (1, p], further implies that

‖mX ([b, T ]f)‖Lp(μ) � ‖f‖Lp(μ).

Thus, [b, T ] is also bounded on Lp(μ) for all p ∈ (1,∞) in this case.
Now we prove (3.4). By b ∈ RBMO(μ) and Definition 1.7, there exists a family

of numbers, {bB}B, satisfying that, for all balls B,∫
B
|b(x)− bB| dμ(x) ≤ 2μ(6B)‖b‖RBMO(μ)

and, for all balls Q ⊂ R,

|bQ − bR| ≤ 2δ(Q, R)‖b‖RBMO(μ)

For all balls Q, let
hQ := mQ(T ((b− bQ)fχX\(6/5)Q)).

Next we show that, for all x ∈ X and balls B with B � x,

(3.6)
1

μ(6B)

∫
B
|[b, T ]f(y)− hB| dμ(y) � ‖b‖RBMO(μ)[Mr,5f(x) + Mr,6(Tf)(x)]
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and, for all x ∈ Q ⊂ R,

(3.7) |hQ − hR| � ‖b‖RBMO(μ)[Mr,5f(x) + T∗f(x)]δ(Q, R)δ̃(Q, R).

The proof of (3.6) is analogous to that of [22, (9.5)] with a slight modification, and
we omit the details.
To prove (3.7), for two balls Q ⊂ R, let N := 1 + NQ,R. Then, we control

|hQ − hR| by the following five terms:

|hQ − hR| ≤ |mQ(T ((b− bQ)fχ6Q\(6/5)Q))|+ |mQ(T ((bQ − bR)fχX\6Q))|
+|mQ(T ((b− bR)fχ6N Q\6Q))|+ |mQ(T ((b − bR)fχX\6NQ))
−mR(T ((b − bR)fχX\6N Q))|+ |mR(T ((b− bR)fχ6N Q\(6/5)R))|

=: M1 + M2 + M3 + M4 + M5.

By a slight modified argument similar to that used in the proof of [2, Theorem 7.6],
we conclude that, for all x ∈ X ,

M1 + M4 + M5 � ‖b‖RBMO(μ)Mr,5f(x),

M2 � ‖b‖RBMO(μ)δ(Q, R)[T∗f(x) + Mr,5f(x)]

and
M3 � ‖b‖RBMO(μ)δ(Q, R)δ̃(Q, R)Mr,5f(x),

which further implies (3.7).
By an argument similar to the proof of [22, Theorem 9.1], together with Lemmas

3.12 and 3.13, δ(Q, R) � δ̃(Q, R), (3.6) and (3.7), we obtain (3.4), which completes
the proof of Theorem 3.10.

To prove Theorem 1.9, we need to recall some notation from [7]. For k ∈ N and
i ∈ {1, · · · , k}, the family of all finite subsets σ := {σ(1), · · · , σ(i)} of {1, · · · , k}
with i different elements is denoted by Ck

i . For any σ ∈ Ck
i , the complementary

sequence σ′ is given by σ′ := {1, · · · , k}\σ. For any σ := {σ(1), · · · , σ(i)} ∈ Ck
i and

k-tuple r := (r1, · · · , rk), we write that 1/rσ := 1/rσ(1) + · · ·+ 1/rσ(i) and 1/rσ′ :=
1/r−1/rσ, where 1/r := 1/r1+ · · ·+1/rk. Let 	b := (b1, · · · , bk) be a finite family of
locally integrable functions. For all i ∈ {1, · · · , k} and σ := {σ(1), · · · , σ(i)} ∈ Ck

i ,
we let bσ := bσ(1) · · · bσ(i), 	bσ := (bσ(1), · · · , bσ(i)),

‖	bσ‖RBMO(μ) := ‖bσ(1)‖RBMO(μ) · · · ‖bσ(i)‖RBMO(μ)

and, for any y, z ∈ X and any ball B in X ,[
m

B̃
(b)− b(z)

]
σ

:=
[
m

B̃
(bσ(1)) − bσ(1)(z)

] · · · [m
B̃
(bσ(i)) − bσ(i)(z)

]
.
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For any 	b := (b1, · · · , bk), we simply write

‖	b‖RBMO(μ) := ‖b1‖RBMO(μ) · · · ‖bk‖RBMO(μ).

For any σ ∈ Ck
i , we set

T�bσ
:= [bσ(i), · · · , [bσ(1), T ] · · · ].

In particular, when σ := {1, · · · , k}, T�bσ
coincides with T�b as in (1.12).

Now we turn to the proof of Theorem 1.9.

Proof of Theorem 1.9. To prove Theorem 1.9, by Corollary 2.3, it suffices to prove
that T�b

is bounded on Lp(μ) for all p ∈ (1,∞). We show this by induction on k.
By Theorem 3.10, the conclusion is valid for k = 1. Now assume that k ≥ 2 is

an integer and for any i ∈ {1, · · · , k − 1} and any subset σ = {σ(1), · · · , σ(i)} of
{1, · · · , k}, T�bσ

is bounded on LΦ(μ).
The case that ‖μ‖ < ∞ can be proved by a way similar to the proof of Theorem

3.10, and we omit the details. Thus, without loss of generality, we may assume that
‖μ‖ = ∞. Let p ∈ (1,∞). We first claim that, for all r ∈ (1,∞), f ∈ Lp(μ), and
x ∈ X ,

(3.8)

M̃#(T�bf)(x) � ‖	b‖RBMO(μ) [Mr,6(Tf)(x) + Mr,5f(x)]

+
k−1∑
i=1

∑
σ∈Ck

i

‖	bσ‖RBMO(μ)Mr,6(T�bσ′f)(x).

Once (3.8) is proved, by an argument similar to that used in the proof of Theorem
3.10, we conclude that, for all p ∈ (1,∞) and f ∈ Lp(μ),

‖T�b
f‖Lp(μ) ≤ ‖N (T�b

f)‖Lp(μ) �
∥∥∥M̃#(T�b

f)
∥∥∥

Lp(μ)

� ‖	b‖RBMO(μ)

[‖Mr,6(Tf)‖Lp(μ) + ‖Mr,5(f)‖Lp(μ)

]
+

k−1∑
i=1

∑
σ∈Ck

i

‖	bσ‖RBMO(μ)‖Mr,6(T�bσ′f)‖Lp(μ)

� ‖	b‖RBMO(μ)

⎡⎣‖Tf‖Lp(μ) + ‖f‖Lp(μ) +
k−1∑
i=1

∑
σ∈Ck

i

‖T�bσ′f‖Lp(μ)

⎤⎦
� ‖	b‖RBMO(μ)‖f‖Lp(μ),

which is desired.
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As in the proof of [22, Theorem 9.1], to prove (3.8), it suffices to show that, for
all x ∈ X and balls B with B � x,

(3.9)

1
μ(6B)

∫
B
|T�bf(y) − hB | dμ(y) � ‖	b‖RBMO(μ) [Mr,5f(x) + Mr,6(Tf)(x)]

+
k−1∑
i=1

∑
σ∈Ck

i

‖	bσ‖RBMO(μ)Mr,6(T�bσ′f)(x)

and, for an arbitrary ball Q, a doubling ball R with Q ⊂ R and x ∈ Q,

(3.10)

|hQ − hR| � [δ̃(Q, R)]k+1

{
‖	b‖RBMO(μ) [Mr,5f(x) + Mr,6(Tf)(x)]

+
k−1∑
i=1

∑
σ∈Ck

i

‖	bσ‖RBMO(μ)Mr,6(T�bσ′f)(x)

⎫⎬⎭ ,

where
hQ := mQ(T ([(m

Q̃
(b1) − b1) · · · (mQ̃

(bk) − bk)]fχX\ 6
5
Q))

and
hR := mR(T ([(mR(b1) − b1) · · ·(mR(bk) − bk)]fχX\ 6

5
R)).

Let us first prove (3.9). With the aid of the formula that, for all y, z ∈ X ,
k∏

i=1

[mQ̃(bi) − bi(z)] =
k∑

i=0

∑
σ∈Ck

i

[b(y)− b(z)]σ′[mQ̃(b)− b(y)]σ,(3.11)

where, if i = 0, we set σ′ = {1, · · · , k}, σ = ∅ and [mQ̃(b)− b(y)]∅ = 1, it is easy to
prove that, for all y ∈ X ,

T�b
f(y) = T

(
k∏

i=1

[m
Q̃
(bi) − bi]f

)
(y) −

k∑
i=1

∑
σ∈Ck

i

[m
Q̃
(b)− b(y)]σT�bσ′f(y),

where, if i = k, T�bσ′f := Tf . Therefore, for all balls Q � x,

1
μ(6Q)

∫
Q

∣∣T�bf(y)− hQ

∣∣ dμ(y)

≤ 1
μ(6Q)

∫
Q

∣∣∣∣∣T
(

k∏
i=1

[m
Q̃
(bi) − bi]fχ6

5
Q

)
(y)

∣∣∣∣∣ dμ(y)
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+
k∑

i=1

∑
σ∈Ck

i

1
μ(6Q)

∫
Q

∣∣∣[mQ̃(b)− b(y)
]
σ

∣∣∣ ∣∣∣T�bσ′f(y)
∣∣∣ dμ(y)

+
1

μ(6Q)

∫
Q

∣∣∣∣∣T
(

k∏
i=1

[
mQ̃(bi) − bi

]
fχX\ 6

5
Q

)
(y)− hQ

∣∣∣∣∣ dμ(y) =: I1 + I2 + I3.

From Hölder’s inequality and Corollary 3.3, it follows that, for all q ∈ (1,∞),

(3.12)
∫

6
5
Q

k∏
i=1

∣∣∣bi(y)− mQ̃(bi)
∣∣∣q dμ(y) ≤ C‖	b‖q

RBMO(μ)μ(6Q).

Take s =
√

r and write

bi(y)− mQ̃(bi) = bi(y) − m 6̃
5
Q
(bi) + m 6̃

5
Q
(bi) − mQ̃(bi)

for i ∈ {1, · · · , k}. By Hölder’s inequality and the Ls(μ)-boundedness of T for
s ∈ (1,∞), (3.12), we conclude that, for all x ∈ Q,

I1 ≤ [μ(Q)]
1
s′

μ(6Q)

∥∥∥∥∥T
(

k∏
i=1

[
mQ̃(bi) − bi

]
fχ6

5
Q

)∥∥∥∥∥
Ls(μ)

� [μ(Q)]1−
1
s

μ(6Q)

∥∥∥∥∥
k∏

i=1

[
m

Q̃
(bi)− bi

]
fχ6

5
Q

∥∥∥∥∥
Ls(μ)

� 1

[μ(6Q)]
1
s

{∫
6
5
Q

k∏
i=1

∣∣∣bi(y)− m
Q̃
(bi)
∣∣∣ss′ dμ(y)

} 1
ss′
{∫

6
5
Q
|f(y)|r dμ(y)

}1
r

� ‖	b‖RBMO(μ)Mr,5f(x).

For I2, by (3.12), we see that, for all x ∈ Q,

I2 ≤
k∑

i=1

∑
σ∈Ck

i

{
1

μ(6Q)

∫
Q

∣∣∣[b(y)− m
Q̃
(b)
]
σ

∣∣∣r′ dμ(y)
} 1

r′

×
{

1
μ(6Q)

∫
Q

∣∣∣T�bσ′f(y)
∣∣∣r dμ(y)

}1
r

�
k∑

i=1

∑
σ∈Ck

i

‖	bσ‖RBMO(μ)Mr,6

(
T�bσ′f

)
(x).

To estimate I3, we need to calculate the difference∣∣∣∣∣T
(

k∏
i=1

[
mQ̃(bi) − bi

]
fχX\ 6

5
Q

)
(y)− hQ

∣∣∣∣∣
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for all y ∈ Q. By (1.9), (1.3), (3.11), (3.12), Lemmas 3.1 and 3.2, Hölder’s inequality
and Corollary 3.3, we see that, for y, y1, x ∈ Q,∣∣∣∣∣T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\ 6

5
Q

)
(y) − T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\ 6

5
Q

)
(y1)

∣∣∣∣∣
�
∫
X\ 6

5
Q

d(y, y1)δ

d(y, z)δλ(y, d(y, z))

k∏
i=1

∣∣∣bi(z) − mQ̃(bi)
∣∣∣ |f(z)| dμ(z)

�
∞∑

j=1

∫
2j 6

5
Q\2j−1 6

5
Q

2−jδ 1
λ(y, 2j6rQ)

×
k∏

i=1

(∣∣∣∣bi(z) − m
˜2j 6

5
Q
(bi)
∣∣∣∣+ ∣∣∣∣m˜2j 6

5
Q
(bi) − m

Q̃
(bi)
∣∣∣∣) |f(z)| dμ(z)

�
∞∑

j=1

k∑
i=0

∑
σ∈Ck

i

2−jδjk−i‖	bσ′‖RBMO(μ)
1

μ(2j6Q)

×
∫

2j 6
5
Q

∣∣∣∣[b(z)− m
˜2j 6

5
Q
(b)
]

σ

∣∣∣∣ |f(z)| dμ(z)

�
k∑

i=0

∑
σ∈Ck

i

∞∑
j=1

2−jδjk−i‖	bσ‖RBMO(μ)‖	bσ′‖RBMO(μ)Mr,5f(x)

� ‖	b‖RBMO(μ)Mr,5f(x),

where, in the third to the last inequality, we have used Lemmas 3.1 and 3.2 to conclude
that, for all i ∈ {1, · · · , k},∣∣∣∣m˜2j 6

5
Q
(bi) − mQ̃(bi)

∣∣∣∣
� ‖bi‖RBMO(μ) δ

(
Q̃,

˜
2j

6
5
Q

)

� ‖bi‖RBMO(μ)

[
δ
(
Q̃, Q

)
+ δ

(
Q, 2j 6

5
Q

)
+ δ

(
2j 6

5
Q,

˜
2j

6
5
Q

)]

� ‖bi‖RBMO(μ) δ

(
Q, 2j 6

5
Q

)
� j‖bi‖RBMO(μ).

From the above estimate and the choice of hQ, we deduce that, for all x, y ∈ Q,
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∣∣∣∣∣T
(

k∏
i=1

[
m

Q̃
(bi)− bi

]
fχX\ 6

5
Q

)
(y) − hQ

∣∣∣∣∣
≤ 1

μ(Q)

∫
Q

∣∣∣∣∣T
(

k∏
i=1

[
m

Q̃
(bi) − bi

]
fχX\ 6

5
Q

)
(y)

−T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\ 6

5
Q

)
(y1)

∣∣∣∣∣ dμ(y1) � ‖	b‖RBMO(μ)Mr,5f(x)

and hence
I3 � ‖	b‖RBMO(μ)Mr,5f(x),

for all x ∈ Q.
Combining the estimates for I1, I2 and I3, we then obtain (3.9).
Next we prove (3.10). Let Q be an arbitrary ball and R a doubling ball in X such

that x ∈ Q ⊂ R. Denote NQ,R + 1 simply by N . Write

|hQ − hR|

=

∣∣∣∣∣mQ

[
T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\ 6

5
Q

)]

−mR

[
T

(
k∏

i=1

[mR(bi) − bi] fχX\ 6
5
R

)]∣∣∣∣∣
≤
∣∣∣∣∣mQ

[
T

(
k∏

i=1

[
mQ̃(bi) − bi

]
fχX\6N Q

)]

−mR

[
T

(
k∏

i=1

[
mQ̃(bi) − bi

]
fχX\6N Q

)]∣∣∣∣∣
+

∣∣∣∣∣mR

[
T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\6N Q

)]

−mR

[
T

(
k∏

i=1

[mR(bi) − bi] fχX\6N Q

)]∣∣∣∣∣
+

∣∣∣∣∣mQ

[
T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχ6N Q\ 6

5
Q

)]∣∣∣∣∣
+

∣∣∣∣∣mR

[
T

(
k∏

i=1

[mR(bi) − bi] fχ6N Q\ 6
5
R

)]∣∣∣∣∣ =: L1 + L2 + L3 + L4.

By an estimate similar to that for I3, together with δ(Q, R) � δ̃(Q, R), we see that,
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for all x ∈ Q,
L1 � ‖	b‖RBMO(μ)[δ̃(Q, R)]kMr,5f(x).

To estimate L2, from (3.11) and Lemma 3.2, we deduce that, for all y ∈ R,∣∣∣∣∣T
(

k∏
i=1

[mR(bi) − bi] fχX\6N Q

)
(y)− T

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\6N Q

)
(y)

∣∣∣∣∣
=

∣∣∣∣∣T
(

k∏
i=1

[mR(bi) − bi] fχX\6N Q

)
(y)

−
k∑

i=0

∑
σ∈Ck

i

[
m

Q̃
(b)− mR(b)

]
σ′

T
(
[mR(b)− b]σ fχX\6NQ

)
(y)

∣∣∣∣∣∣
�

k−1∑
i=0

∑
σ∈Ck

i

‖	bσ′‖RBMO(μ)[δ(Q, R)]k−i
∣∣∣T ([mR(b)− b]σ fχX\6N Q

)
(y)
∣∣∣

�
k−1∑
i=0

∑
σ∈Ck

i

‖	bσ′‖RBMO(μ)[δ(Q, R)]k−i

{
|T ([mR(b)− b]σ f) (y)|

+
∣∣T ([mR(b)− b]σ fχ6N Q

)
(y)
∣∣}

�
k−1∑
i=0

∑
σ∈Ck

i

‖	bσ′‖RBMO(μ)[δ(Q, R)]k−i

⎧⎪⎨⎪⎩
i∑

j=0

∑
η∈Ci

j

∣∣∣[mR(b)− b(y)]η′

∣∣∣ ∣∣∣T�bη
f(y)

∣∣∣
+
∣∣∣T ([mR(b)− b]σ fχ6N Q\ 6

5
R

)
(y)
∣∣∣+ ∣∣∣T ([mR(b)− b]σ fχ6

5
R

)
(y)
∣∣∣}.

Applying Hölder’s inequality, the fact that R is doubling, and Corollary 3.3, we see
that, for all x ∈ Q,

(3.13)

1
μ(R)

∫
R

∣∣∣[b(y)− mR(b)]η′

∣∣∣ ∣∣∣T�bη
f(y)

∣∣∣ dμ(y)

� ‖	bη′‖RBMO(μ) Mr,6(T�bη
f)(x).

Moreover, from Corollary 3.3 and (1.8), it follows that, for all y ∈ R,∣∣∣T ([mR(b)− b]σ fχ6N Q\ 6
5
R

)
(y)
∣∣∣

≤
∫

6N Q\ 6
5
R
|K(y, z)| |[mR(b)− b(z)]σ| |f(z)| dμ(z)

� 1
λ(x, rR)

∫
6N Q\ 6

5
R
|[mR(b)− b(z)]σ| |f(z)| dμ(z),
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where rR denotes the radius of the ball R. By Hölder’s inequality, the fact that
6N−2rQ < rR, (1.3) and Corollary 3.3, we further have

1
λ(x, rR)

∫
6NQ\ 6

5
R
|[mR(b)− b(z)]σ| |f(z)| dμ(z)

�
[

1
λ(x, rR)

∫
6N Q\ 6

5
R
|[mR(b)− b(z)]σ|r

′
dμ(z)

]1/r′

×
[

1
λ(x, rR)

∫
6NQ\ 6

5
R

|f(z)|r dμ(z)

]1/r

�
[

1
μ(6N+1Q)

∫
6N Q

|[mR(b)− b(z)]σ |r
′
dμ(z)

]1/r′

×
[

1
μ(5 × 6NQ)

∫
6NQ

|f(z)|r dμ(z)
]1/r

� ‖	bσ‖RBMO(μ)Mr,5f(x).

Taking the mean over y ∈ R, we obtain

(3.14) mR

[∣∣∣T ([mR(b)− b]σ fχ6N Q\ 6
5
R

)∣∣∣] � ‖	bσ‖RBMO(μ)Mr,5f(x).

By an argument similar to the estimate for I1, we see that, for all x ∈ Q,

(3.15) mR

[∣∣∣T ([mR(b)− b]σ fχ6
5
R

)∣∣∣] � ‖	bσ‖RBMO(μ)Mr,5f(x).

Noticing that 1 � δ(Q, R) � δ̃(Q, R) and combining (3.13), (3.14) and (3.15), we
then conclude that, for all x ∈ Q,

L2 � [δ̃(Q, R)]k

⎧⎨⎩
k∑

i=1

∑
σ∈Ck

i

‖	bσ′‖RBMO(μ)Mr,6

(
T�bσ

f(x)
)

+ ‖	b‖RBMO(μ)Mr,5f(x)

⎫⎬⎭ .

Now we deal with L3. From (1.8), Hölder’s inequality and Corollary 3.3, we infer
that, for all x, y ∈ Q,∣∣∣∣∣T

(
k∏

i=1

[
mQ̃(bi)− bi

]
fχ6N Q\ 6

5
Q

)
(y)

∣∣∣∣∣
�

N−1∑
j=1

1
λ(y, 6jrQ)

∫
6j+1Q\6jQ

k∏
i=1

∣∣∣bi(z) − mQ̃(bi)
∣∣∣ |f(z)| dμ(z)

+
1

λ(y, rQ)

∫
6Q\ 6

5
Q

k∏
i=1

∣∣∣bi(z)− m
Q̃
(bi)
∣∣∣ |f(z)| dμ(z)
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�
N−1∑
j=1

1
λ(y, 6jrQ)

{∫
6j+1Q

k∏
i=1

∣∣∣bi(z) − mQ̃(bi)
∣∣∣r′

dμ(z)

} 1
r′ {∫

6j+1Q

|f(z)|r dμ(z)
} 1

r

+
1

λ(y, rQ)

{∫
6Q\ 6

5Q

k∏
i=1

∣∣∣bi(z) − mQ̃(bi)
∣∣∣r′

dμ(z)

} 1
r′ {∫

6Q

|f(z)|r dμ(z)
} 1

r

�
N−1∑
j=1

1
λ(y, 6jrQ)

{∫
6j+1Q

k∏
i=1

[∣∣∣bi(z) − m
˜6j+1Q

(bi)
∣∣∣

+
∣∣∣m

˜6j+1Q
(bi) − mQ̃(bi)

∣∣∣]r′

dμ(z)
} 1

r′

×
{∫

6j+1Q

|f(z)|r dμ(z)
} 1

r

+ ‖	b‖RBMO(µ)

{
1

λ(y, rQ)

∫
6Q

|f(z)|r dμ(z)
} 1

r

� ‖	b‖RBMO(µ)

⎧⎨⎩[δ(Q, R)]k
N−1∑
j=1

μ(5 × 6j+1Q)
λ(y, 5 × 6j+1Q)

{
1

μ(5 × 6j+1Q)

∫
6j+1Q

|f(z)|r dμ(z)
} 1

r

+Mr,5f(x)

}
,

where the last inequality follows from an argument similar to the estimate of I2. Taking
the mean over y ∈ Q, we see that, for all x ∈ Q,

L3 � ‖	b‖RBMO(μ)[δ(Q, R)]kδ̃(Q, R)Mr,5f(x) � ‖	b‖RBMO(μ)[δ̃(Q, R)]k+1Mr,5f(x).

Finally, we estimate L4. By (1.8), Hölder’s inequality and Corollary 3.3, we see
that, for all y ∈ R and x ∈ Q ⊂ R,∣∣∣∣∣T

(
k∏

i=1

[mR(bi) − bi] fχ6N Q\ 6
5R

)
(y)

∣∣∣∣∣
� 1

λ(y, rR)

∫
6NQ\ 6

5R

k∏
i=1

|bi(z) − mR(bi)| |f(z)| dμ(z)

�
{

1
λ(y, rR)

∫
6NQ

k∏
i=1

|bi(z) − mR(bi)|r
′
dμ(z)

} 1
r′ {

1
λ(y, rR)

∫
6NQ

|f(z)|r dμ(z)
} 1

r

� ‖	b‖RBMO(µ)Mr,5f(x).

Therefore, for all x ∈ Q,

L4 � ‖	b‖RBMO(μ)Mr,5f(x).

Combining L1, L2, L3 and L4, we then obtain (3.10) and hence completes the proof
of Theorem 1.9.
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4. PROOF OF THEOREM 1.13

To prove Theorem 1.13, we need the following generalized Hölder inequality pre-
sented in [7, pp. 246-247] in the setting of Rd with μ as in (1.1) (see also [19, Lemmas
2.2 and 2.3] for the setting of Rd with μ being the d-dimensional Lebesgue measure).
The proofs in [19, 7] also work for non-homogeneous spaces and we omit the details.

Lemma 4.1. There exists a positive constant C, depending only on k, such that,
for all locally integrable functions f and bi with i ∈ {1, · · · , k}, all balls B and
1/r = 1/r1 + · · ·+ 1/rk with ri ∈ [1,∞) for i ∈ {1, · · · , k},

1
μ(2B)

∫
B

|f(x)b1(x) · · ·bk(x)| dμ(x)

≤ C‖b1‖expLr1 , B, μ
μ(2B)

· · · ‖bk‖expLrk , B, μ
μ(2B)

‖f‖L(logL)1/r ,B, μ
μ(2B)

,

where, for α ∈ (0,∞)

‖f‖L(logL)α,B, μ
μ(2B)

:= inf
{

λ ∈ (0,∞) :
1

μ(2B)

∫
B

|f(x)|
λ

logα

(
2 +

|f(x)|
λ

)
dμ(x) ≤ 1

}
and

‖f‖expLα,B, μ
μ(2B)

:= inf
{

λ ∈ (0,∞) :
1

μ(2B)

∫
B

exp
( |f(x)|

λ

)α

dμ(x) ≤ 2
}

.

Now we are ready to prove Theorem 1.13. In what follows, for any k ∈ N and
i ∈ {1, · · · , k}, let Ck

i be as in Section 3. For all k-tuples r := (r1, · · · , rk) and
σ := {σ(1), · · · , σ(i)} ∈ Ck

i , let 	bσ := (bσ(1), · · · , bσ(i)),

‖	bσ‖OscexpLrσ (μ) := ‖bσ(1)‖Osc
exp L

rσ(1) (μ) · · · ‖bσ(i)‖Osc
expL

rσ(i) (μ)

and, for a finite family 	b := (b1, b2, · · · , bk) of locally integrable functions, let

‖	b‖Oscexp Lr (μ) := ‖b1‖Oscexp Lr1 (μ) · · · ‖bk‖Oscexp Lrk (μ).

Proof of Theorem 1.13. Similar to the proof of [7, Theorem 4], without loss of
generality, we may assume that, for all i ∈ {1, · · · , k}, ‖bi‖Osc

exp Lri (μ) = 1.
We prove the theorem in two cases: k = 1 and k > 1.

Case I. k = 1. For any given bounded function f with bounded support and any
λ > β6‖f‖L1(μ)/‖μ‖, applying the Calderón-Zygmund decomposition to f at level λ
(see [2, Theorem 6.3]), we see that, with the same notation as in [2, Theorem 6.3],
f = g + h, where g := fχX\∪j6Qj

+
∑

j ϕj , h :=
∑

j(ωjf − ϕj), and
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(a) {Qj}j is a sequence of pairwise disjoint balls in X and {6Qj}j is finite over-
lapped;

(b) |f(x)| ≤ λ for μ-almost every x ∈ X\ ∪j 6Qj;
(c) λ

β6
< 1

μ(62Qj)

∫
Qj

|f(x)| dμ(x);

(d) {ϕj}j is a family of functions satisfying that supp ϕj ⊂ Rj and∫
Rj

ϕj(x) dμ(x) =
∫

6Qj

f(x)ωj(x) dμ(x),

where Rj is the smallest (3× 62, C
log2(3×62)+1
λ )-doubling ball of the form (3×

62)kQj with k ∈ N and ωj(x) :=
χ6Qj

(x)∑
i χ6Qi

(x) for all x ∈ X ;
(e)
∑

j |ϕj(x)| � λ for μ-almost every x ∈ X ;
(f) ‖ϕj‖L∞(μ)μ(Rj) �

∫
X |f(x)|ωj(x) dμ.

By (c), (d) and (e), we easily know that |g(x)| � λ for μ−almost every x ∈ X and
‖g‖2

L2(μ) � λ‖f‖L1(μ), which, together with Theorem 3.10, further implies that

μ({x ∈ X : |Tbg(x)| > λ}) � λ−2‖Tbg‖2
L2(μ) � λ−2‖g‖2

L2(μ) � λ−1

∫
X
|f(y)| dμ(y),

where Tb := Tb1 . On the other hand, by (c) and (a), we see that

μ

⎛⎝⋃
j

62Qj

⎞⎠ � 1
λ

∫
X
|f(x)| dμ(x).

Therefore, the proof of Theorem 1.13 in Case I can be reduced to proving that

μ({x ∈ X\ ∪j 62Qj : |Tbh(x)| > λ}) �
∫
X

|f(y)|
λ

log1/r

(
2 +

|f(y)|
λ

)
dμ(y).

To see this, for all j and x ∈ X , we let bj(x) := b(x)− m
Q̃j

(b) and

hj(x) := ωj(x)f(x)− ϕj(x),

and write

Tbh(x) =
∑

j

bj(x)Thj(x) −
∑

j

T (bjhj)(x) =: I(x) + II(x).

For the term II(x), by [2, Theorem 6.5], we know that T is of weak type (1,1) and
hence
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μ ({x ∈ X : |II(x)| > λ})
� λ−1

∑
j

∫
X
|bj(y)hj(y)| dμ(y)

� λ−1
∑

j

∫
6Qj

|b(y)− m
Q̃j

(b)||f(y)|ωj(y) dμ(y)

+λ−1
∑

j

‖ϕj‖L∞(μ)

∫
Rj

|b(y)− m
Q̃j

(b)| dμ(y) =: E + F.

Obviously, Rj is (6, β6)-doubling and hence Rj = R̃j . Thus, it follows, from Lemma
3.2, that∫

Rj

|b(y)− m
Q̃j

(b)| dμ(y)

≤
∫

Rj

|b(y)−mRj(b)| dμ(y)+μ(Rj)
[
|m

6̃Qj
(b)−mRj(b)|+|m

6̃Qj
(b)−m

Q̃j
(b)|
]

� μ(6Rj) + μ(Rj)[δ(6Qj, Rj) + δ(Qj, 6Qj)].

By Lemma 3.1, we have δ(6Qj, Rj) � 1 and δ(Qj, 6Qj) � 1, which, together with
μ(6Rj) ≤ β6μ(Rj), further implies that

F � λ−1
∑

j

‖ϕj‖L∞(μ)μ(Rj) � λ−1

∫
X
|f(y)| dμ(y).

On the other hand, from Lemma 4.1, ‖bj‖Osc
exp Lrj (μ) = 1 for j ∈ {1, · · · , k}, (c) and

(d), it follows that

E � λ−1
∑

j

μ(12Qj)‖fωj‖L(logL)1/r, 6Qj, μ/μ(12Qj)
‖bj‖expLr, 6Qj , μ/μ(12Qj)

� λ−1
∑

j

μ(12Qj)‖fωj‖L(logL)1/r, 6Qj, μ/μ(12Qj)

� λ−1
∑

j

μ(12Qj)

× inf
t∈(0,∞)

{
t +

t

μ(12Qj)

∫
6Qj

|f(y)|ωj(y)
t

log1/r

(
2 +

|f(y)|ωj(y)
t

)
dμ(y)

}

�
∫
X
|f(y)|

λ
log1/r

(
2 +

|f(x)|
λ

)
dμ(y).

Thus, we conclude that

μ ({x ∈ X : |II(x)| > λ}) �
∫
X

|f(y)|
λ

log1/r

(
2 +

|f(y)|
λ

)
dμ(y).
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Now we turn to I(x). Let xj be the center of Qj . Since supp hj ⊂ Rj , for
x ∈ X\2Rj, using (1.9) and

∫
X bj(x) dμ(x) = 0, we write∫

X\∪j62Qj

|I(x)| dμ(x)

�
∑

j

rδ
Rj

∫
X
|hj(y)| dμ(y)

∫
X\2Rj

|bj(x)|
d(x, xj)δλ(xj, d(x, xj))

dμ(x)

+
∑

j

∫
2Rj\62Qj

|bj(x)||T (ωjf)(x)| dμ(x)

+
∑

j

∫
2Rj

|bj(x)||T (ϕj)(x)| dμ(x) =: G + H + J

Using (1.3), Lemmas 3.1 and 3.2, we see that∫
X\2Rj

|bj(x)|
d(x, xj)δλ(xj, d(x, xj))

dμ(x)

�
∞∑

k=1

(
2krRj

)−δ 1
λ(xj, 2krRj)

∫
2k+1Rj

|b(x)− m
˜2k+1Rj

(b)| dμ(x)

+
∞∑

k=1

(
2krRj

)−δ μ(2k+1Rj)
λ(xj, 2krRj)

|m
Q̃j

(b)− m
˜2k+1Rj

(b)|

�
∞∑

k=1

(
2krRj

)−δ μ(2k+2Rj)
λ(xj, 2krRj)

+
∞∑

k=1

δ(Q̃j, 2̃k+1Rj)
(
2krRj

)−δ μ(2k+1Rj)
λ(xj, 2krRj)

� r−δ
Rj

,

where the last inequality follows from an argument similar to I3. From this, together
with

‖hj‖L1(μ) �
∫
X
|f(y)|ωj(y) dμ(y),

we then infer that
G �

∫
X
|f(y)| dμ(y).

On the other hand, by Hölder’s inequality, the L2(μ)-boundedness of T , Lemma
3.2, the fact that Rj is doubling and (f), we conclude that

J ≤
∑

j

∫
2Rj

|b(x)− m
2̃Rj

(b)||T (ϕj)(x)| dμ(x)
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+
∑

j

|m
Q̃j

(b)− m
2̃Rj

(b)|
∫
2Rj

|T (ϕj)(x)| dμ(x)

≤
∑

j

(∫
2Rj

|b(x)− m
2̃Rj

(b)|2 dμ(x)

)1/2

‖Tϕj‖L2(μ)

+
∑

j

[μ(2Rj)]1/2‖Tϕj‖L2(μ) × |m
Q̃j

(b)− m
2̃Rj

(b)|

�
∑

j

[μ(4Rj)]1/2‖Tϕj‖L2(μ)

[
1 + |m

Q̃j
(b)− m

2̃Rj
(b)|
]

�
∑

j

[μ(4Rj)]1/2‖Tϕj‖L2(μ) �
∫
X
|f(y)| dμ(y),

where the second to the last inequality follows from the fact that

|m
Q̃j

(b)−m
2̃Rj

(b)|
≤ |m

Q̃j
(b)− mRj(b)|+ |mRj(b)− m2Rj(b)|+ |m2Rj(b)− m

2̃Rj
(b)| � 1.

To estimate H, observe that by (1.8), for all x ∈ 2Rj\62Qj ,

|T (ωjf)(x)| � 1
λ(xj, d(x, xj))

∫
X

ωj(y)|f(y)| dμ(y).

Therefore, by Lemma 3.2,

H �
∑

j

{∫
2Rj\Rj

|bj(x)|
λ(xj, d(x, xj))

dμ(x) +
∫

Rj\Qj

|bj(x)|
λ(xj, d(x, xj))

dμ(x)

}

×
∫
X

ωj(y)|f(y)| dμ(y)

�
∑

j

{
μ(4Rj)

λ(xj, rRj)
+

μ(2Rj)
λ(xj, rRj)

}∫
X

ωj(y)|f(y)| dμ(y)

+
∑

j

N−1∑
k=0

1
λ(xj, (3 × 62)krQj )

∫
(3×62)k+1Qj\(3×62)kQj

|b(x) − m
˜(3×62)k+1Qj

(b)| dμ(x)

×
∫
X

ωj(y)|f(y)| dμ(y)

+
∑

j

N−1∑
k=0

μ((3 × 62)k+1Qj)
λ(xj, (3 × 62)krQj )

|mQ̃j
(b) − m

˜(3×62)k+1Qj

(b)|
∫
X

ωj(y)|f(y)| dμ(y),

where N satisfies Rj = (3 × 62)NQj . Obviously, for all k ∈ {0, · · · , N − 1},
(3× 62)kQj ⊂ Rj and so

|m
Q̃j

(b)− m
˜(3×62)k+1Qj

(b)| � δ(Qj, (3× 62)k+1Qj) � δ(Qj, Rj) � 1.



2236 Xing Fu, Dachun Yang and Wen Yuan

Consequently, by the fact that Rj is the smallest (3× 62, C
log2(3×62)+1
λ )-doubling ball

of type (3×62)iQj with i ∈ N, (1.3), Lemma 3.2 and an argument similar to that used
in the proof of Lemma 3.5(iii), together with (d), we see that

H �
∑

j

∫
X

ωj(y)|f(y)| dμ(y)+
∑

j

N−1∑
k=0

μ((3× 62)k+2Qj)
λ(xj, (3× 62)krQj)

∫
X

ωj(y)|f(y)| dμ(y)

+
∑

j

N−1∑
k=0

μ((3× 62)k+1Qj)
λ(xj, (3× 62)krQj)

∫
X

ωj(y)|f(y)| dμ(y)

�
∑

j

∫
X

ωj(y)|f(y)| dμ(y)+
∑

j

N−1∑
k=0

μ((3 × 62)kQj)
λ(xj, (3× 62)krQj)

∫
X

ωj(y)|f(y)| dμ(y)

�
∫
X
|f(y)| dμ(y).

Combining the estimates for G, H and J above, we then conclude that∫
X\∪j62Qj

|I(x)| dμ(x) �
∫
X
|f(y)| dμ(y),

which implies the desired conclusion and hence completes the proof of Theorem 1.13
in the case that k = 1.

Case II. k ≥ 2. The proof of this case is completely similar to that of [7, Theorem
4]. We omit the details, which completes the proof of Theorem 1.13.
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