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NEW EXACT SOLUTIONS TO THE MODIFIED
FORNBERG-WHITHAM EQUATION

Ameina S. Nuseir

Abstract. In this paper a unified approach for finding soliton solutions is applied
to the modified Fornberg-Whitham equation. Variety of peakon, periodic, and
solitary new exact solutions are constructed.

1. INTRODUCTION

The study of nonlinear wave equations and their solutions is of great importance
in many areas of physics. Travelling wave solutions are among the interesting types
of solutions for the nonlinear partial differential equations. On the other hand, many
nonlinear partial differential equations have been found to have a variety of travelling
wave solutions. An example, is the well-known Korteweg–de Vries equation

(1) ut + 6uux + uuxxx = 0

which is a mathematical model of waves on shallow water surfaces that has smooth
solitary wave solutions [8]. Also, the Camassa–Holm equation

(2) ut − uxxt + 3uux = 2uxuxx + uuxxx

proposed by Camassa and Holm (1993)[1] is a model equation for the unidirectional
nonlinear dispersive waves in shallow water. Due to its interesting mathematical prop-
erties, this equation has gained a lot of interest over the past decade. This equation
has been found to have peakons, stumpons, cuspons, and composite wave solutions
[9]. Nevertheless, it also has compactons [11]. Liu and coworkers found a new type
of travelling wave solutions for the Camassa–Holm equation [12], which are defined
on some semifinal bounded domains that posses properties of kink or antikink waves
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which they called kink-like waves and antikink-like waves. Later on, it has been found
that the CH-γ equation

(3) ut + c0ux + 3uux − α2(uxxt + uuxxx + 3uxuxx) + γuxxx = 0

posses kink-like waves when α �= 0[4,15]. Furthermore, the Fornberg–Whitham equa-
tion which is given as

(4) ut − uxxt + ux = uuxxx − uux + 3uxuxx

was used to study the qualitative behavior of wave-breaking [8,9]. It admits a wave of
greatest height, as a peaked limiting form of the travelling wave solution

u(x, t) = A exp(
1
2
|x − 4

3
t|),

where A is an arbitrary constant [3].

In 2006, Wazwaz [17] suggested studying the modified forms of the Camassa–Holm
and the Degasperis–Procesi equations

(5) ut −uxxt + 3u2ux = 2uxuxx + uuxxx;

and

(6) ut −uxxt + 4u2ux = 3uxuxx + uuxxx.

Then, many travelling wave solutions of Eqs. 5 and 6 have been obtained using tanh
method, sine–cosine method and extended tanh method [17,18]. Using the bifurcation
method of planar systems and numerical simulation of differential equations, Liu and
Ouyang [13] obtained some peakon and solitary wave solutions. Moreover, Wang
and Tang [16] obtained some new peakon and solitary wave solutions through some
special phase orbits. Another study by Rui et al. [14] obtained some exact travelling
wave solutions using the integral bifurcation method. Using the Homotopy perturbation
method, Zhang et al. [21] solved Eqs. 5 and 6 to obtain some exact solutions.
He [5] used the bifurcation theory and the method of phase portraits analysis

[6,7,10] to investigate the modified Fornberg–Whitham (mFW) equation:

(7) ut − uxxt + ux = uuxxx − u2ux + 3uxuxx,

and obtained some explicit peakon and solitary wave solutions.
In this article, a unified approach to find more explicit solutions for the mFW

equation is used.
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2. THE UNIFIED APPROACH FOR FINDING SOLITON SOLUTIONS

Based on the randomness of the Painlevé analysis manifold, E. Fan [2] developed a
method to find a rich variety of exact travelling wave solutions of a nonlinear evolution
equation. At the same time, G. Xu and coworkers [20] published another article
describing the same method and applied it to some nonlinear PDE’s. In this approach,
they considered nonlinear the evolution equations (NEE’s) in two variables,

(8) F (u; ut; ux; uxt; uxx; ... ) = 0

where the subscripts denote partial derivatives, and F is a polynomial in unknown
function u(x, t) and its derivatives. The travelling wave solutions to 8 can be written
as

(9) u(x; t) = u(ξ) ; ξ = x − c t

in which k is the wave number, and c is the wave speed to be determined. Using the
transformation in 9, Eq. 8 can be transformed to an ordinary differential equation of
the type:

(10) G(u; u′; u′′; ... ) = 0;

where u′ = du
dξ .

To introduce the concept of ”rank”, the term in the reduced ordinary differential
equations will be written as:

uk0 (u′)k1 (u′′)k2 ...... (u(m))km

where kj(j = 0; . . . .. ;m) are real constants. Thus the rank of this term is defined as
the number:

0 · k0 + 1 · k1 + 2 · k2 + ......... + m · km.

Considering that the travelling wave solutions of many NEEs derived from soliton
theory can be expressed as polynomials of special functions such as sech, tanh, sin, cos
and the like. Now, if the rank of every term in 10 is even or odd, then the following
truncated expansion

(11) u(ξ) =
m∑

j=0

ajφ
j,

can be taken, and the expansion variable φ = φ(ξ) satisfies

(12) (φ′)2 = c0 + c1φ + c2φ
2 + ... + crφ

r,
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where m and r are positive integers, and aj (j = 0, 1, ..., m), ci(i = 0, ..., r) are
constants the to be determined. To find the travelling wave solutions of Eq. 8, the
following steps will be followed:

Step 1. To determine m and r, one may substitute 11 into Eq. 10 and balance the
highest derivative terms with the most nonlinear term in Eq.10. By doing so, a relation
for m and r will be obtained. From this relation different possible values of m and r
can be found.

Step 2. Substitute the series 11 along with 12 into Eq. 10; to get P (φ) = 0, where
P (φ) is a polynomial in φ. By equating the coefficients of each power of φ in P (φ)
to zero, an algebraic system involving aj(j = 0, ... , m), ci(i = 0, ..., r) and c is
obtained.

Step 3. By solving Eq. 12 and then substituting the solution in Eq. 8, some kinds
of interesting travelling wave solutions will be obtained.

3. SOLVING THE MODIFIED FORNBERG-WHITHAM EQUATION

To apply this method, the modified Fornberg-Whitham equation

(13) ut − uxxt + ux = uuxxx − u2ux + 3uxuxx,

should be transformed into an ODE. Let ξ = x − c t and u(x; t) = u(ξ) , then the
equation will transform into

(14) cu′′′ − uu′′′ − 3u′u′′ + u2u′ + (1− c)u′ = 0.

The ranks of the terms in Eq. 14 are 3, 3, 3, 1 and 1 respectively. Therefore, we can
use the above method.

First, find all derivatives of u of orders 1, 2 and 3 in terms of φ

(15) u′ = a1φ
′ +2a2φφ′+ ......+mamφm−1φ′ = φ′(a1 +2a2φ+ ......+mamφm−1),

and

(16) u′′ = a1φ
′′ + 2a2(φφ′′ + φ′2) + ...... + mam(φm−1φ′′ + (m− 1)φm−2φ′2).

To find φ′′ we differentiate Eq. 12 and get

(17) φ′′ =
1
2
(c1 + 2c2φ + ...... + rcrφ

r−1).

Therefore,

(18)
u′′ =

1
2
(c1 + 2c2φ + ...... + rcrφ

r−1)(a1 + 2a2φ + ...... + mamφm−1)

+(2a2 + ...... + m(m − 1)amφm−2)(c0 + c1φ + c2φ
2 + ... + crφ

r)
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and

(19)

u′′′=
1
2
φ′

⎡
⎢⎢⎣

(2c2+6c3φ+· · ·+r(r−1)crφ
r−2)(a1+2a2φ + · · ·+ mamφm−1)

+(c1+2c2φ+· · ·+rcrφ
r−1)(6a2 +18a3φ + · · ·+ 3m(m − 1)amφm−2)

+2(c0+c1φ+c2φ
2+· · ·+crφ

r)(6a3+· · ·+m(m−1)(m−2)amφm−3)

⎤
⎥⎥⎦

Substitute Eqs. 15, 16, 18, and 19 into Eq. 14 and take φ′ as common factor, then the
highest nonlinear terms in uu′′′ is φ2m+r−3; while that for the term u2u′ is φ3m−1.

Now, if we balance the powers, we obtain the relation r=m+2 between m and r.
If we take m = 1, then r = 3, so

u(ξ) = a0 + a1φ(ξ)

and

(20) (φ′)2 = c0 + c1φ + c2φ
2 + c3φ

3.

The solutions for Eq. 20 are:

φ =
−c2

c3
Sec2(

√−c2

2
ξ), if c0 = c1 = 0, c2 < 0, and

φ =
−c2

c3
Sech2(

√
c2

2
ξ), if c0 = c1 = 0, c2 > 0.

So the following two solutions for u(x, t) will be obtained:

u =
1
4
(10c2 − 2(4 +

√
3
√

4 − 5c2
2))

−15
2

c2Sec

(
1
2
√−c2(−2(4 +

√
3
√

4− 5c2
2)t + x)

)2

, c2 > 0

and

u =
1
4
(10c2 − 2(4 +

√
3
√

4 − 5c2
2))

−15
2

c2Sech

(
1
2
√−c2(−2(4 +

√
3
√

4 − 5c2
2)t + x)

)2

, c2 < 0

Now take m = 2, then r = 4, and
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(21)
u(ξ) = a0 + a1φ(ξ) + a2φ

2(ξ),

(φ′)2 = c0 + c1φ + c2φ
2 + c3φ

3 + c4φ
4.

Then solve Eq. 21 and substitute the solutions for u(ξ) into Eq. 14. The following
solutions will be found:

If c0 = c1 = c2 = c3 = 0, c4 > 0, then φ = − 1√
c4ξ , and

u1 = −2 −√
3 + 30

(x−ct)2
, where c = 4(2∓√

3).

If c0 = c1 = c3 = 0, c2 < 0, c4 > 0, then φ =
√

−c2
c4

Sec(
√−c2ξ), and

u2 = 1
4 (40c2 − c)− 30c2Sec2 (

√−c2(x − ct)), where c = 4(2∓√
3
√

1− 20c2
2).

If c1 = c3 = 0, c0 = c22
4c4

, c2 > 0, c4 > 0, then φ =
√

c2
2c4

Tan(
√

c2
2 ξ), and

u3 = 1
4 (40c2 − c) + 15c2Tan2

(√
c2(x−ct)√

2

)
, where c = 4(2∓√

3
√

1 − 5c2
2).

If c0 = c1 = c3 = 0, c2 > 0, c4 < 0, then φ =
√

−c2
c4

Sech(
√

c2ξ)and

u4 = 1
4 (40c2 − c)− 30c2Sech2

(√
c2(x − ct)

)
, where c = 4(2∓√

3
√

1− 20c2
2).

If c1 = c3 = 0, c0 = c22
4c4

, c2 < 0, c4 > 0, then φ =
√

−c2
2c4

Tanh
(√

−c2
2 ξ

)
, and

u5 = 1
4 (40c2 − c)− 15c2Tanh2

(√−c2(x−ct)√
2

)
, where c = 4(2 ∓√

3
√

1 − 5c2
2).

If c0 = c1 = 0, c2 < 0, then φ = − c2Sec2 [

√−c2
2

ξ]

2
√−c2c4Tan[

√−c2
2

ξ]+c3

, and

u6 =

⎡
⎢⎢⎢⎢⎢⎣

20c2c4 − 2cc4

8c4
+

30c2
2c4Sec4[

√−c2(x−ct)
2 ]

(2
√

c2c4 + 2
√−c2c4Tan[

√−c2(x−ct)
2 ])2

− 30c
3
2
2

√
c4Sec2[

√−c2(x−ct)
2 ]

2
√

c2c4 + 2
√−c2c4Tan[

√−c2(x−ct)
2 ]

⎤
⎥⎥⎥⎥⎥⎦

,

where, c = 2(4 ∓√
3
√

4 − 5c2
2).

If c0 = c1 = 0, c2 > 0, then φ = c2Sech2 [
√

c2
2

ξ]

2
√

c2c4Tanh[
√

c2
2

ξ]−c3
, and

u7 =

⎡
⎢⎢⎢⎢⎢⎣

20c2c4 − 2cc4

8c4
+

30c2
2c4Sech4[

√
c2(x−ct)

2 ]

(−2
√

c2c4 + 2
√

c2c4Tanh[
√

c2(x−ct)
2 ])2

+
30c

3
2
2

√
c4Sech2[

√
c2(x−ct)

2 ]

−2
√

c2c4 + 2
√

c2c4Tanh[
√

c2(x−ct)
2 ]

⎤
⎥⎥⎥⎥⎥⎦

,
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where c = 2(4∓√
3
√

4− 5c2
2).

The following figures display different type of solutions.

Fig. 1. The peakon solution u1 = −2 −√
3 + 30

(x−ct)2 .

Fig. 2. The soliton solution u7 when c2=1/5, and c4=1.

Fig. 3. The periodic solution u6 when c2= -1/5, and c4=1.
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CONCLUSION

As seen from above, applying this method we’ve got peakon, periodic and solitary
wave solutions to the modified Fornberg-Whitham equation that are not found by the
bifurcation theory and the method of phase portraits analysis. So this method is very
useful to construct several kinds of exact solutions for nonlinear partial differential
equations.
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