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OBSERVABILITY ESTIMATE AND NULL CONTROLLABILITY FOR
ONE-DIMENSIONAL FOURTH ORDER PARABOLIC EQUATION

Zhongcheng Zhou

Abstract. This paper studies the observability and null controllability for a class
of one-dimensional fourth order parabolic equation. By means of establishing
the global Carleman estimates, we derive the observability inequalities for one-
dimensional linear fourth order parabolic equation with potentials. The null con-
trollability results for one-dimensional fourth order semilinear equation are also
presented.

1. INTRODUCTION

This study concerns the observability and null controllability of one-dimensional
fourth order parabolic system. Such fourth order parabolic equation, sometimes known
as Cahn-Hilliard type equation, appear in the study of phase separation in cooling
binary solutions and in other contexts generating spatial pattern formation (see [2]).

Let 7> 0, 2 = (0,1) and w be a nonempty open subset of 2. Let wy be another
open and nonempty subset of €2 such that wy C w. Throughout this study, notations
@, Q¥ and Q“° stand for 2 x (0,7), w x (0,7) and wy x (0, T"), respectively.

Consider the following one-dimensional linear fourth order parabolic system

Ut + Ugggr = fa ((IZ,t) € Q,

(1 uw(0,t) =u(l,t)=0, te€(0,7T),

’ uz(0,t) = ugy(1,t) =0, te (0,7T),
u(z,0) = up(x), x € Q.

Corresponding to each ug € L?(2) and each & € L?(Q), system (1.1) admits a unique
function v € C([0, T]; L2(2))NL2((0,T); HZ(2)). Moreover, u € L?((5,T); H4(2))
and u; € L2((6,T) x Q) for all 6 € (0,T) (see, for instance, [11]).
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We begin with the Carleman inequality for the solution of system (1.1). It is
well known that in general, Carleman inequalities imply the observability of certain
systems, and observability estimates play important roles for solving control problems.
For instance, we can obtain the controllability for linear and nonlinear partial differential
equations of both parabolic type and hyperbolic type (see [7, 9, 12, 14, 15]). This class
of estimates are also useful for solving a variety of inverse problems (see [13]).

Let ¢ € C*°(Q) satisty that ¢» > 0in 2, 9(0) = ¥(1) = 0, [¢]l o = 1, [vz] > 0
in Q\wo, ¥,(0) > 0 and (1) < 0. For any given positive constants A and z, we set
eh(P(@)+3) _ oou p _ aled) g B et (¥ (x)+3) v

=6 (x,t)=e an cp(a:,t)—m, (x,t) € Q.
The first main result is on the following Carleman estimate for system (1.1).

a(z,t) =

Theorem 1.1. There exist three constants pg > 1, Cy > 0 and C > 0 such that
for = g and for all numbers X > Co(T + T?), it holds that

/\7/ 0" uldxdt + /\5/ 0 pouldrdt + /\3/ 0> p3u2 drdt
(1.2) Q Q Q
< C'</\7 02w dxdt + / 92§2da:dt>,

Qv Q
where the constants 1o, Co and C depend only on w, u is the solution of system (1.1)
corresponding to ug € L*(Q) and £ € L*(Q).

In Section 3, we shall see that Theorem 1.1 implies the observability of the one-
dimensional linear fourth order parabolic system as follows
Pt = Dazez —gp =0,  (2,1) €Q,
p(0,8) =p(1,6)=0, te(0,7),
pa(0,8) = po(1,8) = 0, t € (0,7),
p(z,T) = po(z). x € Q.

(1.3)

Corresponding to each pg € L?(£2) and each g € L>°(Q) , system (1.3) admits a unique
function p € C([0, T; L*(Q2)) N L2((0, T); H3(L2)) (see, for instance, [11]). We have
the following theorem.

Theorem 1.2. There exists a positive constant C, depending on w, such that
1 2
04 [ o 0ds < esp {01+ 5+ ol g+ lollim@)} | s

where p is the solution of system (1.3) corresponding to py € L?(2) and g €
L2(Q).

The (boundary and/or internal) observability estimates for linear heat and wave
equations have been studied from many past publications in recent years (see [7, 13,
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14, 15]). As far as fourth order PDEs are concerned, the explicit observability estimates
for multidimensional plate system p;; + A?p + gp = 0 with ¢ potential have been well
understood under the boundary conditions p = Ap = 0 and suitable initial data, by
means of pointwise weighted estimates for the Schrodinger operator (see [14, 15]).
However, similar problems under the boundary conditions p = % = 0, where v is
the unit outward normal vector, have not been solved on plate equation. The reason
is that the techniques to deal with the boundary conditions p = Ap = 0 do not adapt
to the same problems with the boundary conditions p = % = (0. Moreover, to our
best knowledge, explicit observability estimates for higher order parabolic system have
not been well understood, we can not adapt to Carleman estimates for the Schrodinger
system to obtain the Carleman estimates for higher order parabolic system.

Stimulated by [14], our tool to prove the inequality (1.2) is to present a weighted
pointwise estimate for system (1.1). Based on this Carleman estimate and the energy
estimates for system (1.3) , the explicit observability inequality (1.4) can be obtained.

It should be pointed out that the technique to prove Theorem 1.1 and Theorem
1.2 can not be applied to multi-dimensional cases. The main difficulties lie in the
boundary estimates in the proof of the corresponding Carleman inequality would be
much more complex for multi-dimensional cases than that for the one-dimensional case
under consideration.

Our next main result concerns the null controllability for fourth order semilinear
parabolic equation. To our best knowledge, there has been limited publications on
the controllability of higher order parabolic equation. Among them, the approximate
controllability and non-approximate controllability of higher order parabolic equation
were studied in [6]. Later, Lin Guo [5, 10] considered the null boundary control-
lability for a one-dimensional fourth order parabolic equation with nonlinear term f
belonging to Gevrey class 2 through reducing the control problem into two well-posed
PDEs problems. Recently, Cerpa [3, 4] considered the local boundary controllability
for an especial one-dimensional fourth order parabolic equation(Kuramoto-Sivashinsky
equation). What we should point out is that the nonlinear terms in [4, 10] are smooth
enough in some sense.

Next, we consider the following one-dimensional semilinear fourth order parabolic
equation

ut+ua:a:a:m+f(u> 7 (x,t)GQ,

u(0,t) = u(l,t) = te(0,7),
(1 Oy =0, e

u(x,0) = up(x), z €,

where h is the control.
We have the null controllability result of system (1.5) as follows.
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Theorem 1.3. Assume that [ is a globally Lipschitz continuous function with
f(0) = 0. Then for each ug € L*(Q), there exists a control h € L*(w x (0,T)) such
that the corresponding solution of (1.5) satisfies

u(-,T)=0, in€Q.

Remark 1.1. In Theorem 1.3, we can also deal with the null controllability for
semilinear fourth order parabolic equation (1.5) with more stronger nonlinear term by
means of explicit observability inequality (1.4).

We shall first establish the null controllability of the linearized system of system
(1.5) by making use of the observability estimate (1.4), then applying Kakutani’s Fixed
Point Theorem (see [1]) to prove Theorem 1.3.

The rest of this paper is organized as follows. In Section 2, we shall prove the
Carleman inequality (1.2). Section 3 and Section 4 are devoted to proving observability
estimate (1.4) and Theorem 1.3, respectively.

2. PrOOF OF THEOREM 1.1

We may as well assume that the solution « is sufficiently smooth. Set v = 6u and
Lu = up + Uggee. It is obvious that

ug = 07 (vy — Aagv),
Uy = 07 (v, — Aagv),
Ugy = G_I{UM —2Xazv; + (—Aag, + /\Qai)v},
Uppr = 9_1{1)&;&;&;—3/\%1)“ + (3X%a2 — 3/\am)vm+(—/\Sai+3/\2amam—/\amm)v},
TI——— G_I{UMM — ANV + (6A202 — 6Aape) Ve + (—4X3a3 + 12020 0,4,
~ANaggz) Vg + (Nah — 6X3a2ag, + 3M%a2, + AN 30000 — Nggzs)V )

Hence, it follows that
92‘Lu‘2 = 92(ut + ua:a:a:a:>2
= {v + Vapor — 4ANAp VL0 + (6/\20,3: — 6Aagy)Vgs
—1—(—4/\30,2 + 12X %0 a0 — ANCy 00 )V
+(/\4ai — 6/\3a§,am + 3/\261,§:ﬁt + AN ppe — Ngpmws — /\at)v}Q.
Define
OLu =11 + Is + I3,

where
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I = v + Bivgy — 4Aaz V00,

Iy = vggee + Crvze + Avv,

I3 = —12/\3aiamv — 6AApp Vs,

Ay = MNal 4+ 6X\3a2a,, + 30202, + 402000000 — MNages — Aag,
By = —4X3a3 + 12\ %,0,, — 40\dars,

Cl = 6/\26@2.

The proof of Theorem 1.1 shall be completed in the following five steps.

Step 1. We shall prove the following weighted pointwise estimate for the fourth
order parabolic operator L, which is similar to those for second order operators in
[8, 14]

@) PlLul* > {-},+ {-}, + { Fowe + {07+ {3l + {3l + { ok,
where

(-}, = {02, = C10? + A0? — 120302 0000” + 6Aage0?},
{+}, = {20000 — 2001Vea + 2010105 + 2B104Vs0a + BiaaV? — 2B12VsVer — B1v2,
+ B1C1v2 + A1 B1v® — AXagvl,, — AAaC1vl, + (—4X)[ — azA1v2
+ 20, A1005, — 2(ap A1) 200, + (axAl)mUZ] — 120022010, — 12X3BiaZa,,v°
+ (—6)\)ag,;3,;Blvfj + (48)\4)[—aiamvfj + Qaiamvmv — 2(aiam)xvxv
4 (03 Q) 220?] + 242000002, + (—12)03) [Zaiamvxmv — 2(a2 32 ) 2 VaaV
— 202022V22Vs + (02000) 2V + 2(02000)0cVWVa + (02000) 2V — (02000 ) sz’
4 6AArz2V2 ) — 2002V22Vzze + (—12X3)[2C102 02200, — (C102004)20?]
+ (=6N) 2410400, — (Alam)xUQ]}x,
{ Yoy = { = 2C1, + 122444 J 0104,
{3 ={— A1 — (A1B1)s + 4Nz A1) ae + 12X (a2 050 ) + 1233 (a2 000 B1) s
— 48X (a2 ) zww — 1203 (02 As) wwwa — 1207 (a2 Ch0s)
— 240302 a,, A1 — 6)\(A1am)m}112,
{32 = {C102 — Biazavs — (B1C1)s — 12X (azA1)s — 6Aazat + 6M(a0B1)s
+ 1440 (a3 )2 + 4803 (02 )z + 240302 Ch a0 + 12)\A1am}vi,
{ . }Uix = {?)Bh,;—i—él)\(ag,;Cl)g,;—24)\2(%@3,;3,;)3,;—24)\3a?,jag,;g,;—6)\ag,;3,;3,;3,j — 12Xa..C1 }Uix,

{ . }Uim = {16)\am}vim.

Indeed, according to the definition of 7; and 5, it holds that
(2.2) 201115 = 2(vy + B1vgy — 4XagVp0s ) (Vagze + C10ze + A1v).

Calculating each term in the righthand of (2.2), we have
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(23) 2vtva:a:a:a: - (’Ugg)t + (2vtva:a:a:>a: - (2va:tva:a:>a:7
(2.4) 204 (C1vz5) = —2C1,00, + C’ltvi - (ng)t + (2C1vv4) 1,
(2.5) 20 (Arv) = —A10® + (A1v?),

2B1va:va:a:a:a: - (2B1va:va:a:a:>a: + 3B1xvgg; + (Bla:a:'l)g)a: - Bla:a:a:vg

(2.6) — (2B12VaVsa + B102,)a,

(2.7) 2B10,(C1vgy) = (B1C102), — (B1Ch) 402,

(2.8) 2B1v, (A1v) = —(A1B1),0° + (A1 Biv?),,

(2.9) 2(—4NpVz0 ) Vazze = (—AN{ (020210 e — GoaV2ps )},
(2.10) 2(—4Aa3 V552 ) (Crvgy) = 4/\(%01)3;1);: — (4/\amClv§$)I,

2(—4NapVz20) (A1) = (—4N){3(az A1) 502 — (apA1)zuzv® — (a54102) 4
(2.11) + (20, 410055) 5 — (2(a2A41)5002) 7 + ((agA1)zv?)s b

According to the definition of I; and I3, it holds that
(2.12) 21113 = 2(vs + B1vgy — 4MagUppe) (— 1203020000 — 6XA30Ves).
Calculating each term in the righthand of (2.12), we have

(2.13) 201(—12X302 a4, 0) = 1203 (a2 a0 ) 0? — 1203 (a2 a4, v?)s,
(2.14)  2vi(6Aag3Vzz ) = (BN {20002 0105 —|—amtvg + (20520105 )z — (amvi)t},
(2.15) 2B1vm(—12/\3aiamv) = 12/\3(0,3:&3;3;31)3;’[}2 — 12/\3(Blaf:amv2)m,

(2.16) 2B10y(—6Aag3050) = (—6/\){(amB1v§)ﬂt — (amBl)xvi},
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2(—4/\0,&;1)“&;)(—12/\3aiamv)
TV 3 2 3 2 3 2 3
(2.17) =480 — (a002)22av” + 3(a)002) 205 — (€02205) 0 + (205.050V220)2

- (Q(Qiaa:a:>a:va:v>a: + ((aiaa:a:>a:a:v2>a:}a

(2.18)  2(—4XagVpps)(—6AG3Vze) = —24/\2(axam)xvim + 24/\2(axamvim)m.

According to the definition of I» and I3, it holds that

(2.19) 21513 = 2(Vypgs + C10z0 + Alv)(—12/\3a§,amv — 6z Uzz).

Calculating each term in the righthand of (2.19), we have

Qazze(—12X3a2 a4 0)
(2.20) = (_12/\3>{(2aiam:va:a:a:v>a: - (Q(Qiaa:a:>azva:arv>a: - (2a§;aa:a:va:a:va:>a:

+ Qaiamvgm + ((aiam)mvi)m - 4(aiam)mvi + (2<a§:am>mvvx>x

(2.21) 20z000(—6Aaz2022)

- (—6/\)(—2%31:1)%&;&; + aa:a:a:a:vgg) + GA(aa:a:a:vgg; - 2aa:a:va:a:va:a:a:>a:7

QC’lvm(—12/\3aiamv)
(2.22) = (—12/\3){(61,3:01%3;)“1)2 — QaiC’lamvi + (QClaf:amvvm)x
- ((Claiaa:a:>arv2>a:};

2C1 V30 (—6 g2 022
(2.23) = (—12\)azeC1v2,, 2A10(—12X3a%a,,0) = (—240%) a2 az, A102,

T

2A10(—6Aap0 V) = (—6/\){(2A1amvvx)m — ((Alam)a;UQ)I
(2.24) — 24105202 + (A1045) 4207}

Observe that |0Lu|?> > 21115 + 21113 + 2I513. Combining (2.2) to (2.24), we can
obtain (2.1).

Step 2. We shall prove the following inequality
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/ 62| Lu|*dxdt
Q

> / {[ - Alt_(AlBl)a: +4)\(aa:141)a:a:a:+12)\3(a32¢aa:x)t+12)\3(a32,;ax3231)x
Q
—480 (03 4z ) wzw — 1203 (02 Az ) vwwe — 1203 (02 C1002) 2w — 240302 A00 A
—6A(A1022)ze — (A1(Cy — 6Xagz)s)s + 12)\3(aiam(01 — 602z )z |V°

+[Clt — Bigax — (Blcl)a: - 12)\(aa:A1)a: — 6Aagat + GA(axxBl)a:
—i—144)\4(aiag,;g,;)g,j + 48)\3(a?,jag,;g,;)mj + 24)\3a?,jClamj + 120 A a4
(225) +2B; (Cl - 6)\aa:a:)a: - ((Cl - GAaxx)xcl)x + GA(axx(Cl - GAaxx)x)x

_4)\(aa: (Cl - GAaxx)x)xa: - (Cl - GAaxx)xxxx} U?y
—2(C1 — 6Xagy)zv0Lu

+ [?)Bh,j +4Ma:C1) 2 —240% (0002 )2 — 240302 0 p — 6O pze — 120022 C1

+18Mas (C1 — 6Adgs)s + 3(Cy — Gxam)m} w2+ 16Aamu§m}dxdt
T
+/ { —4Xav2,, + [ — By — 4Xa,C1 + 2420404, + 6Xazps
0

1
—(Cl - 6)\am)x} Uix - 12)\aa:azva:xva:xa:} Odt-

In order to prove (2.25), we shall first compute the term {- - - }v,v, in the righthand
of (2.1).
Since 8Lu = I + Is + I3, it holds that

—2(C1 — 6Aazz) 2010, = 2(C1 — 6X\Asg) 202 (A0 — 12/\3aiamv + B,

(2.26)
+Clva:a: - GAaa:a:va:a: - 4Aaarva:a:a: + Vrzzx — 0Lu>

Calculating each term in the righthand of (2.26), we obtain

(2.27) 2(C1 — 6Xagy) v A1v={(Cy — 6/\am)xA1v2}a; —{A1(01 — 6/\am)m}xv2,

2(Cy — 6/\am)mvm(—12/\3a§amv) = {—12/\3aiam(01 — 6/\am)mv2}m

(2.28)
+12/\3{a§;am:(01 - 6/\aa:a:>af}dfv2’
(2.29) 2(C — 6Xage) 2V B1ve = 2B1(C1 — 6Xagy) 202,
2(C1 — 6Xa32)s0:C105: = 1 (C1 — 6Aagy IC’lvi =
(230) ( ) {( ) }

—{(Cl — 6/\0,3;3;)3;01 }mvg,
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2(Cy — 6Aaz5) 2V (—6AA32 V52 )
= —6A{ae2(C1 — 6Aaua)ovs |, + 6A {000 (C1 — 6Xas)s } 02

x?

2.31)

2(Cy — 6Aaz) 2V (—4NAL VL0 )

(2.32) = 8Aag(C1 — 6Aaar) ey + 4A{(a2(C1 — 6Aage)z)zv2 ),
—4XMa,(C — 6/\am)m}mvi — 8/\{(01 — 6/\am)mamvxvm}m,
2(C1 — 6Aar) s Vs Vsaa0
= 2{(C — 6AGez)2V2Verz o + 3(C1 — 6Xaz) a2,

(2.33) +{(C1 = 6Ma)zza¥s }o — (C1 — 6Adaa)aaaaty

—{2(Cy = 6Aag1) 22Uz Vzz + (C1 — 6/\am)xvgm}m.

On the other hand, by the definition of ¢, ¢, a, v and noticing that v(0,t) =
v(1,t) =0, v(0,t) = ve(1,t) =0, v,(0,t) = v (1,¢) = 0 and v4(0,t) = vy (1,t) =
0, it is easy to check that

(2.34) /Q {-},dedt =0,

where { - }, is defined in (2.1).
Then, integrating both sides of (2.1) over Q and combining (2.1), (2.26)—(2.34),
we can obtain the estimate (2.25).

Step 3. We claim that there exist positive constants ug > 1, Cy and C*, depending
only on w, such that for ;= i and for all numbers A > C, (T + T?),

c* ( / 6% Lu|*dxdt — / Vedadt + N 0% uldxdt
Q Q Q0
(235) + /\5/ 0> oudadt + \3 / 023 dxdt + ) 92cpuimda:dt)
Q<o Q<o Q<o

> /\7/ 92@7u2da:dt+/\5/ 92@5uida:dt
Q Q

+/\3/ 92cpgufwda:dt+/\/ 0% pu?,, dxdt.
Q Q

1
Here V,(z,t) is the gradient term in (2.1), / Ve(z, t)de = V(1,t) — V(0,1),
0

V(17 t) 2 Jl/\SMS(PS(lv t)”ia:(lv t) + Kl/\M(P(lu t)”ia:a:(lv t)?

V(0,8) < =JA 1293 (0,6)02,(0, 1) — Kadug(0, £)v2,,(0, 1),
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where Jp, Jo, K1 and K> are positive numbers.

We shall prove (2.35) by further estimates for each term in (2.25).
For the term {- - -}v? in (2.25), we take y = 2(C}(¢)) 4 1), where C; () > 0 will
be fixed later. By the definition of a, ¢, ¥ and p, it is obvious that

|az| < C(¥)pep, |azt| < C(P)uTe?, |ae| < C() e,
|taet] < C(O)TP0?,  agea] < C(Y)1 e, |@zzat] < C(W) P,
|Gazae] < CW)pte,  aagant] < COO) T, |agazas] < C(¥)p’p,
|Graraae] < C(O)C0,  |aurarans] < CP)u"e,

laz] < CTp?, lag] < CT*p.

4
Observe that ¢ < chpQ < %@3 < E—Zcﬁl < 2T—586cp5 < 1T01204cp6. If we choose A >

puC () (T + T?) with C(z) is large enough, then it holds that

— Ay + ANz A1) gar + 12X03(02 000 )t + 1203(02 020 B1 ) e — 480 (a2 a0s ) vae
— 12X%(a3 04z) zaze — 122°(02C10ag)oz — 6A(A10ag) ez — (A1(C1 — 6Aaga)2)a
+ 1203(02 040 (C1 — 6Maae)2)z| < C(P)N U7,

— (A1By), = 28X\l ay, + Dy,
— 240302 a,, A1 = —24X\"aSay, + Do,
|D1| + [Da| < C()AN "

Hence,

(2.36) {30 = T8 g, [P"0? + D3,
where

(2.37) D3| < C(Y)A U7

Similarly, if we choose A > puC(v)(T + T?), where C(v)) is large enough, we have

(2.38) {-- Jo2 = 120\ 50° 9, | P02 + Ev2,
where
(2.39) |Es| < C()Np°¢°.

(2.40) {302, = 3603t o, Y32, + Fro?

T
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where
(2.41) [F1| < C()N PP,
(242) {0l = 16Xl 007 + 16XV
where
(2.43) |16 A 1tz < C(Y) Apep.
Moreover,
| = 2(C1 — 6Xage)ov0Lu| < C(Cy — 6Aag,) v + %\GLu\Q.

Thus,
(2.44) —2(C} — 6Xapy)200Lu > —C(C] — 6Aage) 02 — %\GLu\Q,
where
(2.45) | = C(Cr = BAage)zvz] < C¥)NW 0 vz,

Now, we estimate the term [- - -] ’(1) =[-](1,¢)—[--](0,t) in (2.25).

By the definition of B; and (', it holds that
—4/\amvgm(1, t) + [ By — 4)\a,Cy + 24\%a,0,5 + 6X0p0e
—(Cy — 6/\am)m]vix(1, t) — 12X030V50 V300 (1, 1)

(2.46) = —4dayv?

rxrxr

(1,1) + [4X3a3 — 12X\ 2a,0,,
+4Na gy — 4/\0,3;(6/\20,3:) + 240200,
+6Aayzr — (6/\20,3: — 6/\am)m]vgx(1, t) — 12X030V20V22: (1, 1).

Using the similar argument of proving (2.36), it holds that for any €; > 0, if we
choose \ > puC(ey, 1) (T + T?), where C(ey, ) is large enough, then

’{—12/\20,330,3;3; + ANy + 24020000
(2.47) + 6Aagze — (6A%a2 — 6X0ag)a V2, (1,1)]

< e N ptetul, (1,1),
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(2.48) AN aduz, (1, 0) = ANl (1, 1),
(2.49) —4ha, (6X2a2)v2,(1,t) = —24N3 13030302 (1, 1),
(2.50) —dhazv2,, (1,t) = A \ubppv? (1, 1),

‘ — 12Aag;g;’l)g;a:va:a:a:(1a t)‘
S CAM2(P‘UQ,’Q:(17 t)HUIIQZ(L t)‘

(2.51)
< CMPT? 02 0ge (1, )| |00 (1, 1))

< e N PPz, (1, 1) + er gz, (1, 1)
From (2.46)-(2.51), we get [ - -|(1,¢) = V(1,t) = Vi(1,t) + G1(1,t), where

Vi(L,t) = =203 P92(1) @7 (1, 1)07,(1,8) — 4duu(1) (L, 8)0la0(1, ),

(2.52)
‘Gl(lv t)‘ < 51/\3M3(P3(17 t)”ia:(lv t) + 51/\/“)0(17 t)”ia:a:(lv t)'

Note that ¢,(1) < 0, if we choose £, small sufficiently and A > puC(ey, 9)(T + T?),
then there exist J; > 0 and K7 > 0 such that

/OT[--~](1,t)dt
(2.53) :/TV(l,t)dt:/T (V1(1,t)+G1(1,t)>dt
0 0
> /T (BN 02,10 + KL e (1.1) )t > 0.
0

In view of 9,,(0) > 0, we have the similar estimate for fOT —[---](0, t)dt. Hence, there
exist two positive constants Jo and Ko such that

/T[- (0, 8)dt
0
254) = /O ' V (0, t)dt

T
< / (= 22N (0, 002,(0,8) — Kahp(0,)02,,(0.8) )t < 0.
0

From (2.36)—(2.45), (2.53) and (2.54), if we choose A\ > uC(¢)(T + T?) with C ()
large sufficiently, it holds that
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Y) ( / 62| Lu|?dxdt — / Vedzdt + \"u” / oTvidxdt
Q Q Q

+/\5u5/ cp5v§da:dt+/\3u3/ ©3v2 dxdt + /\u/ cpvimda:dt)
Q Q Q
2\7u8/ cp7z/1§v2da:dt+/\5u6/ cp5z/1gv§dxdt
Q Q
(2.55) + A3t / 32 dedt + \p? / o2l dxdt.

Recall that |t),| > 0 in Q\wp. Then, from (2.55), if we choose A > uC(¢))(T + T?)
with C(¢) large sufficiently, it follows that

C1(v) ( / 0%| Lu|*dzdt — / Vedrdt + \"u" / o v dxdt
Q Q Q
+/\5u5/ cp5v§da:dt+/\3u3/ ©3v2 dxdt + /\u/ cpvimda:dt)
Q Q Q
2/\7u8/ cp7v2da:dt+/\5u6/ cp5v§da:dt+/\3u4/ % vmda:dt—i-/\u /cpvimda:dt,
Q Q Q Q

from which if we choose 1 = pg = C1(¢) + 1 and A > C(¢)(T + T?) with C(¢))
large sufficiently, it holds that

C(v) ( / 6% Lu|?dxdt — / Vedzdt + \"u” / ©Tv3dxdt
Q Q Qw0
+ /\5u5/ cp5v§da:dt
Qw0
+ /\3u3/ 32 ddt + /\u/ cpvimda:dt)
Qw0 Qw0
> /\7u8/ o v dedt + /\7u7/ o v dzdt
Q\Q“0 Qw0

+ A\°u8 / cp5v§da:dt + \5u8 / cp5v§da:dt
Q\Qwo Q%0

+ /\3u4/ ©3v2 drdt + N3 3/ 32, drdt
Q\Q“0 “0

+ A / ov2, pdrdt + /\u/ ov2, dadt.
Q\Q‘”O Q0

This implies
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C’( / 0%| Lu|*dzdt — / Vpdadt + \' / o v dxdt
Q Q Q«o

+ /\5/ ©Pvidadt + /\3/ ©302 dadt + /\/ cpvimda:dt)
Qwo Qwo Qwo
> /\7/ o v dzdt + /\5/ ©Pvidadt + /\3/ 32 dadt + /\/ ov2, dadt.
Q Q Q Q
Returning v to e*®u, we can obtain (2.35).

Step 4. We shall eliminate the terms \* / 92cp3ufjxda:dt and A 02 pu?, dzdt

Qwo Qwo Trxr
in the left side of (2.35).
Let w; be a nonempty open subset of € such that wg CC w; CC w. Take
X € C°(w1), x = 1 in wy. Multiplying system (1.1) by x6%*@u,, and integrating it
over (), we get

1
/ut(xﬁQcpum)da:dt:/ —(X92cp)mumutda:dt+/ 5(x92cp)tuida:dt,
Q Q

Q

1
/umm(xﬁQcpum)da:dt:/ 5(x92cp)muixda:dt—/(X92cp)uimda:dt.
Q Q

Q
Since
/ —(XGQ@)quutda:dt
:/ _(X92(P>a:ua:(§ - ua:a:a:a:>dxdt
Q
:/Q{_(X92(P>Iua:§ + <X92(P>a:ua:ua:a:a:a:}dxdt
3 1
:/ { B (XGQ(P)l’ng + §(X92(P>Idfu§:a: - §(X92(P>ara:a:a:u§:}dxdta
Q
we get

3 1 1
/Q { - (X92(P>a:ua:§ + §(X92(P>a:a:u3:a: - 5(9(9290)&:&:&:&3”3: + §(X92(P>tu3:

+ 50PNty — (), bl
:/ E(xO*Q)uppdrdt
Q

:/ Lu(x0?p)ugpdadt.
Q
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Then using similar arguments in Step 1, if we choose A > C(¢)(T + T?) with C (1))
sufficiently large, it holds that

/ A0 pu?, dxdt
Q

<C </ N02 302 dadt +/ N0% Pt dadt + / 92\Lu\2da:dt) ,
Q=1 Q=1 Q

where Q! = w; x (0,7).
Further, we have

/ N2 pu?, dxdt < C </ AN0% 32 dadt +/ N2 pou2 dadt
(2.56) @ Q1 Q1

v / 92\Lu\2da;dt>.
Q

On the other hand, multiplying system (1.1) by x16%¢>u, where x; € C5°(w), x1 =
1 in wp and integrating it over ), we get

/ (ut + gz ) (X10% pPu) dwdt
Q
:/f(X192cp3u)da:dt

Q

1 1
- /{_§(X192‘P3>tu2_2(X192‘P3>mu§:+§(X192<P3)m:mu2+(x102cp3)u3;x}da:dt.
Q

Hence, we conclude

/ (16 %yul dadt
Q

2 Trrx

= /Q {f(X192cp3u) + % <X192cp3>tu2+2 <X192cp3>mui 1 <X192cp3> u2}da:dt,

from which, if we choose A > C(v)(T + T?) with C (1) sufficiently large, it follows
that

/QX1/\392cp3uimda:dt <C </ N 0% oTuldzdt
+/ /\592cp5uida:dt+/ 92\Lu\2da:dt>.
Qv Q
Further, it holds that

/ N0 3 dedt < C </ N0 o u dxdt +/ N0*pou2 dadt
Qo w w

2.57)
v / 92\Lu\2da;dt>.
Q
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Similarly, we have
/ N2 32 dadt < C </ N2 o u dxdt +/ N0*pou2drdt
(2.58) Q= ¢ ¢
n / 92\Lu\2dxdt>.
Q

From (2.56), (2.57) and (2.58) and in view of the definition of V, if we choose A >
C(¢)(T + T?) with C(z)) sufficiently large, then

C </ 6% Lu|?dxdt —/ Vpdadt + \' 0> u?dxdt + N° 92cp5uida:dt)
Q Q Q¥ Q¥

> /\7/ 92@7u2da:dt+/\5/ 92905uida:dt+/\3/ 0% p3u2, dxdt,
Q Q Q
from which and in view of (2.53) and (2.54), namely, — / V.dxdt < 0, we have
Q

/\7/ 92@7u2da:dt+/\5/ 92cp5uf:da:dt+/\3/ GQ@Suimdxdt
(2.59) Q Q Q
<C </\7 02 uldxdt + \° 0% uldrdt + / 92§2da:dt) .

Qv Qv Q

Step 5. We shall eliminate the terms \® 92cp5uf:da:dt in (2.59).

Qw
By interpolation inequality, we obtain that for any € > 0,
C
(2.60) /(Gu)ida: <e / (Qu)2, dx + — /(Gu)Qda:,
w w € w

where C' is depending only on w.

I\ )
Take ¢ as g9 <m) in (2.60), where o > 0 will be fixed later. It holds

-2

—/Giqux—Q/%a;uumda:,

from which it follows that

%/we?uidxﬁaz (t(TAt))2/w(9u)§xdx+(f>2/w(9u>zdx

2\ y1—p)

that

ﬁ /W(Gu)de

2\ y1—p)

—i—C’/Giqua}.
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In view of the definition of 4, 6 and  and using Holder inequality and Young inequality,
we get

-2
/GQuida: < e9C(¥) <ﬁ) </ N0 p*u?dx +//\492cp4u2da:
(2.61) +//\392cp3u2da:+//\292cp2uidx+/92uimdx)

—i—%/GQqux—i—C(w)//\292cp2u2da:.
€2 (t(T—t)) “ “

5

Multiplying the both sides of (2.61) by = and integrating it from 0 to 7', we

(T —1))
can deduce that if we choose e sufficiently small and A > C(1)(T + T?) with C(v))
sufficiently large, then (2.59) and (2.61) implies (1.2).

This completes the proof of Theorem 1.1.

3. PROOF OF THEOREM 1.2

Set m(z) = e"P@) | p(z) = ,V@F) _ e we have the following two
lemmas.

Lemma 3.1. If we choose A > T2, then

(3.1) He%ﬂum(@ < M T Mexp{—CiAT 2},
where C; = 8min{—p(z)}.
Q

Proof. Observe that
027 = 2% (T — ) "m"(z) = 1/ (ky(z, 1)), (z,t) € Q,

where
- —2Xp(z)
T NT T
ke (e, )= (T — 1) (a:)exp{ T3 }
—2)
= T7m_7(a:)exp{7p(x>} = ko(x, 7)
T

and 7 = t(T —t) € (0,T?/4].

2

Let x be fixed, it is obvious that 7 = —?/\p(a:) is the minimum point of ky(z, 7)

) 7
and ky(z,7) = — <?/\p(a:)) m~"(x)e”. On the other hand, ky(z,0) = oo, ka(z,)

is decreasing for 7 € (0,7) and increasing for 7 > 7. Hence,
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ko(x,7T), if T2/4 > —2Xp(z),

ko(z, T?/4), if T?/4 < —2Xp(2).

min ki(z,t)= min ke(x,7) = {
0<t<T 0<7<T2/4

Notice that Hz/JHC@) = 1 and g > 1, it holds that —p(z) = e’ — eH¥(@)+3) —
(2 — et¥(@)) > ¢t (eh — 1) > 7/8. Thus, if we choose A > T2, then

min k(1) 2 k(e T2/4) = 217 exp{ — 8/\p(a:)T_2}m_7(a:).

Hence, (3.1) follows.

Lemma 3.2. If we set A > T?, then
3.2) 0207 > 28T M exp{—CoAT 2}e?¥, 2z € (0,1), t € [T/4,3T/4].

Here Cy = 32 max{—p(z)}.
)

Proof. Notice that 7 = (T —t) € (0,72/4]. Then t € [T/4,3T/4] implies
7 € [T?/16,T?/4]. Using the similar argument of proving Lemma 3.1, if we choose

A\ > T2, then it holds that

ki(z.t) < 27 8T Yexpl CoNT 2V 7 € (0,1), t € [T/4,3T/4].
T/422)§T/4 l(xa )— exp{ 2 }m ([B), €T (7 )7 [ /7 /]

Therefore, (3.2) follows.

Proof of Theorem 1.2 1t is known that there exists a unique solution p € C([0, T7;
L3(Q)) N L2((0,T); H3()) to equation (1.3) (see [11]). A simple change of variable
in time shows that the Carleman inequality (1.2) is also valid for (1.3). By estimate

(1.2), if we choose A > Co(T + T?), it holds that
/\7/ 0% p?dadt + /\5/ 0P p2dadt + /\3/ 0% p3p?2  dadt
Q Q Q

(3.3)
<C </\7/ 020" p?dxdt +/ 92\gp\2da:dt) ,
“ Q

where Cy and C' depend only on w.
Since

C/GQ\Qp\Qda:dK c27 1T g1 /GQMdea:dt
0 = L=(Q) o t(T—1)7

= 27T g[|7 () /Q 0% p*dxdt,
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2
if we choose A\ > C’(z/J)HgHZOO(Q)T2 with C(¢) sufficiently large, it holds that
1
(3.4) c / 0% gp|?dxdt < 5/\7 / 02" p>dxdt.
Q Q

2
By (3.3) and (3.4), if A > C(1) (T FT2 4 g ;m(Q)T2>, where C(4) sufficiently
large, we have

/92@7p2da:dt§ C 02" pdaxdt,
Q Qv

from which and by Lemma 3.1 and Lemma 3.2, if A\ = A\ = 5’(1/1)<T +T?% +

2
19117 gy T2 then

- 1 2
281—14 _ 1 2 21y 2
257 Yexp{ — CrC(y) (1+ — l9ll7 (o)) b /QX(M o P

~ ~ 1 2
< 2T Mexpy — CLOW) (14 =+ ||g]|7 628“/ pPdxdt.
{ (1 7+ lolim@) f |
Hence,

/ p2dxdt
Qx(T/4,3T/4)

- - 1 2
< Cow{(C, = COOW) (14 7 +lallni) } | Pt
from which it follows that

/ p?dxdt
(35) Qx(T/4,3T/4)

<ep{C(14 7+ 9l } /Q PPdudt.

Multiplying (1.3) by p and integrating over €2, we have

1d 2 2 / 2

< HQHLOO(Q)/QPQdJ%

this implies

d 2 2
E/Qp da:—l—QHQHLoo(Q)/Qp dz > 0,
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that is,

d 2
(3.6) E(exp{QHgHLm(Q)t}/gp dr) > 0.

For each ¢ € [T'/4,3T/4], integrating (3.6) over [T'/4, t|, we obtain
T T, 2
[ wtePae > exp{2lglmi) (5 0} [ [t ) ds
Q )

T
> exp{ — HgHLoo(Q)T} /Q ’p(a:, Z)Fda;

Integrating (3.7) over [T'/4,3T/4] and (3.6) over [0, T'/4], respectively, it holds that

3.7)

T T 2
68 g [ e p)fds < eflglm) [pla, )| dadt,
2 Ja 4 Qx(T/4,3T/4)
and
2 UNE
(3.9) ., Ip(x,0)|*dx < exp{C’HgHLoo(Q)T} ; ’p(a:, Z)’ dzx.

Combining (3.8), (3.9) and (3.5), we have

PR

2
< eXP{CHQHLw(Q)T}f p(x, t)[dxdt
Qx(T/4,3T/4)

1
<ex{C(7 + lol@7)} [ p(a 1) Pdadt
Qx(T/4,3T/4)
1 2 2
SaQGQ+f+mMM@+mmﬂ@ﬂ}AJMMt
This completes the proof of Theorem 1.2.

4. PrOOF OF THEOREM 1.3

In this section, we shall first study the null controllability of linear system, then a
fixed point argument applying Kakutani’s Theorem ([see [1], pp. 126]) will be used
to prove Theorem 1.3.

Consider the following linear system:

Ut + Ugzzr + gU = Xuh, (2,1) € Q,
uw(0,t) =u(1,t)=0, te€(0,7T),
uz(0,t) = uy(1,8) =0, te€(0,7T),
u(z,0) = up(x), x € Q.

(4.1)

We have the following proposition.
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Proposition 4.1. Suppose that ug € L*() and g € L>°(Q). Then there exists a
control h € L?(w x (0,T)) such that the corresponding solution u of (4.1) satisfies

u(-,T)=0 in .

Moreover,

1 2
4.2) Pl z2(wx (o) < exp {C(l + 7 9l + HQHLOO(Q)T)}HUOHL?(Q)~

Proof. 1t is well known (see [11]) that under the assumption of Proposition 4.1,
system (4.1) allows a unique solution u € L?(0,T; HZ(Q)) N C([0,T]; L*(£2)) with
the property that u; € L2(0,T; H=2(2)) and

lull 20,7520 + el 20,7, -2(0)) < CUIRN L2(wx(0,1)) + uollz2(e));

where C' depends on [|g|| o« (@)-
For each & > 0, we introduce the functional J. : L?(Q2) — R,

1 [T
Je(po) = 5/O /p2d[]jdt+€Hp0HL2(Q) —i—/ngp(a:,O)da:,

where p is the solution to (1.3) with data py.

Since p € L2(0,T; H3(Q)) N C([0, T]; L*(2)) (see [11]), it is easy to check that
Jo 1 L2(Q) — R is continuous and strictly convex. Moreover, we claim that it is also
coercive. More precisely,

(4.3) liminf  —2=(P0)

e >
Ipoll 120y —o0 lIPoll L2(0)

Indeed, given a sequence {po;} € L*(§2) with ||poj|12() — 00, we normalize it

Poj = T —
! HpUjHL2(Q)

Thus, we have

. A T _
= (Po) :HPOJ”L"’(Q)/ /‘pj‘2d$dt+€+/quj(xa())dx’
Ipojllzzy 2 Jo Jo :

where p; is the solution to (1.3) with data po;.
We distinguish the following two cases.

Case 1.

T
mm&/!/mﬁMﬁ>Q
J7ee Jo Jw
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when this holds it is obvious that

lim inf Je (p0j> _
J—=0 HpUjHL2(Q)

T
liminf/ /\ﬁj\dedt:o.
J7ee Jo Jw

In this case, by extracting subsequences, still denoted in the same way, it holds that as
J — 00,

Case 2.

T
(4.4) / / |p;|2dxdt — 0,
0 w
and
(4.5) Poj — po weakly in L*(9).

In view of (4.4) and (4.5), the solution to (1.3) with data pg satisfies
p=0 inwx(0,7).

By the unique continuation property for the solution of (1.3) (see [6]), we have p =
0 in Q and
p;(0) = 0 weakly in L*(Q).

Hence,
lim inf Je (p0j>

> €.
J—00 HpUjHL2(Q)

This proves the claim (4.3).
Then J. has a unique critical point which is its minimizer:

~ 2 . ~ N .
poe € L*(Q) 1 Jo(poe) = poénLgr%Q) J=(po)-

Given 9o € L?(Q) and p € R, we have

Js(ﬁ()e) < Js(ﬁ()e + PZ/JO),

2 T T
eloc |l 2y < / / (b [2dwdt + / / ppotbdudt
0 w 0 w

+€l|poe + pboll L2y + P/Quodf(ﬂf, 0)dz,

that is,

IS
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where p. and 1) are solutions to (1.3) with data po. and g, respectively.
Dividing this inequality by p > 0 and letting p — 0", we obtain that

/ up(x,0)dx

/ / Putbddt + e|toll 2

Reproducing this argument with p < 0, we obtain finally that

6 [ [ btz [ b, 00| < clollz

On the other hand, multiplying (4.1) (with right hand side h = x,p:) by ¥ and
integrating by parts, we deduce that

7) /Q e (2, Tz, Ty = /O ' /w prbdadt + / wots(, 0)da

Q
Combining (4.6) and (4.7), we get
| [ et Dyt | < el
Hence, the solution u. to (4.1) with h = y,,p. satisfies

(4.8) [ue(, Tl 2(0) < e

Since J:(poe) < J-(0) = 0, by the definition of .J., we have

| _
5/ /\pg\Qda:dt < —/ugpg(a:,O)da:
0 w Q

< [|Pe(@, 0) || L2 lwoll 2
from which and (1.4), it holds that

1 [T )
— pe|“dxdt
5| [
1 2 - 3
<exp{C(1+ % + lgllniq) + lgllie@T) }( /Q dwdt ) fuoll o)

Hence,

T ~ |12 1 2 2
(49) /O / (pelPdzdt < exp{ C(1+ 2 + 19l Fei) + 9l @) }luoll3(qy.
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From (4.9), by extracting subsequences, still denoted in the same way, we have that
there exists a function p € L?(w x (0, 7)) such that

(4.10) p-—p weaklyin L?*(w x (0,T)) as ¢ — 0.

Hence, let h = p. Combining (4.8), (4.9) and (4.10), the solution u to (4.1) with h = p
as the control satisfies
u(-,T)=0in €,

and h satisfies (4.2). This completes the proof of proposition 4.1.

Proof of Theorem 1.3

We may as well assume that f is in C'(R) and we shall use a fixed point argument
applying Kakutani’s Theorem. The general case of a globally Lipschitz function f can
be easily obtained by a density argument.

Let

8 s #0,
g(s)=+¢ ¢
f'(0), s =0.
then ¢ is continuous in R and
4.11) gl Loo®) < 1 Nl Loo(m) < L.

by our hypotheses f be globally Lipschitz function, where L be globally Lipschitz
constant.
Write Z for the space L?(Q). For each z € Z, we consider the linear system

Ut + Uggzr + g(Z)U = th7 ((IZ, t) € Qa

4.12) u(0,1) = u(l,t) =0, te(0,7),
uz(0,t) = ug(1,t) = 0, t € (0,7),
u(x,0) = uo(), xr €.

Obviously, (4.12) is of the form (4.1), with g = g(z) € L*°(Q). By Proposition 4.1
and (4.11), there exists a control h, € L?*(w x (0,T)) such that the corresponding
solution of (4.12) satisfies

u* (., T)=0in Q
and
1 2
helzoxory < €{C+ 2+ () iy + 9022wy T) ol ey

1 2
(4.13) < eXP{C(l to+ Hf/HEoo(Q) + Hf/HL“’(Q)T>}HUOHL2(Q)7
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where C' is independent of z.
On the other hand, for each 0 < ¢t < T, multiplying (4.12) (with right hand side
h = h;) by u, and integrating by parts over 2 x (0, t), we deduce that

L// hthﬁ+/ /§%Mmﬁ+//" (ul=)2dzdt
://m@m&
0 Jw

Hence,

1 t

5 [P+ [ [ (e dade

2 Ja 0 Jo

<3 [w@ars (3 loelma) [ [ @aas s [ [ s
=2 fo T g TWEI@) Ji fotte T w(z)x,

from which and by Gronwall inequality, we get
1
/Q (uhe)?dwdt < CT exp { (5 +19() (@) ) T J (ol z(gy + 1Az 32 0.10):

where C' is independent of z. Therefore, from the above inequality, (4.11) and (4.13),
we have that there exists a positive constant /2, which is independent of z, such that

/ﬁ&ﬁmagR
Q

Now, for each z € L?(Q), set

U(z) = {h € L(wx (0,T)| w(-,T) = 0, |4l p2(ox0.m))
(4.14) 1 3
< exp (C(1+ 2 + 1 N gy + 17 2@ T) ) luoll 2oy }

and
= {ul|h e U(2), |ulll2(q) < R},

where u’; is the solution of (4.12) with control h.
In this way, we have been able to introduce a set-valued mapping on L?(Q):

z— A(2),

we shall prove that this mapping possesses at least one fixed point .

From the above argument, and using the regularity of the solution of (4.12) and
Aubin’s Compact Theorem, we have that for any z € Z, A(z) is a nonempty compact
convex set, we also see that there exists a fixed compact subset K € L?(Q) such that

A(z) C K, forany z € L*(Q).
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We are sufficient to prove A is upper semicontinuous.
Indeed, if 2z — z in L*(Q), u"* € A(z) and h., € U(zg), then from the

zy
definition of U (z;), we have that there exists a subsequence of {A, }, still denoted in
the same way, such that
h., — h weakly in L*(w x (0,T)),

and

1 / % /
(415) B2y < exp{C(1+ 7 + 1 Ny + 15 1@ T) Fluol 20
Furthermore, from (4.12) (b = h_, ), we have

h hz
[z, * HL?(O,T;H@(Q)) + 1wz )ell L2 0,03 5-2(02))

(4.16)
< C([|hz Nl 22 + lluollL2) < C,
and
h hz
(4.17) vz |25 mace)) + 1wz )ell 25,1y x0) < C(6),

for any ¢ with 0 < § < T'. Here the constants C' and C(¢) are independent of z.
From (4.16), (4.17) and Aubin’s Compact Theorem, we have that as k — oo,

o in L*(Q),
" weakly in L*(0, T; H3(Q)),
UZk(7T> - u(7T> in L2(Q>’

Uy,

Uz

(4.18)

9(zr)us, — g(2)u weakly in  L?(Q).

Hence, u € A(z).
By Kakutani’s Fix Point Theorem, Theorem 1.3 follows.
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