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METRIC VERSIONS OF POSNER’S THEOREMS

J. Alaminos, J. Extremera, Š. Špenko and A. R. Villena

Abstract. Let S and T be continuous linear operators on an ultraprime Banach
algebra A. We show that if S, T , and ST are close to satisfy the derivation
identity on A, then either S or T approaches to zero. If T is close to satisfy the
derivation identity and [T (a), a] is near the centre of A for each a ∈ A, then either
T approaches to zero or A is nearly commutative. Further, we give quantitative
estimates of these phenomena.

1. INTRODUCTION

In [7], E. C. Posner proved two theorems about derivations on prime rings which
have turned out to be very influential. A number of authors have refined and extended
these theorems in several ways (see [3, Subsection 2.1], where further references can be
found). In this paper we follow the pattern of [2]. To this end we restrict our attention
to ultraprime Banach algebras. The ultraprimeness is a metric version of the primeness
which was introduced by M. Mathieu in [4]. Let A be a Banach algebra. For each
a, b ∈ A, we write Ma,b for the two-sided multiplication operator on A defined by

Ma,b(x) = axb (x ∈ A).

Recall that A is prime if Ma,b = 0 implies a = 0 or b = 0. We define

κ(A) = inf {‖Ma,b‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1} .

The Banach algebra A is said to be ultraprime if κ(A) > 0. It is clear that each finite-
dimensional prime Banach algebra is ultraprime. For a Banach space X we denote by
L(X) the Banach algebra of all continuous linear operators from X into itself. The
Banach algebra L(X) is ultraprime and, more generally, every closed subalgebra of
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L(X) containing the finite rank operators is ultraprime [4]. Every prime C∗-algebra
is ultraprime [5].
In [2], a metric version of the first Posner’s theorem is obtained by giving an

estimate of the distance from the composition D1D2 of two derivations D1 and D2

on an ultraprime Banach algebra A to the set of all generalized derivations on A. In
this paper we measure the “derivativity” of a given continuous linear operator T on an
ultraprime Banach algebra A through the constant der(T ) = sup{‖T (ab) − T (a)b −
aT (b)‖ : ‖a‖ = ‖b‖ = 1} and we estimate ‖S‖‖T‖ in terms of der(S), der(T ), and
der(ST ) for arbitrary continuous linear operators S and T on A. Further, we present a
metric version of the second Posner’s theorem by estimating ‖T‖ sup{‖ab−ba‖ : ‖a‖ =
‖b‖ = 1} in terms of der(T ) and sup

{
dist

(
[T (a), a],Z(A)

)
: ‖a‖ = 1

}
.

2. FIRST POSNER’S THEOREM

Let us recall that an additive map D from a ring R into itself is said to be a
derivation if

(1) D(ab) = D(a)b + aD(b) (a, b ∈ R).

The first Posner’s theorem states that if R is a prime ring with characteristic different
from 2, and D1, D2 are derivations on R such that the composition D1D2 is also
a derivation, then either D1 or D2 is zero. The purpose of this section is to give a
quantitative estimate of this result. Let A be a Banach algebra and let T ∈ L(A). We
define a continuous bilinear map T δ : A × A → A by

T δ(a, b) = T (ab)− T (a)b − aT (b) (a, b ∈ A).

The constant ‖T δ‖ can be thought of as a measure of how much T satisfies the
derivation identity (1). From now on, we write der(T ) (the derivativity of T ) for
‖T δ‖, i.e.,

der(T ) = sup
{‖T (ab)− T (a)b − aT (b)‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1

}
.

The map T �→ der(T ) gives a seminorm on L(A) which vanishes precisely on the
linear subspace Der(A) of L(A) consisting of all continuous derivations on A. This
seminorm has shown to be extremely useful for analysing the hyperreflexivity of the
space Der(A) [1].

Theorem 2.1. Let A be a Banach algebra and let S, T ∈ L(A). then

κ(A)2‖S‖‖T‖ ≤ 3 der(ST ) +
15
2

der(S)‖T‖+
9
2

der(T )‖S‖.

Proof. The arguments are similar to those in [2].
For all a, b, c ∈ A we have
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S(a)bT (c)+ T (a)bS(c) = (ST )δ(ab, c)− a(ST )δ(b, c)

− T δ(a, b)S(c)− Sδ(T (ab), c)

− Sδ(a, b)T (c)− Sδ(ab, T (c))− S(T δ(ab, c))

+ aSδ(T (b), c)+ aSδ(b, T (c)) + aS(T δ(b, c))

and taking norms we arrive at

‖S(a)bT (c) + T (a)bS(c)‖ ≤ (
2‖(ST )δ‖+ 5‖Sδ‖‖T‖+ 3‖T δ‖‖S‖)‖a‖‖b‖‖c‖.

To shorten notation, we write μ = 2‖(ST )δ‖ + 5‖Sδ‖‖T‖+ 3‖T δ‖‖S‖.
On account of [2, Observation 2], we have

2 S(a)uT (b)vS(c) =
(
S(a)uT (b) + T (a)uS(b)

)
vS(c)

+ S(a)u
(
T (b)vS(c)+ S(b)vT (c)

)
− (

S(a)(uS(b)v)T (c)+ T (a)(uS(b)v)S(c)
)
,

and hence 2‖S(a)uT (b)vS(c)‖ ≤ 3μ‖S‖‖a‖‖b‖‖c‖‖u‖‖v‖ for all a, b, c, u, v ∈ A.
This gives

∥∥MS(a),T (b)vS(c)

∥∥ ≤ 3
2μ‖S‖‖a‖‖b‖‖c‖‖v‖ for all a, b, c, v ∈ A. Since

κ(A)‖S(a)‖‖T (b)vS(c)‖ ≤ ∥∥MS(a),T (b)vS(c)

∥∥ , it follows that

κ(A)‖S(a)‖‖T (b)vS(c)‖ ≤ 3
2
μ‖S‖‖a‖‖b‖‖c‖‖v‖

for all a, b, c, v ∈ A and therefore that

κ(A)‖S(a)‖ ∥∥MT (b),S(c)

∥∥ ≤ 3
2
μ‖S‖‖a‖‖b‖‖c‖

for all a, b, c ∈ A. From κ(A)‖T (b)‖‖S(c)‖ ≤ ∥∥MT (b),S(c)

∥∥ we now deduce that
κ(A)2‖S(a)‖‖T (b)‖‖S(c)‖ ≤ 3

2μ‖S‖‖a‖‖b‖‖c‖ for all a, b, c ∈ A and hence that
κ(A)2‖S‖2‖T‖ ≤ 3

2μ‖S‖, which clearly establishes the theorem.
Corollary 2.2. Let A be a Banach algebra and let S, T ∈ L(A). Then

κ(A)2 min{‖S‖, ‖T‖} ≤ κ(A)
√

3der(ST ) +
15
2

der(S) +
9
2
der(T ).

Proof. Of course, we can assume that κ(A), ‖S‖, ‖T‖ �= 0.
By applying Theorem 2.1 we arrive at

1 ≤ α

‖S‖‖T‖ +
β

‖S‖ +
γ

‖T‖ ,

where α = 3der(ST )κ(A)−2, β = 15
2 der(S)κ(A)−2, and γ = 9

2der(T )κ(A)−2. We
now write λ = min{‖S‖, ‖T‖}. Then 1 ≤ α

λ2 + β
λ + γ

λ and therefore
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λ2 − (β + γ)λ− α ≤ 0.

This implies that

λ ≤ β + γ +
√

(β + γ)2 + 4α

2
≤ β + γ +

√
α,

which establishes the inequality in the corollary.

3. SECOND POSNER’S THEOREM

Let R be a ring. In the sequel, we write [a, b] = ab − ba for all a, b ∈ R and we
denote by Z(R) the centre of R. A map T : R → R is said to be commuting if

(2) [T (a), a] = 0 (a ∈ R)

and, more generally, it is said to be centralizing if

(3) [T (a), a] ∈ Z(R) (a ∈ R).

The second Posner’s theorem states that if D is a centralizing derivation on a
prime ring R, then either D is zero or R is commutative. Our next concern is to give
a quantitative estimate of this result. Our method is motivated by [6]. To this end, we
measure how much a linear operator T from a Banach algebra A into itself satisfies
conditions (2) and (3) by considering the constants

com(T ) = sup
{‖[T (a), a]‖ : a ∈ A, ‖a‖ = 1

}
and

cen(T ) = sup
{
dist

(
[T (a), a],Z(A)

)
: a ∈ A, ‖a‖ = 1

}
,

respectively. Note that both com and cen are seminorms on L(A) vanishing precisely
on the commuting maps and the centralizing maps, respectively. Further, we measure
the commutativity of A through the constant

χ(A) = sup
{‖[a, b]‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1

}
.

Let us recall that Z(A) is closed so that the quotient linear space A/Z(A) turns into a
Banach space with respect to the norm given by ‖a+Z(A)‖ = dist

(
a,Z(A)

)
(a ∈ A).

Lemma 3.1. Let A be a Banach algebra. Then

‖[a, b]‖ ≤ 2 ‖a + Z(A)‖ ‖b + Z(A)‖
for all a, b ∈ A.

Proof. Let a, b ∈ A. For all u, v ∈ Z(A) we have [a, b] = [a + u, b + v] and so
‖[a, b]‖ ≤ 2‖a + u‖‖b + v‖. By taking the infima in u and v we arrive at the claimed
inequality.
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Lemma 3.2. Let A a Banach algebra and let T ∈ L(A). Then

κ(A)com(T )2 ≤ (
8cen(T ) + der(T )

)‖T‖
Proof. For all a, b ∈ A, we have

[T (a), b] + [T (b), a] =
1
2
[T (a + b), a + b]− 1

2
[T (a − b), a− b].

We thus get

(4) ‖[T (a), b] + [T (b), a] + Z(A)‖ ≤ 4 cen(T )

for all a, b ∈ A with ‖a‖ = ‖b‖ = 1.
Let a ∈ A with ‖a‖ = 1. Then

4[T (a), a]2 = 2
[
[T (a), a], T (a)

]
a + 2a

[
[T (a), a], T (a)

]
− [

[T (a), a2] + [T (a2), a], T (a)
]
+

[
[T δ(a, a), a], T (a)

]
and therefore

4
∥∥[T (a), a]2

∥∥ ≤ 4
∥∥[

[T (a), a], T (a)
]∥∥

+
∥∥[

[T (a), a2] + [T (a2), a], T (a)
]∥∥ +

∥∥∥[
[T δ(a, a), a], T (a)

]∥∥∥ .

From Lemma 3.1 and (4) we now deduce that∥∥[T (a), a]2
∥∥ ≤ 2

∥∥[T (a), a] + Z(A)
∥∥‖T‖

+
1
2

∥∥[T (a), a2] + [T (a2), a] + Z(A)
∥∥‖T‖ + ‖T δ‖‖T‖

≤ (
4cen(T ) + der(T )

)‖T‖.
For each x ∈ A with ‖x‖ = 1, we have

[T (a), a]x[T (a), a] = [T (a), a]2x + [T (a), a]
[
x, [T (a), a]

]
and so

‖[T (a), a]x[T (a), a]‖ ≤ ∥∥[T (a), a]2x
∥∥ +

∥∥[T (a), a]
[
x, [T (a), a]

]∥∥
≤ (

4cen(T )+der(T )
)‖T‖+‖[T (a), a]‖ 2

∥∥[T (a), a)]+Z(A)
∥∥

≤ (
8cen(T ) + der(T )

)‖T‖.
We thus get

∥∥M[T (a),a],[T (a),a]

∥∥ ≤ (
8cen(T ) + der(T )

)‖T‖ and hence
κ(A)‖[T (a), a]‖2 ≤ (

8cen(T ) + der(T )
)‖T‖.

Taking the supremum in a we finally obtain the inequality in the lemma.
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Theorem 3.3. Let A be a Banach algebra and let T ∈ L(A). Then

κ(A)2χ(A)‖T‖ ≤ 36 com(T ) +
9
2

der(T )χ(A)

and

κ(A)5/2χ(A)‖T‖ ≤ 36
(
8cen(T ) + der(T )

)1/2‖T‖1/2 +
9
2
κ(A)1/2der(T )χ(A).

Proof. Let a, b ∈ A with ‖a‖ = ‖b‖ = 1. We write ad(a) for the inner
derivation on A implemented by a, i.e. ad(a)(x) = [a, x] for each x ∈ A. Since(−ad(a)T + ad(T (a))

)
(b) = 1

2 [T (a + b), a + b] − 1
2 [T (a − b), a − b], it follows

that ‖ad(a)T − ad(Ta))‖ ≤ 4com(T ), and consequently dist
(
ad(a)T, Der(A)

) ≤
4com(T ). On account of [1, Proposition 2.2], we have

der
(
ad(a)T

) ≤ 3dist
(
ad(a)T, Der(A)

)≤ 12com(T )

and Theorem 2.1 now yields

κ(A)2‖ad(a)‖‖T‖ ≤ 36com(T ) +
9
2
der(T )‖ad(a)‖.

Taking the supremum in a we arrive at the first inequality in the theorem. From this
inequality together with Lemma 3.2 we get the second inequality in the theorem.

Corollary 3.4. Let A be a Banach algebra and let T ∈ L(A). Then

κ(A)2 min{χ(A), ‖T‖} ≤ 9
2
der(T ) + 6κ(A)

√
com(T )

and

κ(A)5/4 min{χ(A), ‖T‖1/2} ≤
√

36
(
8cen(T ) + der(T )

)1/2 +
9
2
κ(A)1/2der(T ).

Proof. Of course, we can assume that κ(A), χ(A), ‖T‖ �= 0.
By applying the first inequality in Theorem 3.3 we arrive at

1 ≤ α

χ(A)‖T‖ +
β

‖T‖ ,

where α = 36com(T )κ(A)−2 and β = 9
2der(T )κ(A)−2. Write λ = min{χ(A), ‖T‖}.

Then 1 ≤ α
λ2 + β

λ and therefore λ2 − βλ − α ≤ 0, which implies that

λ ≤ β +
√

β2 + 4α

2
≤ β +

√
α

and this gives the first inequality in the corollary.
We now apply the second inequality in Theorem 3.3 to get

1 ≤ α

χ(A)‖T‖1/2
+

β

‖T‖
where α = 36

(
8cen(T ) + der(T )

)1/2
κ(A)−5/2 and β = 9

2der(T )κ(A)−2. Let λ =
min{χ(A), ‖T‖1/2}. Then 1 ≤ α

λ2 + β
λ2 , which implies λ ≤ √

α + β and this proves
the second inequality in the corollary.
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