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SHEPHARD TYPE PROBLEMS FOR GENERAL Lp-PROJECTION BODIES

Wang Weidong and Wan Xiaoyan

Abstract. Lutwak, Yang and Zhang introduced Lp-projection bodies and Ludwig
defined general Lp-projection bodies. In this paper, a solution to the Shephard
problem for general Lp-projection bodies is established.

1. INTRODUCTION

For the set of convex bodies (compact, convex subsets with non-empty interiors)
in Euclidean space R

n, we write Kn. The set of convex bodies containing the origin
in their interiors in R

n we write Kn
o . Denote by Sn

o the set of star bodies (about the
origin) in R

n. Let Sn−1 denote the unit sphere in R
n, V (K) the n-dimensional volume

of body K and ωn = V (B) the volume of the standard unit ball B in R
n.

If K ∈ Kn, then its support function hK is defined by [3]:

hK(x) = h(K, x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y.
The classical projection body was introduced by Minkowski [3, 18] at the turn of

the previous century. For each K ∈ Kn, the classical projection body, ΠK, of K is
the origin-symmetric convex body whose support function is given by

(1.1) hΠK(u) =
1
2

∫
Sn−1

| u · v | dS(K, v),

for all u ∈ Sn−1. Here S(K, ·) denotes the surface area measure of K. The classical
projection body is a very important object for study in the Brunn-Mnkowski theory. In
particular, Shephard in [19] asked the following question:
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Question 1. Suppose K, L ∈ Kn. If

ΠK ⊆ ΠL,

is it true that
V (K) ≤ V (L)?

Question 1 is called the Shephard problem. Since hΠK(u) is just the (n − 1)-
dimensional volume of the image of the projection of K on the subspace orthogonal to
u, it asks whether convex bodies with smaller projections in all directions must have
smaller volume. For centrally symmetric convex bodies K and L, Question 1 was
solved independently by Petty [15] and Schneider [17], who showed that the answer
is affirmative if n ≤ 2 and negative if n ≥ 3. They also proved that the Shephard
problem has an affirmative answer if L is the projection body of some convex bodies.
The notion of Lp-projection body was introduced by Lutwak, Yang and Zhang

[12]. For each K ∈ Kn
o and p ≥ 1, the Lp-projection body, ΠpK , of K is the

origin-symmetric convex body whose support function is given by

(1.2) hp
ΠpK(u) =

1
nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v),

for all u ∈ Sn−1, and

(1.3) cn,p = ωn+p/ω2ωnωp−1.

Here Sp(K, ·) denotes the Lp-surface area measure of K ∈ Kn
o . Lutwak [10] showed

that the measure Sp(K, ·) is absolutely continuous with respect to the classical surface
area measure S(K, ·) of K, and has Radon-Nikodym derivative

(1.4)
dSp(K, ·)
dS(K, ·) = h

1−p
K .

The unusual normalization of definition (1.2) is chosen so that for the unit ball, B,
we have ΠpB = B. In particular, for p = 1, the convex body Π1K is a dilate of the
classical projection body ΠK of K and Π1B = B.
Whereas classical projection bodies are notion of the Brunn-Minkowski theory,

Lp-projection bodies belong to the Lp-Brunn-Minkowski theory and have attracted a
lot of attention (see [8, 9, 12, 13, 14, 16, 20, 22, 23, 24]). In particular, Ryabogin
and Zvavitch in [16] considered the following Shephard problem for the Lp-projection
bodies:

Question 2. Suppose K, L ∈ Kn
o and p ≥ 1. If

ΠpK ⊆ ΠpL,
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is it true that
V (K) ≤ V (L), for 1 ≤ p < n,

and
V (K) ≥ V (L), for p > n?

For p = 1, Question 2 is equivalent to Question 1. For p > 1 and n ≥ 2, it was
proved in [16] that the answer is negative. If K, L ∈ Kn

o and L is the Lp-projection
body of some convex body, Ryabogin and Zvavitch [16] proved that Question 2 has an
affirmative answer [16]. Recently, Ma and Wang [14] studied a Lp-affine surface area
form of the Shephard problem for the Lp-projection bodies.
Recall that Ludwig [8] (see also [6]) introduced asymmetric Lp-projection bodies.

For K ∈ Kn
o and p ≥ 1, the asymmetric Lp-projection body, Π+

p K , of K is defined by

(1.5) hp

Π+
p K

(u) = αn,p

∫
Sn−1

(u · v)p
+dSp(K, v),

where (u · v)+ = max{u · v, 0} and

(1.6) αn,p =
1

nωncn−2,p
.

From (1.6) and (1.5), we see Π+
p B = B. In [6] they also defined

(1.7) Π−
p K = Π+

p (−K).

Further, authors in [6, 8] introduced a function ϕτ : R −→ [0, +∞) by

(1.8) ϕτ (t) = |t| + τt

for τ ∈ [−1, 1], and for K ∈ Kn
o , p ≥ 1, let Πτ

pK ∈ Kn
o be the convex body with

support function

(1.9) hp
Πτ

pK(u) = αn,p(τ)
∫

Sn−1
ϕτ (u · v)pdSp(K, v),

where

(1.10) αn,p(τ) =
αn,p

(1 + τ)p + (1− τ)p
.

The normalization is chosen such that Πτ
pB = B for every τ ∈ [−1, 1]. Here Πτ

pK

may be called general Lp-projection body. Obviously, if τ = 0 then Πτ
pK = ΠpK .

From (1.5), (1.7) and (1.9), Haberl and Schuster in [6] showed that for K ∈ Kn
o ,

p ≥ 1 and τ ∈ [−1, 1],

Πτ
pK = f1(τ) · Π+

p K +p f2(τ) · Π−
p K,
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where

f1(τ) =
(1 + τ)p

(1 + τ)p + (1 − τ)p
, f2(τ) =

(1 − τ)p

(1 + τ)p + (1 − τ)p
,

and ”+p” denotes the Firey Lp-combination of convex bodies.
Associating with asymmetric Lp-projection bodies, Haberl and Schuster in [6] es-

tablished general Lp-Petty projection inequalities and gave the extremum values of
volume for the polar of asymmetric Lp-projection bodies.
In this article, we study the following Shephard type problem for general Lp-

projection bodies:

Question 3. Suppose K, L ∈ Kn
o , p ≥ 1 and τ ∈ [−1, 1]. If

Πτ
pK ⊆ Πτ

pL,

is it true that
V (K) ≤ V (L), for 1 ≤ p < n,

and
V (K) ≥ V (L), for p > n?

Associated with Question 3, we first give the following affirmative answer:

Theorem 1.1. Let K ∈ Kn
o , p ≥ 1 and τ ∈ [−1, 1]. If L ∈ Zτ,n

p and Πτ
pK ⊆ Πτ

pL,
then for n > p ≥ 1,

V (K) ≤ V (L);

for n < p,
V (K) ≥ V (L).

In each case equality holds for p = 1 if and only if K is a translate of L, and for
p > 1 if and only if K = L.

Here Zτ,n
p denotes the set of general Lp-projection bodies of a parameter τ , that is,

the set of convex bodies K such that there is a convex body L with K = Πτ
pL.

The original Shephard problem is in a certain sense dual to the famous Busemann-
Petty problem (see [3, 7] for the definition and the solution). The (symmetric) Lp

version of the Busemann-Petty problem was solved in [4, 26]. General Lp-intersection
bodies were introduced in [5]. Theorem 1.1 corresponds to the solution of the general
Lp Busemann-Petty problem by Haberl [4].
Let Fn

o denote the set of convex bodies in Kn
o with positive continuous curvature

function. Further, we get a Lp-affine surface area form of the Shephard type problem
for general Lp-projection bodies.
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Theorem 1.2. Let K ∈ Fn
o , p ≥ 1 and τ ∈ [−1, 1]. If L ∈ Wτ,n

p and Πτ
pK ⊆ Πτ

pL,
then

Ωp(K) ≤ Ωp(L),

with equality for p = 1 if and only if K is a translate of L, and for p > 1 if and only
if K = L.

Here

Wτ,n
p = {Q ∈ Fn

o : there exists Z ∈ Zτ,n
p with fp(Q, ·) = h(Z, ·)−(n+p)},

and where fp(Q, ·) is the Lp-curvature function of Q (see Section 2.5).
In Section 3, we shall prove general forms of Theorems 1.1-1.2, respectively.

2. BASIC NOTIONS

2.1. Radial Function and Polar Body

If K is a compact star-shaped (about the origin) set in R
n, its radial function,

ρK = ρ(K, ·) : R
n\{0} −→ [0, +∞), is defined

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n\{0}.

If ρK is positive and continuous, K will be called a star body (about the origin).
Two star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is
independent of u ∈ Sn−1.
If K is nonempty in R

n, the polar set of K , K∗, is defined by [3]

K∗ = {x ∈ R
n : x · y ≤ 1, y ∈ K}.

2.2. Firey Lp-Combination and Lp-Harmonic Radial Combination

For K, L ∈ Kn, and λ, μ ≥ 0 (not both zero), the Minkowski linear combination,
λK + μL ∈ Kn, of K and L is defined by

h(λK + μL, · ) = λh(K, ·)+ μh(L, ·),

where λK = {λx : x ∈ K}.
For K, L ∈ Kn

o , p ≥ 1 and λ, μ ≥ 0 (not both zero), the Firey Lp-combination,
λ · K +p μ · L ∈ Kn

o , of K and L is defined in [2] by

(2.1) h(λ · K +p μ · L, · )p = λh(K, ·)p + μh(L, ·)p,

where ” · ” in λ · K denotes the Firey scalar multiplication.
For K, L ∈ Sn

o , p ≥ 1 and λ, μ ≥ 0 (not both zero), the Lp-harmonic radial
combination, λ � K +−p μ � L ∈ Sn

o , of K and L is defined in [11] by
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(2.2) ρ(λ � K +−p μ � L, ·)−p = λρ(K, ·)−p + μρ(L, ·)−p.

Note that for convex bodies, the Lp-harmonic radial combination was investigated by
Firey in [1].

2.3. Lp-Mixed Volume

Associated with Firey Lp-combination (2.1), Lutwak in [10] introduced the follow-
ing: For K, L ∈ Kn

o and p ≥ 1, the Lp-mixed volume, Vp(K, L), of K and L can be
defined by

n

p
Vp(K, L) = lim

ε−→0+

V (K +p ε · L) − V (K)
ε

.

Corresponding to each K ∈ Kn
o , Lutwak ([10]) proved that there is a positive Borel

measure, Sp(K, ·), on Sn−1 such that

(2.3) Vp(K, L) =
1
n

∫
Sn−1

hp
L(v)dSp(K, v).

for each L ∈ Kn
o . The measure Sp(K, ·) is just the Lp-surface area measure of K.

From formulas (2.3) and (1.4), it follows immediately that for each K ∈ Kn
o ,

(2.4) Vp(K, K) = V (K) =
1
n

∫
Sn−1

hK(v)dS(K, v).

The Minkowski inequality for the Lp-mixed volume is called Lp-Minkowski in-
equality. The Lp-Minkowski inequality may be stated:

Theorem 2.A. If K, L ∈ Kn
o and p ≥ 1, then

(2.5) Vp(K, L) ≥ V (K)
n−p

n V (L)
p
n ,

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only
if K and L are dilates.

A simple consequence of Theorem 2.A was established in [11]:

Theorem 2.B. Let K, L ∈ Kn
o and p ≥ 1. For all Q ∈ Kn

o ,

Vp(K, Q) = Vp(L, Q) or Vp(Q, K) = Vp(Q, L)

if and only if K is translation of L for p = 1, or K = L for p > 1.

2.4. Lp-Dual Mixed Volume

Using the Lp-harmonic radial combination (2.2), Lutwak [11] introduced the notion
of Lp-dual mixed volume. For K, L ∈ Sn

o and p ≥ 1, the Lp-dual mixed volume,
Ṽ−p(K, L), of K and L is defined by
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n

−p
Ṽ−p(K, L) = lim

ε−→0+

V (K +−p ε � L) − V (K)
ε

.

The definition above and the polar coordinate formula for volume give the following
integral representation of the Lp-dual mixed volume:

(2.6) Ṽ−p(K, L) =
1
n

∫
Sn−1

ρn+p
K (v)ρ−p

L (v)dS(v),

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From (2.6), it follows that for each K ∈ Sn

o and p ≥ 1,

(2.7) Ṽ−p(K, K) = V (K) =
1
n

∫
Sn−1

ρn
K(v)dS(v).

Lutwak [11] established the Lp-dual Minkowski inequality:

Theorem 2.C. If K, L ∈ Sn
o and p ≥ 1, then

(2.8) Ṽ−p(K, L) ≥ V (K)
n+p

n V (L)−
p
n ,

with equality if and only if K and L are dilates.

A simple consequence of Theorem 2.C was established in [25]:

Theorem 2.D. Let K, L ∈ Sn
o and p ≥ 1, For all Q ∈ Sn

o ,

Ṽ−p(K, Q) = Ṽ−p(L, Q) or Ṽ−p(Q, K) = Ṽ−p(Q, L)

if and only if K = L.

2.5. Lp-Affine Surface Area

The notion of Lp-affine surface area was introduced by Lutwak in [11].
A convex body K ∈ Kn

o is said to have a Lp- curvature function [11] fp(K, ·) :
Sn−1 −→ R, if its Lp-surface area measure Sp(K, ·) is absolutely continuous with
respect to spherical Lebesgue measure S, and

(2.9)
dSp(K, ·)

dS
= fp(K, ·).

In [11], Lutwak proved that if K ∈ Fn
o and p ≥ 1, then the Lp-affine surface area

of K have the integral representation

(2.10) Ωp(K) =
∫

Sn−1
fp(K, u)

n
n+p dS(u).
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Wang and Leng in [21] defined the ith Lp-mixed affine surface area as follows:
For K, L ∈ Fn

o , p ≥ 1 and real i, the ith Lp-mixed affine surface area, Ωp,i(K, L), of
K and L is defined by

(2.11) Ωp,i(K, L) =
∫

Sn−1

fp(K, u)
n−i
n+p fp(L, u)

i
n+p dS(u).

In the case i = −p, we write Ωp,−p(K, L) = Ω−p(K, L) and see by (2.11) that

(2.12) Ω−p(K, L) =
∫

Sn−1

fp(K, u)fp(L, u)−
p

n+p dS(u).

If p = 1, then Ω1,−1(K, L) is just Ω−1(K, L) (see [9]). Obviously,

(2.13) Ω−p(K, K) = Ωp(K).

For the ith Lp-mixed affine surface area, Wang and Leng in [21] proved the fol-
lowing Minkowski inequality.

Theorem 2.E. If K, L ∈ Fn
o , p ≥ 1, i ∈ R, then for i < 0 or i > n,

(2.14) Ωp,i(K, L)n ≥ Ωp(K)n−iΩp(L)i;

for 0 < i < n, inequality (2.14) is reversed. In every case, equality holds for p = 1
if and only if K and L are homothetic, for n �= p > 1 if and only if K and L are
dilates. For i = 0 or i = n, (2.14) is an identity.

For i = −p in (2.14), we get that if K, L ∈ Fn
o , p ≥ 1, then

(2.15) Ω−p(K, L)n ≥ Ωp(K)n+pΩp(L)−p,

with equality for p = 1 if and only if K and L are homothetic, for n �= p > 1 if and
only if K and L are dilates.

From (2.15), we easily obtain that

Theorem 2.F. Let K, L ∈ Fn
o and p ≥ 1. For all Q ∈ Fn

o ,

Ω−p(K, Q) = Ω−p(L, Q)

if and only if K is translation of L for p = 1, or if and only if K = L for p > 1.

2.6. General Lp-Moment Bodies

Ludwig in [8] (also see [6]) introduced the notion of general Lp-moment body as
follows: For K ∈ Sn

o , p ≥ 1 and τ ∈ [−1, 1], the general Lp-moment body, M τ
p K , of

K is the convex body whose support function is given by

(2.16) h
p
Mτ

p K(u) = (n + p)αn,p(τ)
∫

K
ϕτ (u · x)pdx
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for all u ∈ Sn−1. Here ϕτ (u · v) and αn,p(τ) satisfy (1.8) and (1.10), respectively.
Using definitions (1.9) and (2.16), Haberl and Schuster ([6]) proved the following

result:

Theorem 2.G. If K ∈ Kn
o , L ∈ Sn

o , p ≥ 1 and τ ∈ [−1, 1], then

(2.17) Vp(K, M τ
pL) = Ṽ−p(L, Πτ,∗

p K).

3. SHEPHARD TYPE PROBLEMS

In the section, we will study Shephard type problems for general Lp-projection
bodies. We first give a general version of Theorem 1.1. It may be regarded as an
extension of the Shephard type problem to general Lp-projection bodies.

Theorem 3.1. Let K, L ∈ Kn
o , p ≥ 1 and τ ∈ [−1, 1]. If Πτ

pK ⊆ Πτ
pL, then for

every Q ∈ Zτ,n
p ,

(3.1) Vp(K, Q) ≤ Vp(L, Q),

with equality for p = 1 if and only if K is a translate of L, and for p > 1 if and only
if K = L.

Lemma 3.1. If K, L ∈ Kn
o , p ≥ 1 and τ ∈ [−1, 1], then

(3.2) Vp(K, Πτ
pL) = Vp(L, Πτ

pK).

Proof. From (1.8) and (2.3), we easily obtain

�

Vp(L, Πτ
pK) =

1
n

∫
Sn−1

hp
Πτ

pK(u)dSp(L, u)

=
1
n

∫
Sn−1

αn,p(τ)
∫

Sn−1
ϕτ (u · v)pdSp(K, v)dSp(L, u)

=
1
n

∫
Sn−1

hp
Πτ

pL(v)dSp(K, v)

= Vp(K, Πτ
pL).

Proof of Theorem 3.1. SinceQ ∈ Zτ,n
p , there existsM ∈ Kn

o such thatQ = Πτ
pM .

Thus by (3.2) and (2.3) we get

Vp(L, Q)
Vp(K, Q)

=
Vp(L, Πτ

pM)
Vp(K, Πτ

pM)
=

Vp(M, Πτ
pL)

Vp(M, Πτ
pK)
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=

∫
Sn−1

h(Πτ
pL, u)pdSp(M, u)∫

Sn−1

h(Πτ
pK, u)pdSp(M, u)

.

If Πτ
pK ⊆ Πτ

pL, this implies (3.1).
According to Theorem 2.B, we know equality holds in (3.1) for p = 1 if and only

if K is a translate of L, and for p > 1 if and only if K = L. Obviously, above the
condition of equality implies Πτ

pK = Πτ
pL.

Proof of Theorem 1.1. Since L ∈ Zτ,n
p , taking Q = L in Theorem 3.1, and

combining with (2.4) and inequality (2.5), we get

V (L) ≥ Vp(K, L) ≥ V (K)
n−p

n V (L)
p
n .

Hence, for n > p ≥ 1, V (K) ≤ V (L); for n < p, V (K) ≥ V (L).
Now, associated with the Lp-affine surface area, we give a general form of Theorem

1.2.

Theorem 3.2. Let K, L ∈ Fn
o , p ≥ 1 and τ ∈ [−1, 1]. If Πτ

pK ⊆ Πτ
pL, then for

every Q ∈ Wτ,n
p ,

(3.3) Ω−p(K, Q) ≤ Ω−p(L, Q),

with equality for p = 1 if and only if K is a translate of L, and for n �= p > 1 if and
only if K = L.

Proof. Since Q ∈ Wτ,n
p , there exists Z ∈ Zτ,n

p such that

fp(Q, ·)− p
n+p = h(Z, ·)p.

Moreover, for Z ∈ Zτ,n
p , let Z = Πτ

pM for M ∈ Kn
o . Hence, using (2.9), (2.12), (2.3)

and (3.2), we have

Ω−p(L, Q)
Ω−p(K, Q)

=

∫
Sn−1

fp(Q, u)−
p

n+p dSp(L, u)∫
Sn−1

fp(Q, u)−
p

n+p dSp(K, u)

=

∫
Sn−1

h(Z, u)pdSp(L, u)∫
Sn−1

h(Z, u)pdSp(K, u)

=
Vp(L, Z)
Vp(K, Z)

=
Vp(L, Πτ

pM)
Vp(K, Πτ

pM)
=

Vp(M, Πτ
pL)

Vp(M, Πτ
pK)

=

∫
Sn−1

h(Πτ
pL, u)pdSp(M, u)∫

Sn−1
h(Πτ

pK, u)pdSp(M, u)
.
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If Πτ
pK ⊆ Πτ

pL, this implies (3.3).
According to Theorem 2.F, we know that equality holds in (3.3) for p = 1 if and

only if K is a translate of L, and for p > 1 if and only if K = L. Obviously, above
the condition of equality implies Πτ

pK = Πτ
pL.

Note that the case τ = 0 of Theorem 3.1 and Theorem 3.2 can be found in [13].

Proof of Theorem 1.2. Since L ∈ Wτ,n
p , takingQ = L in Theorem 3.2, and together

with (2.13) and inequality (2.15), we get

Ωp(L) ≥ Ω−p(K, L) ≥ Ωp(K)
n+p

n Ωp(L)−
p
n ,

i.e.,
Ωp(K) ≤ Ωp(L).

4. MONOTONICITY INEQUALITIES

Regarding Theorem 3.1, we can prove the following monotonicity inequalities for
the general Lp-projection bodies.

Theorem 4.1. Let K, L ∈ Kn
o , p ≥ 1 and τ ∈ [−1, 1]. If

(4.1) Vp(K, Q) ≤ Vp(L, Q),

then for every Q ∈ Zτ,n
p ,

(4.2) V (Πτ
pK) ≤ V (Πτ

pL).

In every inequality equality holds for p = 1 if and only if K is a translate of L, and
for p > 1 if and only if K = L.

Proof of Theorem 4.1. Since Q ∈ Zτ,n
p , we take Q = Πτ

pM for M ∈ Kn
o . From

this, (4.1) can be written as

Vp(K, Πτ
pM) ≤ Vp(L, Πτ

pM).

Together with (3.2), we get

Vp(M, Πτ
pK) ≤ Vp(M, Πτ

pL).

LettingM = Πτ
pL, and using (2.4) and inequality (2.5), we have

V (Πτ
pL) ≥ Vp(Πτ

pL, Πτ
pK) ≥ V (Πτ

pL)
n−p

n V (Πτ
pK)

p
n ,

i.e., (4.2) is obtained.
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According to Theorem 2.B, we see that the equality condition of (4.1) implies
V (Πτ

pK) = V (Πτ
pL). Therefore, we know that equalities hold in (4.1) and (4.2) for

p = 1 if and only if K is a translate of L, and for p > 1 if and only if K = L.

Theorem 4.2. Let K, L ∈ Kn
o , p ≥ 1 and τ ∈ [−1, 1]. If for every general

Lp-moment body Q

(4.3) Vp(K, Q) ≤ Vp(L, Q),

then

(4.4) V (Πτ,∗
p K) ≥ V (Πτ,∗

p L).

In every inequality equality holds for p = 1 if and only if K is a translate of L, and
for p > 1 if and only if K = L.

Proof. Since Q is an general Lp-moment body, we take Q = M τ
p N for N ∈ Sn

o ,
inequality (4.3) can be written as

Vp(K, M τ
p N ) ≤ Vp(L, M τ

p N ).

This together with (2.17) gives

Ṽ−p(N, Πτ,∗
p K) ≤ Ṽ−p(N, Πτ,∗

p L)

Taking N = Πτ,∗
p L, using (2.7) and inequality (2.8), we get

V (Πτ,∗
p L) ≥ Ṽ−p(Πτ,∗

p L, Πτ,∗
p K) ≥ V (Πτ,∗

p L)
n+p

n V (Πτ,∗
p K)−

p
n .

This yields (4.4).
According to Theorem 2.D, we see that the equality condition of (4.3) implies

V (Πτ,∗
p K) = V (Πτ,∗

p L). Therefore, we know that equality hold in (4.3) and (4.4) if
and only if K = L.
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