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SOME REMARKS ON MARCINKIEWICZ INTEGRALS ALONG
SUBMANIFOLDS

Wenjuan Li and Kôzô Yabuta

Abstract. We investigate theLp boundedness for a class of parametricMarcinkiewicz
integral operators associated to submanifolds under the L(logL)α(Sn−1) or Block
space condition on the kernel functions. Our results improve the recent results by
Al-Qassem and Pan in Studia Mathematica.

1. INTRODUCTION

The Lp boundedness of Marcinkiewicz integrals has attracted the attention of many
authors in the recent years [1-4, 10, 21]. Our main object in this paper is to improve
the recent results by Al-Qassem and Pan [4] about the Lp boundedness for a class of
parametric Marcinkiewicz integral operators associated to submanifolds.
Let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn−1 be the unit sphere

in Rn equipped with the induced Lebesgue measure dσ = dσ(·). For x ∈ Rn \ {0},
let x′ = x/|x|. Let Ω be a function in L1(Sn−1) satisfying the cancellation condition

(1.1)
∫
Sn−1

Ω(x′) dσ(x′) = 0.

For 1 ≤ γ ≤ ∞, let Δγ(R+) denote the collection of all measurable functions h :
[0,∞) → C satisfying ‖h‖Δγ = supR>0

(
R−1

∫ R
0 |h(t)|γdt)1/γ

<∞. We note that

L∞(R+) ⊂ Δβ(R+) ⊂ Δα(R+) for α < β,

Lγ(R+, dt/t) ⊂ Δγ(R+) for 1 ≤ γ <∞,

and all these inclusions are proper. Let L(logL)α(Sn−1) (for α > 0) denote the class
of all measurable functions Ω which satisfy
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‖Ω‖L(logL)α(Sn−1) =
∫
Sn−1

|Ω(y′)| logα(2 + |Ω(y′)|) dσ(y′) <∞.

For q ≥ 1, let B(0,γ)
q (Sn−1) denote the block space generated by q-blocks (its precise

definition will be given in Section 3).
In this paper, we are concerned with parametric Marcinkiewicz integral operators

of the form

μρΩ,φ,ψ,hf(x, xn+1)

=
(∫ ∞

0

∣∣∣ 1
tρ

∫
|y|≤t

f
(
x− φ(|y|)y′, xn+1 − ψ(|y|)) Ω(y′)

|y|n−ρh(|y|) dy
∣∣∣2 dt
t

)1/2

,

where ρ > 0, (x, xn+1) ∈ Rn×R = Rn+1, φ and ψ are suitable real-valued functions
defined on R+, and f ∈ S(Rn+1), the space of Schwartz functions. (We may take
ρ ∈ C with Re ρ > 0, but for the simplicity we take only positive one.) We investigate
Lp boundedness of μρΩ,φ,ψ,hf for φ and ψ satisfying the following assumptions (A-1)
and (A-2).
(A-1) φ is a positive C1(R+) function and φ(t)/

(
tφ′(t)

) ∈ L∞(R+).
(A-2) φ satisfies one of the following conditions:

(i) φ is increasing, and φ(2t) ≤ c1φ(t).
(ii) φ is increasing, and tφ′(t) is increasing.
(iii) φ is decreasing, and φ(t) ≤ c2φ(2t).
(iv) φ is decreasing and convex.

Remark 1. Under the condition (A-1), if φ is increasing and convex, then tφ′(t)
is increasing. And if φ is decreasing and −tφ′(t) is decreasing, then φ is convex. We
shall discuss these relations in the second section and give several examples in the last
section.

Theorem 1. Let h ∈ Δγ for some 1 < γ ≤ ∞. Let φ and ψ satisfy the assumptions
(A-1) and (A-2).

(a) If Ω ∈ L(logL)1/2(Sn−1), then μρΩ,φ,ψ,h is bounded on L
p(Rn+1) for 2 ≤ p <

1/
(
1/2 − min(1/2, 1/γ ′)

)
.

(b) If Ω ∈ L(logL)1/γ
′
(Sn−1) with 2 < γ ≤ ∞, then μρΩ,φ,ψ,h is bounded on

Lp(Rn+1) for γ ′ < p <∞.
(c) If Ω ∈ L(logL)(2γ−1)/(2γ)(Sn−1) with 1 < γ ≤ 2, then μρΩ,φ,ψ,h is bounded on

Lp(Rn+1) for 2γ/(2γ− 1) < p < 2.
(d) If Ω ∈ L(logL)(3γ−2)/(2γ)(Sn−1) with 1 < γ ≤ 2, then μρΩ,φ,ψ,h is bounded on

Lp(Rn+1) for 2γ/(3γ− 2) < p < 2.
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If h satisfies a more restrictive condition, we have sharper results with respect to
the condition on Ω and p.

Theorem 2. Let h ∈ Lγ(R+, dt/t) for some 1 < γ ≤ ∞. Let φ and ψ satisfy the
assumptions (A-1) and (A-2).

(a) If Ω ∈ L(logL)1/γ
′
(Sn−1) with 1 < γ ≤ 2, then μρΩ,φ,ψ,h is bounded on

Lp(Rn+1) for γ ′ ≤ p <∞.
(b) If Ω ∈ L(logL)1/2(Sn−1) and 2 < γ ≤ ∞, then μρΩ,φ,ψ,h is bounded on

Lp(Rn+1) for 2 ≤ p <∞.
(c) If γ = 1 and Ω ∈ L(logL)1(Sn−1) with 1 < γ ≤ 2, then μρΩ,φ,ψ,h is bounded

on L∞(Rn+1).
And we also have the same results for the following maximal operator related to

Marcinkiewicz integral, defined by

(1.2) M(γ)
Ω,φ,ψf(x, xn+1) = sup

h
|μρΩ,φ,ψ,hf(x, xn+1)|,

where the supremum is taken over all measurable radial functions h with ‖h‖Lγ(R+, dt/t)

≤ 1. This is the counterpart of the maximal operator related to homogeneous singular
integrals.

Theorem 3. Let φ and ψ satisfy the assumptions (A-1) and (A-2).
(a) If Ω ∈ L(logL)1/γ

′
(Sn−1) and 1 < γ ≤ 2, then M(γ)

Ω,φ,ψ is bounded on
Lp(Rn+1) for γ ′ ≤ p <∞.

(b) If Ω ∈ L(logL)1/2(Sn−1) and 2 < γ ≤ ∞, then M(γ)
Ω,φ,ψ is bounded on

Lp(Rn+1) for 2 ≤ p <∞.
(c) If γ = 1 and Ω ∈ L(logL)1(Sn−1) with 1 < γ ≤ 2, then M(γ)

Ω,φ,ψ is bounded
on L∞(Rn+1).

To understand the relationship in the above results, we remark the following proper
inclusion relations:

(1.3) Lq(Sn−1) ⊂ L(logL)(Sn−1) ⊂ H1(Sn−1) ⊂ L1(Sn−1) (q > 1),

(1.4) L(logL)β(Sn−1) ⊂ L(logL)α(Sn−1) if 0 < α < β,

(1.5) L(logL)α(Sn−1) ⊂ H1(Sn−1) for all α ≥ 1,

while

(1.6) L(logL)α(Sn−1) 	⊂ H1(Sn−1) 	⊂ L(logL)α(Sn−1) for 0 < α < 1,
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where H1(Sn−1) is the Hardy space on the unit sphere.
On one hand, Al-Qassem and Pan [4] showed the above three theorems for φ and ψ

under the condition that they are positive, convex and φ(0) = ψ(0) = 0. On the other
hand, when under the condition of (A-1) and (i) or (iii) in (A-2), Ding, Xue, and Yabuta
[12] got the weighted Lp boundedness of the Marcinkiewicz integrals μΩ,ρ,φ,b(f)(x)
with rough kernel associated to surfaces, where

(1.7) μΩ,ρ,Φ,b(f)(x) :=
(∫ ∞

0
| 1
tρ

∫
|y|<t

b(|y|)Ω(y′)f(x− Φ(|y|)y′)
|y|n−ρ dy|2dt

t

)1/2

.

So, it is natural to ask whether the operators μρΩ,φ,ψ,hf(x, xn+1) can be bounded when
φ and ψ satisfy (A-1) and (A-2) conditions. As is easily checked, from the conditions
in [4] it follows that φ(t)/

(
tφ′(t)

)
, ψ(t)/

(
tψ′(t)

) ≤ 1. Hence, our results are im-
provements of theirs. In particular, we can cover the case where φ(·), ψ(·) are positive,
increasing and concave, such as φ(t) = ta and ψ(t) = tb (0 < a, b < 1). We can also
cover the case φ(t) = ta (0 < t < 1), = atb/b (t ≥ 1), where 0 < a < 1 < b.
As related function spaces of L(logL)α(Sn−1), there are block spacesB(0,v)

q (Sn−1)
(see Section 3 about precise definition). In very similar ways, we can get the following
results for block space kernels Ω. Note that L(logL)v+1+ε(Sn−1) does not contain
B

(0,v)
q (Sn−1) for any v > −1 and ε > 0.

Theorem 4. Let h ∈ Δγ for some 1 < γ ≤ ∞. Let φ and ψ satisfy the assumptions
(A-1) and (A-2).

(a) If Ω ∈ B
(0,−1/2)
q (Sn−1) for some 1 < q ≤ ∞, then μρΩ,φ,ψ,h is bounded on

Lp(Rn+1) for 2 ≤ p < 1/
(
1/2− min(1/2, 1/γ′)

)
.

(b) If Ω ∈ B
(0,−1/γ)
q (Sn−1) with 2 < γ ≤ ∞ for some 1 < q ≤ ∞ , then μρΩ,φ,ψ,h

is bounded on Lp(Rn+1) for γ ′ < p <∞.
(c) If Ω ∈ B

(0,−1/(2γ))
q (Sn−1) with 1 < γ ≤ 2 for some 1 < q ≤ ∞, then μρΩ,φ,ψ,h

is bounded on Lp(Rn+1) for 2γ/(2γ− 1) < p < 2.

(d) If Ω ∈ B
(0,(γ−2)/(2γ))
q (Sn−1) with 1 < γ ≤ 2 for some 1 < q ≤ ∞, then μρΩ,φ,ψ,h

is bounded on Lp(Rn+1) for 2γ/(3γ− 2) < p < 2.

Theorem 5. Let h ∈ Lγ(R+, dt/t) for some 1 < γ ≤ ∞. Let φ and ψ satisfy the
assumptions (A-1) and (A-2).

(a) If Ω ∈ B
(0,−1/γ)
q (Sn−1) with 1 < γ ≤ 2 for some 1 < q ≤ ∞, then μρΩ,φ,ψ,h is

bounded on Lp(Rn+1) for γ ′ ≤ p <∞.
(b) If Ω ∈ B

(0,−1/2)
q (Sn−1) with 2 < γ ≤ ∞ for some 1 < q ≤ ∞, then μρΩ,φ,ψ,h is

bounded on Lp(Rn+1) for 2 ≤ p <∞.
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Theorem 6. Let φ and ψ satisfy the assumptions (A-1) and (A-2).

(a) If Ω ∈ B
(0,−1/γ)
q (Sn−1) with 1 < γ ≤ 2 for some 1 < q ≤ ∞, then M(γ)

Ω,φ,ψ is
bounded on Lp(Rn+1) for γ ′ ≤ p <∞.

(b) If Ω ∈ B
(0,−1/2)
q (Sn−1) with 2 < γ ≤ ∞ for some 1 < q ≤ ∞, then M(γ)

Ω,φ,ψ is
bounded on Lp(Rn+1) for 2 ≤ p <∞.

Unfortunately, we could not get similar results for H1(Sn−1) kernels Ω, besides
L2(Rn+1) boundedness.
The main tools in this paper come from Al-Qassem and Pan [4]. Our main con-

tributions are two ones. One is about relations between monotonic functions and the
directional Hardy-Littlewood maximal function (Lemma 2.7). The other is about be-
haviors of the Fourier transform of measures arising from our parametric Marcinkiewicz
integral operator (Lemma 3.1).
This paper is organized as follows. In Section 2, we investigate some properties

of monotone functions satisfying (A-1) and (A-2), and give Lemma 2.7, and that
{Φ(ak)}k∈Z is a lacunary sequence. We also give Fourier transform estimates of some
measures in this section. In Section 3, we prepare necessary lemmas to prove our
theorems, in the framework by Al-Qassem and Pan [4], such as Lemma 3.1. In Section
4, we discuss briefly the proofs of Theorems 1, 2 and 3. The proofs of Theorems 4, 5
and 6 are given in Section 5. In the last section, we give several examples of monotone
functions satisfying the assumptions (A-1) and (A-2).
Throughout this paper, the letter C will denote a positive constant that may vary at

each occurrence but is independent of the essential variables.

2. PRELIMINARIES

In this section, we study fundamental properties between monotonic functions and
the directional Hardy-Littlewood maximal function. We begin with investigating funda-
mental properties of positive and monotone C1 functions Φ(t) satisfying the condition
(A-1), i.e. Φ(t)/(tΦ′(t)) ∈ L∞(0,∞).

Lemma 2.1. Suppose Φ is positive and increasing. Then Φ(t)/(tΦ′(t)) ≤ b (t >
0), if and only if Φ(at)/Φ(t) ≥ a1/b for all a > 1 and t > 0. Hence, if a > 1,
Φ(ak+1)/Φ(ak) ≥ a1/b for k ∈ Z, i.e. {Φ(ak)}k∈Z is a lacunary sequence. Moreover,

Φ(t) ≤ Φ(1)t1/b (0 < t ≤ 1), Φ(t) ≥ Φ(1)t1/b (t ≥ 1),

tΦ′(t) ≥ Φ(1)
b

t1/b (t ≥ 1),

and hence limt→0 Φ(t) = 0, limt→∞ Φ(t) = +∞. Also, tΦ′(t) cannot be a decreasing
function on (0,∞).
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Proof. From the assumption Φ(t)/(tΦ′(t)) ≤ b we get
(
logΦ(t)

)′ ≥ 1/(bt),
and integrating this inequality from t to at, we obtain log

(
Φ(at)/Φ(t)

) ≥ (log a)/b,
i.e. Φ(at)/Φ(t) ≥ a1/b for any a > 1 and t > 0. Conversely, for t, δ > 0, taking
a = 1 + δ/t, we get from Φ(at)/Φ(t) ≥ a1/b

logΦ(t+ δ) − logΦ(t) ≥ 1
b

log
(
1 +

δ

t

)
.

Dividing the above inequality by δ, and then letting δ → 0, we obtain Φ′(t)
Φ(t) ≥ 1

bt ,
which shows Φ(t)/(tΦ′(t)) ≤ b.
In Φ(at)/Φ(t) ≥ a1/b, taking t = ak, we get Φ(ak+1)/Φ(ak) ≥ a1/b for k ∈ Z.

Taking t = 1, we can deduce Φ(t) ≥ Φ(1)t1/b (t ≥ 1), and taking t = 1/a, we can
deduce Φ(t) ≤ Φ(1)t1/b (0 < t ≤ 1).

Similarly, we can show the following case of decreasing Φ.

Lemma 2.2. Suppose Φ is positive and decreasing. Then −Φ(t)/(tΦ′(t)) ≤ b
(t > 0) if and only if Φ(t)/Φ(at) ≥ a1/b for all a > 1 and t > 0. Hence, if a > 1,
Φ(a−(k+1))/Φ(a−k) ≥ a1/b for k ∈ Z, i.e. {Φ(a−k)}k∈Z is a lacunary sequence.
Moreover,

Φ(t) ≥ Φ(1)t−1/b (0 < t ≤ 1), Φ(t) ≤ Φ(1)t−1/b (t ≥ 1),

− tΦ′(t) ≥ Φ(1)
b

t−1/b (0 < t ≤ 1),

and hence limt→0 Φ(t) = +∞, limt→∞ Φ(t) = 0. Also, −tΦ′(t) cannot be an in-
creasing function on (0,∞).
Now we investigate several properties between monotonic functions and the one

dimensional Hardy-Littlewood maximal function.

Lemma 2.3. Suppose Φ is a positive and increasing C1(0,∞) function, satisfying
Φ(t)/(tΦ′(t)) ≤ b and Φ(2t) ≤ c1Φ(t) for some b > 0, c1 > 1. Then∣∣∣∣∫ t

t/2
g
(
x− Φ(s)

)ds
s

∣∣∣∣ ≤ 2c1bMg(x),

where Mg is the one dimensional Hardy-Littlewood maximal function of g ∈ L1
loc(R),

i.e. Mg(x) = supr>0 1/(2r)
∫ r
−r |g(x+ s)| ds.

Proof. By a change of variable r = Φ(s), we have∣∣∣∣∫ t

t/2
g(x− Φ(s))

ds

s

∣∣∣∣ ≤ ∫ Φ(t)

Φ(t/2)
|g(x− r)| r

Φ−1(r)Φ′(Φ−1(r))
dr

r

≤ b

∫ Φ(t)

Φ(t/2)

|g(x− r)|dr
r



Marcinkiewicz Integrals Along Submanifolds 1653

≤ b

Φ(t/2)

∫ Φ(t)

Φ(t/2)

|g(x− r)|dr

≤ bc1
Φ(t)

∫ Φ(t)

0
|g(x− r)|dr ≤ 2c1bMg(x).

Lemma 2.4. Suppose Φ is a positive and increasing C1(0,∞) function, satisfying
Φ(t)/(tΦ′(t)) ≤ b for some b > 0 and tΦ′(t) is increasing. Then∣∣∣∣∫ t

t/2

g(x− Φ(s))
ds

s

∣∣∣∣ ≤ (b+ log 2)Mg(x).

Proof. By a change of variable r = Φ(s), we have

(2.1)
∣∣∣∣∫ t

t/2

g(x− Φ(s))
ds

s

∣∣∣∣ ≤ ∫ Φ(t)

Φ(t/2)

|g(x− r)| 1
Φ−1(r)Φ′(Φ−1(r))

dr.

We set

at(r) =

⎧⎪⎪⎨⎪⎪⎩
1

(t/2)Φ′(t/2), 0 < r < Φ(t/2),
1

Φ−1(r)Φ′(Φ−1(r))
, Φ(t/2) ≤ r < Φ(t),

0, r ≥ Φ(t).

Then ∫ ∞

0
at(r) dr =

1
(t/2)Φ′(t/2)

× Φ(t/2) +
∫ Φ(t)

Φ(t/2)

1
Φ−1(r)Φ′(Φ−1(r))

dr

≤ b+
∫ t

t/2

ds

s
= b+ log 2.

Since 1/(tΦ′(t)) is decreasing, it follows that at(r) is nonnegative, decreasing and
integrable on (0,∞). Hence, we have by (2.1)∣∣∣∣∫ t

t/2
g(x−Φ(s))

ds

s

∣∣∣∣ ≤ ∫ ∞

0
|g(x−r)|at(r) dr ≤ (b+log2)Mg(x).

Lemma 2.5. Suppose Φ is a positive and decreasing C1(0,∞) function, satisfying
−Φ(t)/(tΦ′(t)) ≤ b and Φ(t) ≤ c2Φ(2t) for some b > 0, c2 > 1. Then∣∣∣∣∫ t

t/2

g(x− Φ(s))
ds

s

∣∣∣∣ ≤ 2c2bMg(x).
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Proof. By a change of variable r = Φ(s), we have∣∣∣∣∫ t

t/2

g(x− Φ(s))
ds

s

∣∣∣∣ ≤ ∫ Φ(t/2)

Φ(t)

|g(x− r)| −r
Φ−1(r)Φ′(Φ−1(r))

dr

r

≤ b

∫ Φ(t/2)

Φ(t)
|g(x− r)|dr

r

≤ b

Φ(t)

∫ Φ(t/2)

Φ(t)
|g(x− r)|dr

≤ bc2
Φ(t/2)

∫ Φ(t/2)

0
|g(x− r)|dr ≤ 2c2bMg(x).

Lemma 2.6. Suppose Φ is a positive, decreasing and convex C1(0,∞) function,
satisfying −Φ(t)/(tΦ′(t)) ≤ b for some b > 0. Then∣∣∣∣∫ t

t/2
g(x− Φ(s))

ds

s

∣∣∣∣ ≤ (2b+ 1)Mg(x).

Proof. By a change of variable r = Φ(s), we have

(2.2)
∣∣∣∣∫ t

t/2
g(x− Φ(s))

ds

s

∣∣∣∣ ≤ ∫ Φ(t/2)

Φ(t)
|g(x− r)| 1

−Φ−1(r)Φ′(Φ−1(r))
dr.

Since Φ(t) is positive and decreasing, we see that Φ−1(t) is also decreasing, and hence
1/Φ−1(t) is increasing. Hence we get

(2.3)
∣∣∣∣∫ t

t/2

g(x− Φ(s))
ds

s

∣∣∣∣ ≤ 2
t

∫ Φ(t/2)

Φ(t)

|g(x− r)| 1
−Φ′(Φ−1(r))

dr.

We set

at(r) =

⎧⎪⎪⎨⎪⎪⎩
− 2
tΦ′(t) , 0 < r < Φ(t),

− 2
tΦ′(Φ−1(r))

, Φ(t) ≤ r < Φ(t/2),

0, r ≥ Φ(t/2).

Then ∫ ∞

0
at(r) dr = − 2

tΦ′(t)
× Φ(t) +

∫ Φ(t/2)

Φ(t)

−2
tΦ′(Φ−1(r))

dr

≤ 2b+
2
t

∫ t

t/2

ds = 2b+ 1.
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Furthermore, because of the convexity of Φ(t) it follows that−Φ′(Φ−1(t)) is increasing.
So, we see that at(r) is nonnegative, decreasing and integrable on (0,∞). Hence, we
have by (2.3)∣∣∣∣∫ t

t/2
g(x−Φ(s))

ds

s

∣∣∣∣ ≤ ∫ ∞

0
|g(x−r)|at(r) dr ≤ (2b+1)Mg(x).

We formulate the above considerations to the n-dimensional case, and we have the
following directional result.

Lemma 2.7. Let Ω ∈ L1(Sn−1). Suppose Φ is a positive function on (0,∞)
satisfying |Φ(t)/(tΦ′(t))| ≤ b and satisfies one of the following conditions:

(i) Φ is increasing, and Φ(2t) ≤ c1Φ(t).
(ii) Φ is increasing, and tΦ′(t) is increasing.
(iii) Φ is decreasing, and Φ(t) ≤ c2Φ(2t).
(iv) Φ is decreasing and convex.

Then ∣∣∣∣∫
t/2<|y|<t

Ω(y′)f
(
x− Φ(|y|)y′)
|y|n dy

∣∣∣∣ ≤ Cj

∫
Sn−1

|Ω(y′)|My′f(x) dσ(y′),

where My′f(x) is the directional Hardy-Littlewood maximal function of f , defined by

sup
r>0

1
2r

∫
|t|<r

|f(x− ty′)| dt,

and
C1 ≤ 2c1b, C2 ≤ b+ log 2, C3 ≤ 2c2b, C4 ≤ 2b+ 1.

Remark 2. (i) If Φ is positive, increasing, and Φ(t)/(tΦ′(t)) is decreasing, then
tΦ′(t) is increasing on (0,∞).

(ii) If Φ is positive, increasing and convex, then tΦ′(t) is increasing on (0,∞).
(iii) If Φ is positive, decreasing, and −tΦ′(t) is decreasing on (0,∞), then Φ(t) is

convex.
(iv) If Φ is positive, decreasing, and −Φ(t)/(tΦ′(t)) is increasing, then −tΦ′(t) is

decreasing, and hence Φ(t) is convex.

In fact, (i) is obvious. (iv) follows clearly from (iii). Next, let Φ is positive,
increasing, and convex on (0,∞). From the assumption we get Φ′(t2) ≥ Φ′(t1) and
Φ′(t2) ≥ 0 for t2 > t1 > 0. Hence we get

t2Φ′(t2) − t1Φ′(t1) = (t2 − t1)Φ′(t2) + t1(Φ′(t2) − Φ′(t1)) ≥ 0.
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This means that tΦ′(t) is increasing, which shows (ii).
As for (iii), from the assumption we get −t2Φ′(t2) ≤ −t1Φ′(t1) and Φ′(t1) ≤ 0

for t2 > t1 > 0. Hence we get

Φ′(t2) − Φ′(t1) =
t2Φ′(t2) − t2Φ′(t1)

t2
≥ t1Φ′(t1)− t2Φ′(t1)

t2
=

(t1 − t2)Φ′(t1)
t2

≥ 0.

This means that Φ(t) is convex.
Next, we prepare the following estimates about Fourier transforms of some measures

on Rn+1. In the case Φ is positive and increasing, we have the following

Lemma 2.8. Let 1 < q ≤ ∞, Ω ∈ Lq(Sn−1) and ψ be a real valued function on
(0,∞). If Φ is positive, increasing, Φ(2t) ≤ c1Φ(t), and ϕ(t) := Φ(t)/(tΦ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q′∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2 dss ≤

Cα2α(log c1)1−α‖ϕ‖∞‖Ω‖2
Lq(Sn−1)

|Φ(t/2)ξ|α .

Proof. We have

(2.4)

∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss

=
∫ Φ(t)

Φ(t/2)

∣∣∣∣∫
Sn−1

Ω(x′)e−i(rξ·x
′+ηψ(Φ−1(r)))dσ(x′)

∣∣∣∣2 r

Φ−1(r)Φ′(Φ−1(r))
dr

r

≤
∥∥∥ Φ(t)
tΦ′(t)

∥∥∥
∞

∫ Φ(t)

Φ(t/2)

∣∣∣∣∫
Sn−1

Ω(x′)e−i(rξ·x
′+ηψ(Φ−1(r)))dσ(x′)

∣∣∣∣2 drr
=

∥∥∥ Φ(t)
tΦ′(t)

∥∥∥
∞

∫
Sn−1×Sn−1

Ω(x′)Ω(y′)
(∫ Φ(t)

Φ(t/2)

e−irξ·(x
′−y′) dr

r

)
dσ(x′)dσ(y′).

In the second equation, we used the change of variable r = Φ(s). Clearly we have∣∣∣∣∫ Φ(t)

Φ(t/2)
e−irξ·(x

′−y′)dr
r

∣∣∣∣ ≤ log
Φ(t)

Φ(t/2)
≤ log c1

and ∣∣∣∣∫ Φ(t)

Φ(t/2)
e−irξ·(x

′−y′) dr
r

∣∣∣∣ ≤ 2
Φ(t/2)|ξ||ξ′ · (x′ − y′)| ,

and so we have for any 0 < α ≤ 1∣∣∣∣∫ Φ(t)

Φ(t/2)
e−irξ·(x

′−y′) dr
r

∣∣∣∣ ≤ (log c1)1−α2α

|Φ(t/2)ξ|α|ξ′ · (x′ − y′)|α .

This combined with (2.4) yields the desired estimate.
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Lemma 2.9. Let 1 < q ≤ ∞, Ω ∈ Lq(Sn−1) and ψ be a real valued function on
(0,∞). If Φ is positive, increasing, tΦ′(t) is increasing, and ϕ(t) := Φ(t)/(tΦ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q′∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss ≤

Cα4α(log 2)1−α‖ϕ‖α∞‖Ω‖2
Lq(Sn−1)

|Φ(t/2)ξ|α .

Proof. We have∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2 dss(2.5)

=
∫
Sn−1×Sn−1

Ω(x′)Ω(y′)
(∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

)
dσ(x′)dσ(y′).

Clearly we have

(2.6)
∣∣∣∣∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

∣∣∣∣ ≤ log 2.

Applying the change of variable r = Φ(s), we have∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s
=

∫ Φ(t)

Φ(t/2)
e−irξ·(x

′−y′) 1
Φ−1(r)Φ′(Φ−1(r))

dr.

SinceΦ is positive and increasing, and tΦ′(t) is increasing, we see thatΦ−1(r)Φ′(Φ−1(r))
is increasing. Hence we obtain∣∣∣∣∫ Φ(t)

Φ(t/2)

cos(−rξ · (x′ − y′))
dr

Φ−1(r)Φ′(Φ−1(r))

∣∣∣∣
≤ 1
t/2Φ′(t/2)

2
|ξ · (x′ − y′)| ≤

Φ(t/2)
t/2Φ′(t/2)

2
Φ(t/2)|ξ · (x′ − y′)| .

We get a similar estimate for sin part, and hence we obtain∣∣∣∣∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

∣∣∣∣ ≤ ∥∥∥∥ Φ(s)
sΦ′(s)

∥∥∥∥
∞

4
Φ(t/2)|ξ · (x′ − y′)| .

Thus, combining this with (2.6) we have for any 0 < α ≤ 1∣∣∣∣∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

∣∣∣∣ ≤ ∥∥∥∥ Φ(t)
tΦ′(t)

∥∥∥∥α
∞

(log2)1−α4α

|Φ(t/2)ξ|α|ξ′ · (x′ − y′)|α .

This combined with (2.5) yields the desired estimate.

In the case where Φ is positive and decreasing, we have the following
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Lemma 2.10. Let 1 < q ≤ ∞, Ω ∈ Lq(Sn−1) and ψ be a real valued function
on (0,∞). If Φ is positive, decreasing, Φ(t) ≤ c2Φ(2t), and ϕ(t) := Φ(t)/(tΦ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q′

∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2 dss ≤

Cα2α(log c2)1−α‖ϕ‖∞‖Ω‖2
Lq(Sn−1)

|Φ(t)ξ|α .

Proof. We have

(2.7)

∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss

=
∫ Φ(t/2)

Φ(t)

∣∣∣∣∫
Sn−1

Ω(x′)e−i(rξ·x
′+ηψ(Φ−1(r)))dσ(x′)

∣∣∣∣2 r

−Φ−1(r)Φ′(Φ−1(r))
dr

r

≤
∥∥∥ Φ(t)
tΦ′(t)

∥∥∥
∞

∫ Φ(t/2)

Φ(t)

∣∣∣∣∫
Sn−1

Ω(x′)e−i(rξ·x
′+ηψ(Φ−1(r)))dσ(x′)

∣∣∣∣2 drr
=

∥∥∥ Φ(t)
tΦ′(t)

∥∥∥
∞

∫
Sn−1×Sn−1

Ω(x′)Ω(y′)
(∫ Φ(t/2)

Φ(t)

e−irξ·(x
′−y′) dr

r

)
dσ(x′)dσ(y′).

In the second equation, we used the change of variable r = Φ(s). Clearly we have∣∣∣∣∫ Φ(t/2)

Φ(t)

e−irξ·(x
′−y′)dr

r

∣∣∣∣ ≤ log
Φ(t/2)
Φ(t)

≤ log c2

and ∣∣∣∣∫ Φ(t/2)

Φ(t)
e−irξ·(x

′−y′) dr
r

∣∣∣∣ ≤ 2
Φ(t)|ξ||ξ′ · (x′ − y′)| ,

and so we have for any 0 < α ≤ 1∣∣∣∣∫ Φ(t/2)

Φ(t)
e−irξ·(x

′−y′) dr
r

∣∣∣∣ ≤ (log c2)1−α2α

|Φ(t)ξ|α|ξ′ · (x′ − y′)|α .

This combined with (2.7) yields the desired estimate.

Lemma 2.11. Let 1 < q ≤ ∞, Ω ∈ Lq(Sn−1) and ψ be a real valued function
on (0,∞). If Φ is positive, decreasing and convex, and ϕ(t) := Φ(t)/(tΦ′(t)) ∈
L∞(0,∞), then it holds for any 0 < α < 1/q′

∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss ≤

Cα8α(log 2)1−α‖ϕ‖α∞‖Ω‖2
Lq(Sn−1)

|Φ(t)ξ|α .
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Proof. We have

(2.8)

∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(x′)e−i(Φ(s)ξ·x′+ηψ(s))dσ(x′)
∣∣∣∣2dss

=
∫
Sn−1×Sn−1

Ω(x′)Ω(y′)
(∫ t

t/2

e−iΦ(s)ξ·(x′−y′) ds
s

)
dσ(x′)dσ(y′).

Clearly we have

(2.9)
∣∣∣∣∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

∣∣∣∣ ≤ log 2.

Applying the change of variable r = Φ(s), we have∫ t

t/2

e−iΦ(s)ξ·(x′−y′) ds
s

=
∫ Φ(t/2)

Φ(t)

e−irξ·(x
′−y′) 1

−Φ−1(r)Φ′(Φ−1(r))
dr.

Since Φ is positive, decreasing and convex, we see that −Φ′(t) is decreasing, and
hence −Φ′(Φ−1(r)) is positive and increasing. Hence we see by the second mean
value theorem that there exists c with Φ(t) ≤ c ≤ Φ(t/2) such that∫ Φ(t/2)

Φ(t)
cos(−rξ · (x′ − y′))

dr

Φ−1(r)Φ′(Φ−1(r))

=
1

−Φ′(t)

∫ c

Φ(t)

cos(−rξ · (x′ − y′))
dr

Φ−1(r)
.

Since Φ is positive and decreasing, we see that Φ−1(r) is also positive and decreasing.
Hence we have∣∣∣∣∫ Φ(t/2)

Φ(t)
cos(−rξ · (x′ − y′))

dr

Φ−1(r)Φ′(Φ−1(r))

∣∣∣∣
≤ 1

−Φ′(t)
1

Φ−1(c)
2

|ξ · (x′ − y′)| ≤
1

−Φ′(t)
1
t/2

2
|ξ||ξ′ · (x′ − y′)|

≤
∥∥∥∥ Φ(s)
sΦ′(s)

∥∥∥∥
∞

4
Φ(t)|ξ · (x′ − y′)| .

We get a similar estimate for sin part, and hence we obtain∣∣∣∣∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

∣∣∣∣ ≤ ∥∥∥∥ Φ(s)
sΦ′(s)

∥∥∥∥
∞

8
Φ(t)|ξ · (x′ − y′)| .

Thus, combining this with (2.9) we have for any 0 < α ≤ 1∣∣∣∣∫ t

t/2
e−iΦ(s)ξ·(x′−y′) ds

s

∣∣∣∣ ≤ ∥∥∥∥ Φ(s)
sΦ′(s)

∥∥∥∥α
∞

(log 2)1−α8α

|Φ(t)ξ|α|ξ′ · (x′ − y′)|α .
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Combining this with (2.8) yields the desired estimate.

Finally in this section, we will give a remark on the Littlewood-Paley operator for
a lacunary sequence.
Let {aj}j∈Z be a lacunary sequence of positive numbers satisfying

aj+1

aj
≥ a > 1, j ∈ Z.

Take a nonincreasing C∞(
[0,∞)

)
function ϕ(t) such that

0 ≤ ϕ(t) ≤ 1
(
t ∈ [0,∞)

)
, ϕ(t) = 1 (0 ≤ t ≤ 1), ϕ(t) = 0 (t ≥ a).

We define functions ψj on (0, ∞) by

ψj(t) = ϕ
( t

aj+1

)
− ϕ

( t

aj

)
.

Then

(2.10) ψj(t) =

⎧⎨⎩0, 0 ≤ t ≤ aj, t ≥ a aj+1,

1, a aj ≤ t ≤ aj+1,

and

suppψj ∩ suppψj+1 ⊂ {aj+1 ≤ t ≤ a aj+1},
suppψj ∩ suppψ� = ∅, for |j − 
| ≥ 2.

We have for t > 0

(2.11)
∞∑

j=−∞
ψj(t) = 1, t > 0,

and

(2.12) |∂αψj(|ξ|)| ≤ Cα

( a

a− 1

)|α| 1
|ξ||α| .

We set

(2.13) Ψj(x) = (2π)−n
∫

Rn

ψj(|ξ|)eix·ξdξ.

Then we can use the Littlewood-Paley theory and get

Lemma 2.12. Let α0 > 1 and 1 < p <∞. Let Ψj be as above. Then there exists
a positive constant Cp such that
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(2.14)
∥∥∥∥(∑

j∈Z

|Ψj ∗ f(x)|2
)1/2∥∥∥∥

p

≤ Cp‖f‖p, f ∈ Lp(Rn),

where Cp is independent of a ≥ α0.

This can be checked by estimating the kernel of the above operator as a vector
valued singular integral (cf. [25]). For a precise proof see, for example, [29, pp.
312-316].

3. SOME DEFINITIONS AND LEMMAS

In this section, we give some definitions and prepare some lemmas to prove our
theorems.
The block spaces originated in the work of Taibleson and Weiss on the convergence

of the Fourier series in connection with the developments of the real Hardy spaces. We
will recall the definition of block spaces on Sn−1. For further information about the
theory of spaces generated by blocks and its applications to harmonic analysis, see the
book [24] and a survey article [22].

Definition 7. A q-block on Sn−1 is an Lq(Sn−1) (1 < q ≤ ∞) function b(x) that
satisfies

(3.1)
(i) supp b ⊂ I ;

(ii) ‖b‖q ≤ |I |−1/q′,

where |I | = σ(I), and I = B(x′0, θ0) ∩ Sn−1 is a cap on Sn−1 for some x′0 ∈ Sn−1

and θ0 ∈ (0, 1].

Jiang and Lu [18] introduced the class of block spaces B(0,v)
q (Sn−1) (v > −1)

concerning the study of homogeneous singular integral operators.

Definition 8. For 1 < q ≤ ∞ and v > −1, the block space B(0,v)
q (Sn−1) is

defined by

(3.2) B(0,v)
q (Sn−1) =

{
Ω ∈ L1(Sn−1); Ω =

∞∑
j=1

λjbj, M
(0,v)
q ({λj}) <∞

}
,

where each λj is a complex number, each bj is a q-block supported on a cap Ij on
Sn−1, and

(3.3) M (0,v)
q ({λj}) =

∞∑
j=1

|λj|
{
1 + log(v+1)

(|Ij|−1
)}
.
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Let ‖Ω‖
B

(0,v)
q (Sn−1)

= inf{M (0,v)
q ({λj}); Ω =

∑∞
j=1 λjbj and each bj is a q-

block supported on a cap Ij on Sn−1}. Then ‖ · ‖
B

(0,v)
q (Sn−1)

is a norm on the space

B
(0,v)
q (Sn−1), and

(
B

(0,v)
q (Sn−1), ‖ · ‖

B
(0,v)
q (Sn−1)

)
is a Banach space.

The following inclusion relations are known.

(3.4)

B(0,v1)
q (Sn−1) ⊂ B(0,v2)

q (Sn−1) if v1 > v2 > −1;

B(0,v)
q1 (Sn−1) ⊂ B(0,v)

q2 (Sn−1) if 1 < q2 < q1 for any v > −1;⋃
p>1

Lp(Sn−1) ⊂ B(0,v)
q (Sn−1) for any q > 1, v > −1;

⋃
q>1

B(0,v)
q (Sn−1) 	⊂

⋃
q>1

Lq(Sn−1) for any v > −1;

B(0,v)
q (Sn−1) ⊂ H1(Sn−1) + L(logL)1+v(Sn−1) for any q > 1, v > −1.

Definition 9. Let ρ > 0. For arbitrary real-valued functions φ(·) and ψ(·) on
(0,∞), a measurable function h : (0,∞) → C and Ω : Sn−1 → C, we define the
family {σt,h; t ∈ (0,∞)} of measures and the maximal operator σ∗h on Rn+1 by∫

Rn+1
f dσt,h =

1
tρ

∫
t/2<|y|<t

f(φ(|y|)y′, ψ(|y|))h(|y|) Ω(y′)
|y|n−ρ dy,

σ∗hf(x, xn+1) = sup
t>0

∣∣|σt,h| ∗ f(x, xn+1)
∣∣,

where |σt,h| is defined in the same way as σt,h, but with Ω replaced by |Ω| and h by
|h|.
Lemma 3.1. Let 1 < q ≤ +∞, m ∈ N, and Ω ∈ Lq(Sn−1) with ‖Ω‖L1(Sn−1) ≤ 1,

‖Ω‖Lq(Sn−1) ≤ 2m, satisfying the cancellation condition
∫
Sn−1 Ω(y′) dσ(y′) = 0. Let

ψ(·) be an arbitrary real-valued function on (0,∞), and h ∈ Δγ for some 1 < γ ≤ ∞.
Assume that φ is a positive C1(0,∞) function satisfying the assumptions (A-1) and
(A-2).
Then there exist positive constants C and α < 1/q′ such that in the case of

increasing φ

(3.5) |σ̂t,h(ξ, η)| ≤ C‖h‖Δ1 ,

(3.6) |σ̂t,h(ξ, η)| ≤
C‖h‖Δγ (1 + ‖ϕ‖∞)

|φ(t/2)ξ|α/m ,

(3.7) |σ̂t,h(ξ, η)| ≤ C‖h‖Δ1 |φ(t)ξ|α/m,
and in the case of decreasing φ, φ(t/2) is replaced by φ(t) in (3.6) and φ(t) is replaced
by φ(t/2) in (3.7).
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Proof. From the definition we have

|σ̂t,h(ξ, η)| ≤ 1
tρ

∫ t

t/2

|h(r)|
r1−ρ

dr

∫
Sn−1

|Ω(y′)| dσ(y′) ≤ 2‖h‖Δ1‖Ω‖L1(Sn−1) ≤ 2‖h‖Δ1.

Next, we show (3.6). In the case 1 < γ ≤ 2, by a change of variable, Hölder’s
inequality and ‖Ω‖L1(Sn−1) ≤ 1 we have

|σ̂t,h(ξ, η)| ≤ 1
tρ

∫ t

t/2

|h(r)|rρ
∣∣∣∣∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣ drr

≤ 21/γ‖h‖Δγ

(∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣γ′ drr )1/γ′

≤ 21/γ‖h‖Δγ

(∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣2 drr

)1/γ′

.

In the last inequality, we used | ∫Sn−1 Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)| ≤ ‖Ω‖L1(Sn−1) ≤
1. In the case γ > 2, using Cauchy-Schwarz’ inequality in place of Hölder’s inequality,
we get a similar inequality. Together with, we have

|σ̂t,h(ξ, η)| ≤ 2‖h‖Δγ

(∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(y′)e−i(φ(r)y′·ξ+ψ(r)η)dσ(y′)
∣∣∣∣2 drr

)1/max{γ′,2}
.

So, if φ satisfies (A-2) (i), by Lemma 2.8 we have for 0 < α < 1/q′

|σ̂t,h(ξ, η)| ≤ 2‖h‖Δγ

(Cα‖ϕ‖∞‖Ω‖2
Lq(Sn−1)

|φ(t/2)ξ|α
)1/max{γ′,2}

≤ C‖h‖Δγ (1 + ‖ϕ‖∞)
(

22m

|φ(t/2)ξ|α
)1/max{γ′,2}

.

From this and (3.5) we obtain

|σ̂t,h(ξ, η)| ≤ C‖h‖Δγ (1+‖ϕ‖∞)
(

22m

|φ(t/2)ξ|α
)1/(mmax{γ′,2})

≤ C‖h‖Δγ (1 + ‖ϕ‖∞)
|φ(t/2)ξ|α/(mmax{γ′,2}) .

Taking α/(max{γ ′, 2}) newly as α, we get (3.6). The other three cases can be proved
in a similar way, using Lemmas 2.9, 2.10 and 2.11, respectively.
Finally we prove (3.7). Using the cancellation property of Ω and the monotonicity

of φ, we have

|σ̂t,h(ξ, η)| ≤ 1
tρ

∫ t

t/2
|h(r)|rρ

∣∣∣∣∫
Sn−1

Ω(y′)
(
e−i(φ(r)y′·ξ+ψ(r)η) − e−iψ(r)η

)
dσ(y′)

∣∣∣∣ drr
≤ C‖h‖Δ1 max{|φ(t)ξ|, |φ(t/2)ξ|}‖Ω‖L1(Sn−1).

Combining this with (3.5) yields the desired estimate (3.7).

By a similar argument we have
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Lemma 3.2. Let 1 < q ≤ +∞, m ∈ N, and Ω, φ and ψ be as in Lemma 3.1. For
(ξ, η) ∈ Rn × R let

It(ξ, η) =
(∫ t

t/2

∣∣∣∣∫
Sn−1

Ω(y′)e−i(φ(s)ξ·y′+ηψ(s))dσ(y′)
∣∣∣∣2 dss

)1/2

.

Then |It| satisfies the same estimates in (3.5), (3.6), (3.7).
We next state a variant of the Lemma 3.4 in [4].

Lemma 3.3. Let {ak}k∈Z be a lacunary sequence of positive numbers with
ak+1

ak
≥ aA for some a > 1 and A > 0.

Let {σk}k∈Z be a sequence of Borel measures on Rn. Let L : Rn → Rm be a linear
transformation. Suppose that for all 
 ∈ Z, ξ ∈ Rn, and some α > 0, C0 > 0,

0, 
1 ∈ N ∪ {0}, and p0 ≥ 2, we have

(i) |σ̂k(ξ)| ≤ C0 max
{
1, (ak+�0 |L(ξ)|)α/A, (ak−�1 |L(ξ)|)−α/A}

,

(ii)
∥∥∥(∑

k∈Z

|σk ∗ gk|2
)1/2∥∥∥

p0
≤ C0

∥∥∥(
∑
k∈Z

|gk|2)1/2
∥∥∥
p0
for arbitrary functions gk on

Rn.

Then for p′0 < p < p0, there exists a positive constant Cp such that∥∥∥(∑
k∈Z

|σk ∗ f |2
)1/2∥∥∥

p
≤ CpC0‖f‖p

for all f ∈ Lp(Rn). The constant Cp is independent of A and of the linear transfor-
mation L.

In Al-Qassem and Pan [4], this lemma is given in the case 
0 = 1 and 
1 = 0, but
one can easily check that the above holds.
We introduce a maximal function

λ∗m,h(f) = sup
k∈Z

∫ ak+1
m

ak
m

(μt,h ∗ f)
dt

t
, μt,h = |σt,h|,

where am = 2m, m ∈ N. If we define the measure λm,k,h by

λ̂m,k,h(ξ, η) =
∫ ak+1

m

ak
m

μ̂t,h(ξ, η)
dt

t
for (ξ, η) ∈ Rn × R,

then
λ∗m,hf(x, xn+1) = sup

k∈Z

|λm,k,h ∗ f(x, xn+1)|.

For this maximal function we can show the following lemma in the same way as in
the proof of the corresponding Lemma 3.5 in [4], by using Lemmas 2.7, 3.1 and 3.3.
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Lemma 3.4. Let 1 < q ≤ +∞, m ∈ N, h ∈ L∞(Rn) and Ω ∈ Lq(Sn−1) with
‖Ω‖L1(Sn−1) ≤ 1, ‖Ω‖Lq(Sn−1) ≤ 2m. Assume that φ and ψ are positive C1(0,∞)
functions satisfying the assumptions (A-1) and (A-2).
Then for every 1 < p < ∞, there exists a positive constant Cp independent of m

such that

(3.8) ‖λ∗m,h(f)‖p ≤ Cpm‖f‖p
for every f ∈ Lp(Rn+1).

In a similar way we get

Lemma 3.5. Let m, Ω, φ and ψ be as in Lemma 3.4, and am = 2m. Then for
every 1 < p <∞, there exists a positive constant Cp independent of m such that

‖F ∗
m(f)‖p ≤ Cpm‖f‖p

for every f ∈ Lp(Rn+1), where

F ∗
m(f)(x, xn+1) = sup

k∈Z

∣∣∣∣∫
ak

m<|y|≤ak+1
m

∫ 1

1/2
f(x−φ(|sy|)y′, xn+1−ψ(|sy|))Ω(y′)

|y|n
ds

s
dy

∣∣∣∣.
The following 5 lemmas are also proved in the same way as in [4]. So, omitting

proofs, we only state them.

Lemma 3.6. Let h ∈ �γ for some γ > 1 and let m, Ω, φ and ψ be as in Lemma
3.1. Then for γ ′ < p ≤ ∞, there exists a positive constant Cp independent of m such
that

‖σ∗h(f)‖p ≤ Cpm
1/γ′‖f‖p

for every f ∈ Lp(Rn+1).

Lemma 3.7. Let h ∈ �γ for some γ ≥ 2 and γ ′ < p < ∞. Let m, Ω, φ and ψ
be as in Lemma 3.4. Then there exists a positive constant Cp such that

(3.9)
∥∥∥(∑

k∈Z

∫ ak+1
m

ak
m

|σt,h ∗ gk|2dt
t

)1/2∥∥∥
p
≤ Cpm

1/γ′
∥∥∥(

∑
k∈Z

|gk|2)1/2
∥∥∥
p

for any sequence {gk} of functions on Rn+1.

Lemma 3.8. Let h ∈ �γ for some 1 < γ ≤ 2 and 2 ≤ p < 2γ/(2− γ). Again
let m, Ω, φ and ψ be as in Lemma 3.4. Then there exists a positive constant Cp such
that

(3.10)
∥∥∥(∑

k∈Z

∫ ak+1
m

ak
m

|σt,h ∗ gk|2 dt
t

)1/2∥∥∥
p
≤ Cpm

1/2
∥∥∥(

∑
k∈Z

|gk|2)1/2
∥∥∥
p

for any sequence {gk} of functions on Rn+1.
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Lemma 3.9. Let h ∈ �γ for some 1 < γ ≤ 2 and 2γ/(3γ − 2) < p < 2. Again
let m, Ω, φ and ψ be as in Lemma 3.4. Then there exists a positive constant Cp such
that

(3.11)
∥∥∥(∑

k∈Z

∫ ak+1
m

ak
m

|σt,h ∗ gk|2 dt
t

)1/2∥∥∥
p
≤ Cpm

(3γ−2)/(2γ)
∥∥∥(

∑
k∈Z

|gk|2)1/2
∥∥∥
p

for any sequence {gk} of functions on Rn+1.

Lemma 3.10. Let h ∈ �γ for some 1 < γ ≤ 2 and 2γ/(2γ− 1) < p < 2. Again
let m, Ω, φ and ψ be as in Lemma 3.4. Then there exists a positive constant Cp such
that

(3.12)
∥∥∥(∑

k∈Z

∫ ak+1
m

ak
m

|σt,h ∗ gk|2dt
t

)1/2∥∥∥
p
≤ Cpm

(2γ−1)/(2γ)
∥∥∥(

∑
k∈Z

|gk|2)1/2
∥∥∥
p

for any sequence {gk} of functions on Rn+1.

4. PROOFS OF THEOREMS 1, 2 AND 3

Once we have gotten Lemmas 3.1, 3.5–3.10, we use these lemmas in the case q = 2.
Then we can prove our Theorems 1, 2 and 3 in quite similar ways as in Theorems 1.1,
1.2 and 1.3 in [4]. So, the details will be omitted.

5. PROOFS OF THEOREMS 4, 5 AND 6

Let v > −1 and q > 1. Then if Ω ∈ B
(0,v)
q (Sn−1) and satisfies the cancellation

condition, it can be written as Ω =
∑∞

�=1 λ�Ω̆�, where λ� ∈ C and Ω̆� is a q-block
supported on a cap B� = B(x�, τ�) ∩ Sn−1 on Sn−1 and

(5.1)
∞∑
�=1

|λ�|
{
1 + logv+1

(|B�|−1
)}

< 2‖Ω‖
B

(0,v)
q (Sn−1)

<∞.

To each block Ω̆�, we define

Ω�(y′) = Ω̆�(y′) − 1
|Sn−1|

∫
Sn−1

Ω̆�(x′) dσ(x′).

Let Λ = {
 ∈ N; |B�| ≤ 1/2} and set
(5.2) Ω0 = Ω −

∑
�∈Λ

λ�Ω�.

Then there exists a positive constant C such that the followings hold for all 
 ∈ Λ:
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∫
Sn−1

Ω�(x′) dσ(x′) = 0,(5.3)

‖Ω�‖Lq(Sn−1) ≤ C|B�|−1/q′ ,(5.4)

‖Ω�‖L1(Sn−1) ≤ 2,(5.5)

Ω = Ω0 +
∑
�∈Λ

λ�Ω�.(5.6)

Moreover, from (5.1) and the definition of Ω� it follows that

‖Ω0‖Lq(Sn−1) ≤ C
∑
�∈N\Λ

2−1/q′ |λ�| ≤ C‖Ω‖
B

(0,v)
q (Sn−1)

,(5.7)

∫
Sn−1

Ω0(x′) dσ(x′) = 0.(5.8)

For 
 ∈ Λ, define a family of measures σ(�) = {σ�,t,h; 0 < t < ∞} on Rn+1, as in
Definition 9, by∫

Rn+1

f dσ�,t,h =
1
tρ

∫
t/2<|y|<t

f
(
φ(|y|)y′, ψ(|y|))h(|y|)Ω�(y′)

|y|n−ρ dy.

We only discuss the case of increasing φ in the proof of Theorems 4, 5, 6, since
decreasing case can be proved in the same way.
For k ∈ Z and 
 ∈ Λ ∪ 0, we set ω� = 2θ� , θ� = [log2 |B�|−1/q′ ] + 1, where [·]

denotes the greatest integer function.
From Lemma 3.1, we have the following estimates:

(5.9)
∫ ωk+1

�

ωk
�

|σ̂�,t,h|2dt
t

≤ Cθ�;

(5.10)
∫ ωk+1

�

ωk
�

|σ̂�,t,h|2dt
t

≤ Cθ�|φ(ωk−1
� )ξ|−2α/θ�;

(5.11)
∫ ωk+1

�

ωk
�

|σ̂�,t,h|2 dt
t

≤ Cθ�|φ(ωk+1
� )ξ|2α/θ�.

Moreover, we can use Lemmas 3.4–3.10, taking m = θ�. Now, we begin to prove
Theorem 4 (a). From the definition of μρΩ,φ,ψ,hf(x, xn+1) we get

μρΩ,φ,ψ,hf(x, xn+1) =
(∫ ∞

0

∣∣∣ ∞∑
k=−∞

1
tρ

∫
2−k−1t≤|u|≤2−kt

Ω(u′)
|u|n−ρ h(|u|)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|))du
∣∣∣2 dt
t

)1/2
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≤
∞∑

k=−∞

(∫ ∞

0

∣∣∣ 1
tρ

∫
2−k−1t≤|u|≤2−kt

Ω(u′)
|u|n−ρh(|u|)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|))du
∣∣∣2dt
t

)1/2

≤ Cμ̃ρΩ,φ,ψ,hf(x, xn+1),

where

μ̃ρΩ,φ,ψ,hf(x, xn+1) =
(∫ ∞

0

∣∣∣ 1
tρ

∫
t/2≤|u|≤t

Ω(u′)
|u|n−ρh(|u|)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|))du
∣∣∣2 dt
t

)1/2

.

By (5.6), we have

(5.12) μ̃ρΩ,φ,ψ,hf(x, xn+1) ≤
∑
�∈Λ∪0

|λ�|μ̃ρ�,φ,ψ,hf(x, xn+1),

where

μ̃ρ�,φ,ψ,hf(x, xn+1) =
(∫ ∞

0

∣∣∣ 1
tρ

∫
t/2≤|u|≤t

Ω�(u′)
|u|n−ρ h(|u|)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|))du
∣∣∣2 dt
t

)1/2

,

so we have only to show the boundedness of μ̃ρ�,φ,ψ,hf .
Since Δγ ⊆ Δ2 for γ ≥ 2, we may assume that 1 < γ ≤ 2 and 2 ≤ p < 2γ

2−γ .
For 
 ∈ Z, let θ�,j = φ(ωj� ). From Lemma 2.1, we easily see that {θ�,j, j ∈ Z} is a
lacunary sequencewith θ�,j+1/θ�,j ≥ ω

1/b
� > 1. Let {Ψ̂�,j, j ∈ Z} be a smooth partition

of unity in (0,∞), defined in Lemma 2.12, and set (̂T�,jf)(ξ, η) = Ψ̂�,j(|ξ|)f̂(ξ, η),
(ξ, η) ∈ Rn × R. Then

(5.13)

μ̃ρ�,φ,ψ,hf(x, xn+1)

≤
(∑
k∈Z

∫ ωk+1
�

ωk
�

∣∣∣∑
j∈Z

(Ψ�,j+k ⊗ δ{0}) ∗ σ�,t,h ∗ f(x)
∣∣∣2 dt
t

)1/2

≤
∑
j∈Z

(∑
k∈Z

∫ ωk+1
�

ωk
�

|(Ψ�,j+k ⊗ δ{0}) ∗ σ�,t,h ∗ f(x)|2dt
t

)1/2

=
∑
j∈Z

Q�,jf(x, xn+1)
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where δ{0} is the Dirac’s delta at the origin in the xn+1 space, and Q�,jf(x, xn+1) =(∑
k∈Z

∫ ωk+1
�

ωk
�

|(Ψ�,j+k ⊗ δ{0}) ∗ σ�,t,h ∗ f(x)|2 dtt
)1/2.

First, we compute L2 norm of Q�,jf . By Plancherel’s theorem, Fubini’s theorem
and (5.10), (5.11), we obtain

‖Q�,jf‖2
2 =

∫
Rn+1

∑
k∈Z

∫ ωk+1
�

ωk
�

|(Ψ�,j+k ⊗ δ{0}) ∗ σ�,t,h ∗ f(x)|2dt
t
dxdxn+1

≤
∑
k∈Z

∫
R

∫
θ−1
�,k+j+1≤|ξ|≤θ−1

�,k+j−1

∫ ωk+1
�

ωk
�

|σ̂�,t,h(ξ, η)|2dt
t
|f̂(ξ, η)|2dξdη.

For j ≤ −2 and θ−1
�,k+j+1 ≤ |ξ| ≤ θ−1

�,k+j−1 we get, using (5.10),

‖Q�,jf‖2 ≤ Cθ
1/2
� ω

jα/(bθ�)
� ≤ C(log |B�|−1)1/22jα/b‖f‖2.

For j ≥ 2 and θ−1
�,k+j+1 ≤ |ξ| ≤ θ−1

�,k+j−1 we get, using (5.11),

‖Q�,jf‖2 ≤ Cθ
1/2
� ω

−jα/(bθ�)
� ≤ C(log |B�|−1)1/22−jα/b‖f‖2.

For −1 ≤ j ≤ 1 and θ−1
�,k+j+1 ≤ |ξ| ≤ θ−1

�,k+j−1 we get, using (5.9),

‖Q�,jf‖2 ≤ Cθ
1/2
� ≤ C(log |B�|−1)1/2.

Hence, we obtain

(5.14) ‖Q�,jf‖2 ≤ C(log |B�|−1)1/22−|j|α/b‖f‖2.

Next, by using Lemma 3.8 and Lemma 2.12, we have

(5.15) ‖Q�,jf‖p ≤ C(log |B�|−1)1/2‖f‖p, for 2 ≤ p <
2γ

2− γ
.

Interpolating between (5.14) and (5.15), we can find a number 0 < θ < 1 such that

(5.16) ‖Q�,jf‖p ≤ C(log |B�|−1)1/22−|j|θα/b‖f‖p, for 2 ≤ p <
2γ

2 − γ
.

Hence, combining (5.12), (5.13) and (5.16) completes the proof of Theorem 4 (a).
Now, applying respectively Lemmas 3.7, 3.9, 3.10 in place of Lemma 3.8, we can

obtain similar Lp estimates for Q�,jf as in (5.16), and prove Theorem 4 (b), (c) and
(d).
Let us next to turn to prove Theorem 6. First, as before, we have only to show that

(5.17) ‖M̃(γ)
φ,ψ,�f‖Lp ≤ Cp(log |B�|−1)1/γ

′‖f‖Lp ,
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where
M̃(γ)

φ,ψ,�f(x, xn+1) = sup
‖h‖Lγ (R+,dt/t)≤1

|μ̃ρ�,φ,ψ,h|.

Meanwhile, we know from [4] that when γ = 1, ‖M̃(1)
φ,ψ,�f‖L∞ ≤ C‖f‖L∞ . So we

start with the case γ = 2 and then use a suitable interpolation for 1 < γ < 2.
Let

E�f(x, xn+1) =
∫

Sn−1

f(x− φ(s)u, xn+1 − ψ(s))Ω�(u)dσ(u).

As in the proof of Theorem 4, for each 
 ∈ Z, let {Ψ̂�,j, j ∈ Z} be a smooth partition
of unity in Rn\0. As in Al-Qassem-Pan [4, pp. 92-93], we have by duality and a
change of variable

M̃(2)
�,φ,ψf(x, xn+1) ≤ sup

‖h‖Lγ (R+,dt/t)≤1

(∫ ∞

0

(∫ t

t/2
|h(s)||E�f(x, xn+1)|ds

s

)2 dt

t

)1/2

≤
(∫ ∞

0

(∫ t

t/2
|E�f(x, xn+1)|ds

s

)2 dt

t

)1/2

≤
(∑
k∈Z

∫ ωk+1
�

ωk
�

(∫ t

t/2
|E�f(x, xn+1)|2ds

s

)dt
t

)1/2

≤
(∑
k∈Z

∫ ωk+1
�

ωk
�

(∫ t

t/2

∣∣∣∑
j∈Z

Y�,k+j,sf(x, xn+1)
∣∣∣2 ds
s

)dt
t

)1/2

≤
∑
j∈Z

(∑
k∈Z

∫ ωk+1
�

ωk
�

(∫ t

t/2
|Y�,k+j,sf(x, xn+1)|2ds

s

)dt
t

)1/2

=
∑
j∈Z

X�,jf(x, xn+1),

where

Y�,j,sf(x, xn+1) =
∫
Sn−1

(T�,jf)(x− φ(s)u, xn+1 − ψ(s))Ω�(u)dσ(u),

X�,jf(x, xn+1) =
(∑
k∈Z

∫ ωk+1
�

ωk
�

(∫ t

t/2
|Y�,k+j,sf(x, xn+1)|2ds

s

)dt
t

)1/2

.

Thus, we have only to prove the Lp boundedness of X�,jf . We start by proving it in
the case of p = 2. By employing Plancherel’s theorem, Fubini’s theorem, Lemma 3.2
and (5.10), (5.11), we obtain as in the proof of Theorem 4
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‖X�,jf‖2
2 =

∫
Rn+1

∑
k∈Z

∫ ωk+1
�

ωk
�

(∫ t

t/2
|Y�,k+j,sf(x, xn+1)|2ds

s

)
dt

t
dxdxn+1

≤
∑
k∈Z

∫
R

∫
θ�,k+j+1≤|ξ|≤θ�,k+j−1

∫ ωk+1
�

ωk
�

(∫ t

t/2

|f̂(ξ, η)|2

×
∣∣∣∫

Sn−1
Ω�(x)e−i(φ(s)ξ·x+ηψ(s))dσ(x)

∣∣∣2 ds
s

)
dt

t
dξdη

≤ C log |B�|−12−α|j|/(2b)
∑
k∈Z

∫
R

∫
θ�,k+j+1≤|ξ|≤θ�,k+j−1

|f̂(ξ, η)|2dξdη

≤ C log |B�|−12−α|j|/(2b)‖f‖2
2,

and hence

(5.18) ‖X�,jf‖2 ≤ C(log |B�|−1)1/22−α|j|/b‖f‖2.

Next, we consider the case p > 2. Choose g in L(p/2)′ with ‖g‖(p/2)′ ≤ 1. Then by a
similar argument in [4, p. 94], we have ‖X�,jf‖2

p ≤ ‖∑
k∈Z

|T�,k+jf |2‖(p/2)‖F ∗
� (g̃)‖(p/2)′,

where

F ∗
� (f)(x, xn+1) = sup

k∈Z

(∫
ωk

�<|y|≤ωk+1
�

∫ 1

1/2
f(x−φ(|sy|)y′, xn+1−ψ(|sy|))Ω�(y′)

|y|n
ds

s
dy

)
.

By using Lemma 3.5 and Lemma 2.14, we have

(5.19) ‖X�,jf‖p ≤ Cp(log |B�|−1)1/2‖f‖p for 2 ≤ p <∞.

By interpolation between (5.18) and (5.19), there exists a constant 0 < θ < 1 such that

(5.20) ‖X�,jf‖p ≤ Cp(log |B�|−1)1/22−θα|j|/b‖f‖p for 2 ≤ p <∞.

which ends the proof of the desired (5.17).
We use the same step in [4] for interpolation between γ = 1 and γ = 2, and obtain
(5.17) for 1 < γ < 2. The proof of Theorem 6 (a) is completed.
As for Theorem 6 (b), adapting a similar argument employed in the proof of The-

orem 6 (a), we get

‖M(γ)
φ,ψ,�f‖Lp ≤ Cp(log |B�|−1)1/2‖f‖Lp ,

which shows the conclusion of Theorem 6 (b).
Finally, let’s prove Theorem 5. Notice that

μρ�,φ,ψ,hf(x, xn+1) ≤ M(γ)
�,φ,ψ,hf(x, xn+1) = sup

‖h‖Lγ (R+,dt/t)

|μρ�,φ,ψ,hf(x, xn+1)|

and apply Theorem 6.
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6. APPENDIX

In this section, we give several examples of monotonic functions satisfying our
assumptions (A-1) and (A-2).

Example (1). For 0 < α < 1, set

Φ(t) = tαet.

Then Φ is nonconvex, positive, increasing, and Φ(t)/(tΦ′(t)) is strictly decreasing and
bounded. tΦ′(t) is strictly increasing. Furthermore, there exists no C > 1 such that
Φ(2t) ≤ CΦ(t) (t > 0).

In fact, we have

Φ′(t) = tα−1(t+ α)et,

Φ′′(t) = tα−2
(
t2 + 2αt+ α(α− 1)

)
et.

From this it follows
Φ(t)
tΦ′(t)

=
1

t+ α
,

and

Φ′′(t) =

{
< 0 for 0 < t <

√
α − α

> 0 for t >
√
α− α,

(
tΦ′(t)

)′ = tα−1(α2 + (2α+ 1)t+ t2)et.

Hence, Φ is nonconvex, positive, increasing and Φ(t)/(tΦ′(t)) and 1/tΦ′(t) are strictly
decreasing. The last claim follows from Φ(2t)/Φ(t) = 2αet.

Example (2). Set
Φ(t) = (t2 − sin2 t)eat

Then for 0 < a < 2/π, Φ is convex, positive, increasing, and Φ(t)/(tΦ′(t)) is positive
and bounded, but non-monotonic. tΦ′(t) is increasing.

We check this. Let g(t) = t2 − sin2 t. Then

g′(t) = 2t− 2 sin t cos t = 2t− sin 2t > 0 for t > 0,

and
g′′(t) = 2 − 2 cos 2t ≥ 0 for t > 0.

Hence, g(t) is increasing and convex. Since eat is clearly increasing and convex, we
see that Φ(t) is also increasing and convex. And we get

Φ′(t) = {(2t− sin 2t) + a(t2 − sin2 t)}eat

ϕ(t) :=
Φ(t)
tΦ′(t)

=
t2 − sin2 t

t{(2t− sin 2t) + a(t2 − sin2 t)} .
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From this we have

lim
t→0

ϕ(t) =
1
4
, ϕ(π) =

1
2 + aπ

, lim
t→∞ϕ(t) = 0.

Hence, if 2 + aπ < 4, i.e. 0 < a < 2/π, we see that ϕ(t) is not monotone. From
the above, we also see that ϕ is bounded. Since t, 2t − sin 2t, t2 − sin2 t, eat are
increasing, tΦ′(t) is also increasing.

Example (3). Let ψ(t) =

{
1, 0 ≤ t ≤ π/2
sin t, t ≥ π/2,

and

Φ(t) = 2t2 + tψ(t).

Then Φ(t) is positive and increasing on (0,∞) and satisfies Φ(2t) < 7Φ(t), but
Φ(t) is not convex nor tΦ′(t) is not monotone. Moreover, |Φ(t)/(tΦ′(t))| < 1 and
Φ(t)/(tΦ′(t)) is not monotone.
In fact, since Φ(t) = 2t2 + t sin t for t ≥ π/2, we have

Φ′(t) = 4t+ t cos t+ sin t = 2t+ t(1 + cos t) + t+ sin t > 0,

and so we see that Φ(t) is increasing on (0,∞). Since Φ′′(t) = 4+2 cos t− t sin t for
t ≥ π/2, we see that

Φ′′(5π/2) = 4 − 5π/2 < 0 and Φ′′(7π/2) = 4 + 7π/2 > 0.

This means that Φ(t) is not convex. Next, since for t ≥ π/2(
tΦ′(t)

)′ = 8t+ 3t cos t− t2 sin t+ sin t,

we have(
tΦ′(t)

)′∣∣∣
t=2π

= 22π > 0, and
(
tΦ′(t)

)′∣∣∣
t=9π/2

= 36π − 81π2/4 + 1 < 0,

which implies that tΦ′(t) is not monotone.
For 0 < t < π/2 we get

Φ(t)
tΦ′(t)

=
2t2 + t

4t2 + t
< 1.

And for t > π/2 we get

Φ(t)
tΦ′(t)

=
2t2 + t sin t

4t2 + t sin t+ t2 cos t
≤ 1

2 + cos t− sin t
t

2+ sin t
t

≤ 1

2 − 1+ 2
π

2− 1
π

=
2π − 1
3π − 4

< 1.

Hence we get |Φ(t)/(tΦ′(t))| < 1. Moreover, we get
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Φ(t)
tΦ′(t)

∣∣∣
t=π

=
2
3
,

Φ(t)
tΦ′(t)

∣∣∣
t=2π

=
2
5
, and

Φ(t)
tΦ′(t)

∣∣∣
t=3π

=
2
3
,

which shows that Φ(t)/(tΦ′(t)) is not monotone.
Finally, for 0 < t ≤ π/4 we have

Φ(2t)
Φ(t)

=
8t2 + 2t
2t2 + t

< 4.

For π/4 ≤ t ≤ π/2 we have

Φ(2t)
Φ(t)

=
8t2 + 2t sin 2t

2t2 + t
< 4.

And for t ≥ π/2 we have

Φ(2t)
Φ(t)

=
8t2 + 2t sin 2t
2t2 + t sin t

≤ 8t+ 2
2t− 1

= 4 +
6

2t− 1
≤ 4 +

6
π − 1

< 7.

Altogether we have Φ(2t) < 7Φ(t).

Example (4). Let
Φ(t) = te−1/t2.

Then Φ(t) is positive, increasing and nonconvex, and both Φ(t)/(tΦ′(t)) and tΦ′(t)
are increasing.
In fact, we have

Φ′(t) =
(
1 +

2
t2

)
e−1/t2,

Φ(t)
tΦ′(t)

=
1

1 + 2
t2
, tΦ′(t) =

(
t+

2
t

)
e−1/t2,

Φ′′(t) =
2
t5

(2 − t2)e−1/t2, and
(
tΦ′(t)

)′ =
(
1 +

4
t4

)
e−1/t2.

Hence, we see that Φ(t) is positive, increasing and nonconvex, and both Φ(t)/(tΦ′(t))
and tΦ′(t) are increasing.

Next, we state some examples in the case where Φ(t) is decreasing.

Example (5). Let
Φ(t) =

1
30t

+
1

1 + t
.

Then Φ is a positive, convex, decreasing function on (0,∞) such that Φ(t)/
(
tΦ′(t)

)
is bounded and Φ(t) < 2Φ(2t), but −tΦ′(t) is non-monotonic.
In fact, we have

Φ′(t) = − 1
30t2

− 1
(1 + t)2

, −tΦ′(t) =
1

30t
+

t

(1 + t)2
, Φ′′(t) =

2
30t3

+
2

(1 + t)3
> 0.
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And ∣∣∣∣ Φ(t)
tΦ′(t)

∣∣∣∣ =
31t2 + 32t+ 1
31t2 + 2t+ 1

≥ 1.

Since the right side of the above equality tends to 1 as t→ ∞, we see that there exists
C > 0 such that

1 ≤
∣∣∣∣ Φ(t)
tΦ′(t)

∣∣∣∣ ≤ C, 0 ≤ t <∞.

Furthermore, we get

(−tΦ′(t))′ = − 1
30t2

+
1

(1 + t)2
− 2t

(1 + t)3
= − 1

30t2
+

1 − t

(1 + t)3
,

and so
(−tΦ′(t))′

∣∣∣
t=1/2

= − 4
30

+
4
27

> 0.

Clearly (−tΦ′(t))′ is negative if t is near 0 or 1 ≤ t <∞. Thus, we see that −tΦ′(t)
is non-monotonic.

Example (6). Let ψ(t) =

{
1, 0 ≤ t ≤ π/2
sin t, t ≥ π/2,

and

Φ(t) =
3
t

+
1
t2
ψ(t).

Then Φ(t) is positive and decreasing on (0,∞) and satisfies Φ(2t) > 1
4Φ(t), but

Φ(t) is not convex nor −tΦ′(t) is not monotone. Moreover, |Φ(t)/(tΦ′(t))| < 1 and
Φ(t)/(tΦ′(t)) is not monotone.
In fact, since Φ(t) = 3

t + 1
t2

sin t for t ≥ π/2, we have

Φ′(t) = − 3
t2

− 2
t3

sin t+
1
t2

cos t = − 2
t2

(
1 +

1
t

sin t
)
− 1
t2

(1− cos t) < 0,

and so we see that Φ(t) is decreasing on (0,∞). Since for t ≥ π/2

Φ′′(t) =
6
t3

+
6
t4

sin t− 4
t3

cos t− 1
t2

sin t,

we get

Φ′′(5π/2) =
6 · 5π

2 + 6 − 25π2

4
54π4

24

< 0.

This means that Φ(t) is not convex. Next, since for t ≥ π/2(−tΦ′(t)
)′ = − 3

t2
− 4
t3

sin t+
3
t2

cos t+
1
t

sin t,
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we have (−tΦ′(t)
)′∣∣∣

t=5π/2
= − 12

25π2
− 32

125π3
+

2
5π

> 0,

and (−tΦ′(t)
)′∣∣∣

t=π
= − 6

π2
< 0,

which implies that −tΦ′(t) is not monotone. Moreover, for 0 < t < π/2 we get

− Φ(t)
tΦ′(t)

=
3
t + 1

t2

3
t + 2

t2

< 1.

And for t ≥ π/2 we get

− Φ(t)
tΦ′(t)

=
3
t + 1

t2 sin t
3
t + 2

t2
sin t− 1

t cos t
=

1

1 +
sin t

t
−cos t

3+ sin t
t

≤ 1

1 −
1
π

+1

3− 1
π

=
3π − 1
2π − 2

< 2.

Hence we get |Φ(t)/(tΦ′(t))| < 2.

− Φ(t)
tΦ′(t)

∣∣∣
t=π

=
3
4
,− Φ(t)

tΦ′(t)

∣∣∣
t=2π

=
3
2
, and − Φ(t)

tΦ′(t)

∣∣∣
t=3π

=
3
4
,

which shows that −Φ(t)/(tΦ′(t)) is not monotone.
Finally, for 0 < t ≤ π/4 we have

Φ(t)
Φ(2t)

≤
3
t + 1

t2

3
2t + 1

4t2

< 4.

For π/4 ≤ t ≤ π/2, we have

Φ(t)
Φ(2t)

=
3
t + 1

t2

3
2t + 1

4t2
sin 2t

≤ 2 +
2
3t

≤ 2 +
8
3π

< 3.

And for t ≥ π/2 we have

Φ(t)
Φ(2t)

=
3
t + 1

t
sin t
t

3
2t + 1

2t
sin 2t

2t

<
3
t + 1

t
3
2t − 1

2t

= 4.

Altogether we have Φ(2t) > 1
4Φ(t).

Example (7). Let Φ(t) = t−αe1/t, α > 0. Then Φ(t) is positive, decreasing and
convex on (0,∞), and |Φ(t)/(tΦ′(t))| < 1/α, but limt→0 Φ(t)/Φ(2t) = +∞, i.e.
there is no positive constant C such that Φ(2t) ≥ CΦ(t) , t > 0. −Φ(t)/(tΦ′(t)) is
increasing, and −tΦ′(t) is decreasing.



Marcinkiewicz Integrals Along Submanifolds 1677

In fact, we have

Φ′(t) = −t−α−1
(
α +

1
t

)
e1/t, and − Φ(t)

tΦ′(t)
=

1
α+ 1/t

.

Hence we see that −tΦ′(t) is decreasing, |Φ(t)/(tΦ′(t))| ≤ 1/α, and −Φ(t)/(tΦ′(t))
is increasing. Since both t−α and e1/t are positive, decreasing and convex, we see that
Φ(t) is also positive, decreasing and convex. And

lim
t→0

Φ(t)
Φ(2t)

= lim
t→0

2αe1/(2t) = +∞.

Example (8). Let Φ(t) = t−αe−t, α > 0. Then Φ(t) is positive, decreasing and
convex on (0,∞), and |Φ(t)/(tΦ′(t))| < 1/α, but limt→∞ Φ(t)/Φ(2t) = +∞, i.e.
there is no positive constant C such that Φ(2t) ≥ CΦ(t) , t > 0. −Φ(t)/(tΦ′(t)) is
decreasing, and −tΦ′(t) is decreasing.
In fact, we have

Φ′(t) = −t−α−1
(
α + t

)
e−t, and − Φ(t)

tΦ′(t)
=

1
α+ t

.

Hence we see that −tΦ′(t) is decreasing, |Φ(t)/(tΦ′(t))| ≤ 1/α, and −Φ(t)/(tΦ′(t))
is decreasing. Since both t−α and e−t are positive, decreasing and convex, we see that
Φ(t) is also positive, decreasing and convex. And

lim
t→∞

Φ(t)
Φ(2t)

= lim
t→∞ 2αet = +∞.
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