This paper is available online at http://journal.taiwanmathsoc.org.tw

MEASURING THE "NON-STOPPING TIMENESS" OF ENDS OF PREVISIBLE SETS

Ching-Tang Wu*, Ju-Yi Yen and Marc Yor

Abstract. In this paper, we propose some "measurements" of the "non-stopping timeness" of ends $\mathcal G$ of previsible sets, such that $\mathcal G$ avoids stopping times, in an ambiant filtration. We then study several explicit examples, involving last passage times of some remarkable martingales.

1. Introduction: About Ends of Previsible Sets

In this paper, we are interested in random times \mathcal{G} defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ as ends of (\mathcal{F}_t) -previsible sets Γ , that is,

(1)
$$\mathcal{G} \equiv \mathcal{G}_{\Gamma} = \sup\{t : (t, \omega) \in \Gamma\}.$$

For simplicity, we shall make the following assumptions:

- (C) All $((\mathcal{F}_t), P)$ -martingales are continuous;
- (A) For any (\mathcal{F}_t) -stopping time T, $P(\mathcal{G} = T) = 0$.

To such a random time, one associates the Azéma supermartingale

$$Z_t^{\mathcal{G}} = P(\mathcal{G} > t | \mathcal{F}_t),$$

which, under (C) and (A), admits a continuous version as shown by the following theorem.

Theorem 1.1. Under (C) and (A), there exists a unique positive local martingale $(N_t, t \ge 0)$, with $N_0 = 1$, such that

$$Z_t^{\mathcal{G}} = P(\mathcal{G} > t | \mathcal{F}_t) = \frac{N_t}{S_t},$$

where $S_t := \sup_{s \le t} N_s$ for $t \ge 0$.

Received May 24, 2010, accepted August 15, 2011.

Communicated by Yuh-Jia Lee.

2010 Mathematics Subject Classification: 60G35, 60G40, 60G44.

Key words and phrases: Azéma supermartingale, Last passage times, Non-stopping time.

*Corresponding author.

Proof. See [8]: page 16, Proposition 1.3.

Note that since $\mathcal{G}<\infty$ a.s., $N_t \underset{t\to\infty}{\longrightarrow} 0$ a.s. We note further that $\log(S_\infty)$ is distributed exponentially, since by Doob's maximal identity

$$\log(S_{\infty}) \stackrel{\text{(law)}}{=} \log\left(\frac{1}{U}\right),$$

where U is uniform on [0,1]. Then, the additive decomposition of the supermartingale N_t/S_t is given by

(2)
$$\frac{N_t}{S_t} = 1 + \int_0^t \frac{dN_u}{S_u} - \log(S_t) = E[\log(S_\infty)|\mathcal{F}_t] - \log(S_t).$$

Note that the martingale $E[\log(S_{\infty})|\mathcal{F}_t]$ belongs to BMO since from (2),

$$E[\log(S_{\infty}) - \log S_t | \mathcal{F}_t] \le 1.$$

In a number of questions, it is very interesting to consider the smallest filtration $(\mathcal{F}_t')_{t\geq 0}$, which contains (\mathcal{F}_t) , and makes \mathcal{G} a stopping time; this filtration is usually denoted $(\mathcal{F}_t^{\mathcal{G}})_{t\geq 0}$. One of the interests of $(Z_t^{\mathcal{G}})$ is that it allows to write any (\mathcal{F}_t) -martingale as a semimartingale in $(\mathcal{F}_t^{\mathcal{G}})_{t\geq 0}$; see e.g. [2, 3, 8, 9], for both general formulae and many examples.

Recently, it has been understood that Black-Scholes like formulae are closely related with certain such \mathcal{G} 's, thus throwing a new light on a cornerstone of mathematical finance, see, e.g. [6, 7]. In the present paper, with (A) as our essential hypothesis, we would like to measure "how much \mathcal{G} differs from an (\mathcal{F}_t) stopping time". The remainder of this paper consists in two sections. In Section 2, we propose several criterions to measure the NST (\equiv Non Stopping Timeness) of \mathcal{G} 's which satisfy (C) and (A). In Section 3, we compute explicitly this function $m_{\mathcal{G}}$ for various examples, where \mathcal{G} is the last passage time at a level of a martingale which converges to 0, as $t \to \infty$.

2. SEVERAL POSSIBLE "NST" CRITERIONS

Consider a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$, an (\mathcal{F}_t) -previsible set Γ and a random time \mathcal{G} given by (1). Our aim is to discuss the difference between \mathcal{G} and an (\mathcal{F}_t) -stopping time. A natural question is to consider the function

$$m_{\mathcal{G}}(t) = E\left[\left(1_{(\mathcal{G} \geq t)} - P(\mathcal{G} > t | \mathcal{F}_t)\right)^2\right].$$

If \mathcal{G} is an (\mathcal{F}_t) -stopping time, the Azéma supermartingale $Z_t^{\mathcal{G}} \equiv P(\mathcal{G} \geq t | \mathcal{F}_t)$ is identically equal to $1_{(\mathcal{G} \geq t)}$. Thus, $m_{\mathcal{G}}(t) = 0$ for all t. If \mathcal{G} is not an (\mathcal{F}_t) -stopping time, a simple but useful remark is

(3)
$$m_{\mathcal{G}}(t) = E\left[Z_t^{\mathcal{G}}\left(1 - Z_t^{\mathcal{G}}\right)\right].$$

Instead of considering the "full" function $(m_G(t), t \ge 0)$, we may consider only:

$$m_{\mathcal{G}}^* = \sup_{t>0} m_{\mathcal{G}}(t)$$

as a "global" measurement of the NST of \mathcal{G} .

Here are two other, a priori natural, measurements of the NST of \mathcal{G} :

(5)
$$m_{\mathcal{G}}^{**} = E \left[\sup_{t \ge 0} \left(Z_t^{\mathcal{G}} \left(1 - Z_t^{\mathcal{G}} \right) \right) \right]$$

and

(6)
$$\widetilde{m}_{\mathcal{G}} = \sup_{T>0} E\left[Z_T^{\mathcal{G}} \left(1 - Z_T^{\mathcal{G}}\right)\right]$$

where T runs over all (\mathcal{F}_t) stopping times.

However, we cannot expect to learn very much from $m_{\mathcal{G}}^{**}$ and $\widetilde{m}_{\mathcal{G}}$, since it is easily shown the following result.

Lemma 2.2.

$$m_{\mathcal{G}}^{**} = \widetilde{m}_{\mathcal{G}} = \frac{1}{4}.$$

Proof.

(i) The fact that $m_{\mathcal{G}}^{**}=1/4$ follows immediately from

$$\sup_{x \in [0,1]} x(1-x) = \frac{1}{4},$$

and the fact that, a.s., the range of the process $(Z_t^{\mathcal{G}}, t \geq 0)$ is [0,1] since $Z_0^{\mathcal{G}} = 1$, $Z_{\infty}^{\mathcal{G}} = 0$, and $(Z_t^{\mathcal{G}}, t \geq 0)$ is continuous.

(ii) Let us consider $T_a = \inf\{t : Z_t^{\mathcal{G}} = a\}$, for 0 < a < 1. Then

$$Z_t^{\mathcal{G}}(1 - Z_t^{\mathcal{G}})\big|_{t=T_a} = a(1 - a).$$

Hence,

$$\sup_{a \in]0,1[} E\left[Z_{T_a}^{\mathcal{G}} \left(1 - Z_{T_a}^{\mathcal{G}} \right) \right] = \sup_{a \in]0,1[} \left(a(1-a) \right) = \frac{1}{4}.$$

An immediate result is that 1/4 is an upper bound of $m_{\mathcal{G}}$ due to the definition. Moreover, there are some other measurements which have been investigated in a number of literatures.

Remark 2.3.

(1) (The optional stopping time discrepancy $\mu_{\mathcal{G}}$) It has been shown in [4], of stopping times, among random times, as the times τ such that for every bounded martingale $(M_t)_{t\geq 0}$ one has

$$M_{\tau} = E\left[M_{\infty}|\mathcal{F}_{\tau}\right],$$

where, under our hypothesis (C), we may define $\mathcal{F}_{\tau} = \sigma\{H_{\tau}; H \text{ previsible}\}$. Thus, another measurement of the NST of \mathcal{G} is

$$\mu_{\mathcal{G}} = \sup_{\substack{M_{\infty} \in L^{2}(\mathcal{F}_{\infty}) \\ E(M_{\infty}^{2}) \leq 1}} E\left[\left(M_{\mathcal{G}} - E\left[M_{\infty} | \mathcal{F}_{\mathcal{G}} \right] \right)^{2} \right].$$

(2) (Distance from stopping times) We introduce

$$\nu_{\mathcal{G}} = \inf_{T>0} E|\mathcal{G} - T|,$$

where T runs over all (\mathcal{F}_t) stopping times. However, this quantity may be infinite as \mathcal{G} may have infinite expectation. We note that this distance was precisely computed by du Toit-Peskir-Shiryaev in the example of [1]. A more adequate distance may be:

$$\nu_{\mathcal{G}}' = \inf_{T \ge 0} \left(E \left[\frac{|\mathcal{G} - T|}{1 + |\mathcal{G} - T|} \right] \right)$$

In this paper we concentrate uniquely on the study of $(m_{\mathcal{G}}(t), t \geq 0)$ using the technique of Azéma supermartingale and enlargement of filtration.

3. A Study of Several Interesting Examples of Functions $m_{\mathcal{G}}(t)$

3.1. Some general formulae

We shall compute $(m_{\mathcal{G}}(t), t \ge 0)$ in some particular cases where

$$\mathcal{G} = \mathcal{G}_K = \sup\{t \ge 0 : M_t = K\}, \qquad K \le 1,$$

with $M_0 = 1$, $M_t \ge 0$, a continuous local martingale such that $M_t \xrightarrow[t \to \infty]{} 0$. We recall that (see, e.g. [2, 8]):

$$Z_t = P(\mathcal{G}_K \ge t | \mathcal{F}_t) = 1 \wedge \left(\frac{M_t}{K}\right).$$

Thus

(8)
$$m_K(t) = E[Z_t(1 - Z_t)] = \frac{1}{K^2} E[M_t(K - M_t)^+].$$

Consider the particular case $M_t = \mathcal{E}_t = \exp(B_t - t/2)$, with (B_t) a standard Brownian motion, and $\mathcal{G}_K = \sup\{t : \mathcal{E}_t = K\}$ for $K \leq 1$.

From formula (8), we deduce:

$$m_K(t) = \frac{1}{K^2} E\left[\mathcal{E}_t (K - \mathcal{E}_t)^+\right]$$

$$= \frac{1}{K^2} E\left[\left(K - \exp\left(B_t + \frac{t}{2}\right)\right)^+\right] \text{ (by Cameron-Martin)}$$

$$= \frac{1}{K^2} \left\{KP\left(\exp\left(B_t + \frac{t}{2}\right) < K\right) - E\left[1_{\left(\exp\left(B_t + \frac{t}{2}\right) < K\right)} \exp\left(B_t + \frac{t}{2}\right)\right]\right\}.$$

Set $K = e^l$, we have

$$m_K(t) = e^{-l} P\left(B_t + \frac{t}{2} < l\right) - e^t e^{-2l} P\left(B_t + \frac{3t}{2} < l\right)$$

$$= \left(e^{-l} - e^{t-2l}\right) P\left(B_1 < -\frac{3\sqrt{t}}{2} + \frac{l}{\sqrt{t}}\right)$$

$$+ e^{-l} P\left(-\frac{3\sqrt{t}}{2} + \frac{l}{\sqrt{t}} < B_1 < -\frac{\sqrt{t}}{2} + \frac{l}{\sqrt{t}}\right).$$

In particular,

$$m_1(t) = (1 - e^t) P\left(B_1 < -\frac{3\sqrt{t}}{2}\right) + P\left(-\frac{3\sqrt{t}}{2} < B_1 < -\frac{\sqrt{t}}{2}\right).$$

Figure 1 presents the graphs of $m_K(t)$ for some K's.

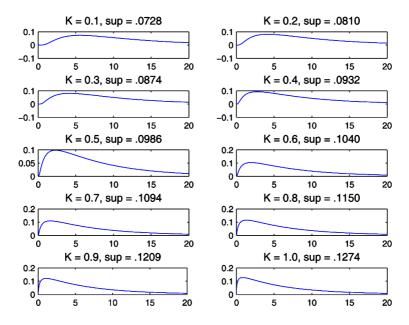


Fig. 1. Graphs of $m_K(t)$, for K = 0.1, 0.2, ...1.

3.2. The case $\mathcal{G} = \mathcal{G}_{\gamma_T^a} = \sup\{u \leq T : B_u = a\}$

For fixed time T and $a \in \mathbb{R}$, the associated Azéma supermartingale is of the form

$$Z_t = \Phi\left(\frac{|B_t - a|}{\sqrt{T - t}}\right) 1_{\{t < T\}}$$

(see, e.g., Table (1α) of Progressive Enlargements, p.32 of [8]), where $\Phi(x) = \sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-u^2/2} du$. Then for t < T, using change of variables we have

$$m_{\mathcal{G}}^{a,T}(t) = E\left[\Phi\left(\frac{|\sqrt{t}B_1 - a|}{\sqrt{T - t}}\right)\left(1 - \Phi\left(\frac{|\sqrt{t}B_1 - a|}{\sqrt{T - t}}\right)\right)\right] = m^{a/\sqrt{T}}\left(\sqrt{\frac{T - t}{t}}\right),$$

where

$$\begin{split} m^{D}(c) := \frac{c}{\sqrt{2\pi}} \int_{0}^{\infty} \Phi(y) (1 - \Phi(y)) \left(\exp\left(-\frac{(cy + D\sqrt{c^{2} + 1})^{2}}{2}\right) + \exp\left(-\frac{(cy - D\sqrt{c^{2} + 1})^{2}}{2}\right) \right) dy. \end{split}$$

Hence

$$m_{\mathcal{G}}^{a,T} := \sup_{0 \le t \le T} m_{\mathcal{G}}^{a,T}(t) = \sup_{c \ge 0} m^{a/\sqrt{T}}(c).$$

Remark 3.4.

- (1) For $a \in \mathbb{R}$, $m_{\mathcal{G}}^{a,T} = m_{\mathcal{G}}^{-a,T}$, since $m^D(c) = m^{-D}(c)$.
- (2) $m_{\mathcal{G}}^{0,T}$ is independent of T, since

$$m_{\mathcal{G}}^{0,T} = \sup_{c>0} \frac{2c}{\sqrt{2\pi}} \int_0^\infty \Phi(y) (1 - \Phi(y)) \exp\left(-\frac{c^2 y^2}{2}\right) dy$$

is independent of T

(3) the value of $m_{\mathcal{G}}^{a,T}$ depends only on $D:=a/\sqrt{T}$, e.g., (a,T)=(1,1) and (a,T)=(1/2,1/4) have the same $m_{\mathcal{G}}^{a,T}$ value, since D=1 in both cases.

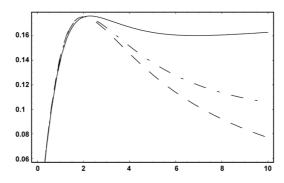
Remark 3.5. Table 1 gives the values of $m_{\mathcal{G}}^{a,T}$ for some D.

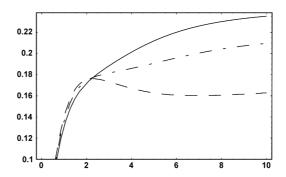
Table 1. The values of $m_{\mathcal{G}}^{a,T}$ for some D

D	0	0.1	0.2	0.3	0.4
$m_{\mathcal{G}}^{a,T}$	0.17548	0.175531	0.173103	0.220612	0.244867
D	0.5	0.6	0.7	1	1.1
$m_{\mathcal{G}}^{a,T}$	0.249704	0.24059	0.218382	0.132556	0.105833
D	1.2	1.5	2	3	5
$m_{\mathcal{G}}^{a,T}$	0.0840563	0.0416004	0.0122678	0.000653202	1.30174×10^{-7}

In fact, if D satisfies $\Phi(D)=\frac{1}{2}$ (i.e., D around 0.47693627), then $m_{\mathcal{G}}^{a,T}=\frac{1}{4}$ and the maximum occurs at t=0. The same as $m_{\mathcal{G}}^{**}$ and $\tilde{m}_{\mathcal{G}}$.

Figures 2–4 present the graphs $m^D(c)$ for some D. The horizontal axis is the value of $c=\sqrt{\frac{T-t}{t}}$ and the vertical axis is the value of $m^D(c)$, and its maximum is exactly $m_{\mathcal{G}}^{a,T}$.





3.3. The case $\mathcal{G} = \mathcal{G}_{T_a} = \sup\{t < T_a : B_t = 0\}$

Here, we denote $T_a = \inf\{u : B_u = a\}$, for a > 0; and $S_t = \sup_{0 \le u \le t} B_u$. The corresponding Azéma supermartingale is given by

$$Z_t = 1 - \frac{1}{a} B_{t \wedge T_a}^+,$$

see, e.g., Table (1α) of Progressive Enlargements, p. 32 of [8]. Thus, we obtain:

$$m_{\mathcal{G}}(t) = E\left[\left(\frac{1}{a} B_{t \wedge T_{a}}^{+}\right) \left(1 - \frac{1}{a} B_{t \wedge T_{a}}^{+}\right)\right]$$
$$= \frac{1}{a^{2}} E\left[1_{(t < T_{a})} 1_{(B_{t} > 0)} B_{t}(a - B_{t})\right]$$
$$= \frac{1}{a^{2}} E\left[1_{(S_{t} < a)} 1_{(B_{t} > 0)} B_{t}(a - B_{t})\right].$$

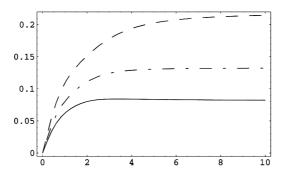


Fig. 4. D = 0.7: — — ; D = 1: — — - ; D = 1.2: —

Let

$$\varphi(x) = E \left[1_{(S_1 < x)} 1_{(B_1 > 0)} B_1(x - B_1) \right]$$

then

$$m_{\mathcal{G}}(t) = \frac{t}{a^2} \varphi\left(\frac{a}{\sqrt{t}}\right).$$

Now, it remains to compute the function φ . We note that

$$\varphi(x) = E\left[B_1^+(x - B_1)^+\right] - E\left[1_{(S_1 > x)}B_1^+(x - B_1)^+\right].$$

We shall take advantage of the very useful formula:

$$P(S_1 > x | B_1 = a) = \exp(-2x(x - a)), \qquad x \ge a > 0,$$

see, e.g., [5], p.425. Thus, we find

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x dy \ y(x-y) \left(\exp\left(-\frac{y^2}{2}\right) - \exp\left(-\frac{1}{2}(2x-y)^2\right) \right)$$

Thus,

$$\frac{\varphi(x)}{x^2} = \frac{x}{\sqrt{2\pi}} \int_0^1 du \ u(1-u) \left(\exp\left(-\frac{x^2 u^2}{2}\right) - \exp\left(-\frac{x^2}{2}(2-u)^2\right) \right).$$

Note that the value of $\sup_{t>0} m_{\mathcal{G}}(t) = \sup_{x>0} \frac{\varphi(x)}{x^2}$ is independent of the value of a, since $m_{\mathcal{G}}(t)$ depends only on the value of $x:=a/\sqrt{t}$.

3.4. The case $G = \mathcal{L}_a = \sup\{u : R_u = a\}$

We have

$$Z_t = 1 \wedge \left(\frac{a}{R_t}\right)^{2\mu},\,$$

see, e.g., Table (1α) of Progressive Enlargements, p.32 of [8]. Here, (R_u) is a Bessel process of index μ starting at 0, i.e., R is a d-dimensional Bessel process with $d=2(\mu+1)$. Thus,

$$m_{\mathcal{G}}(t) = E\left[\left(1 \wedge \left(\frac{a}{R_t}\right)^{2\mu}\right) \left(1 - 1 \wedge \left(\frac{a}{R_t}\right)^{2\mu}\right)\right]$$
$$= E\left[1_{\left(\frac{a}{\sqrt{t}R_1} < 1\right)} \left(\frac{a}{\sqrt{t}R_1}\right)^{2\mu} \left(1 - \left(\frac{a}{\sqrt{t}R_1}\right)^{2\mu}\right)\right].$$

Using the fact that $R_1^2 \stackrel{(\text{law})}{=} 2\gamma_{d/2}$, where $\gamma_{d/2}$ has a gamma law with parameter (d/2,1), we get

$$m_{\mathcal{G}}(t) = \varphi_{\mu} \left(\frac{a^2}{2t} \right),$$

where

$$\varphi_{\mu}(z) = \frac{1}{\Gamma(\mu+1)} \left\{ z^{\mu} e^{-z} - z^{2\mu} \int_{z}^{\infty} \frac{du}{u^{\mu}} e^{-u} \right\}.$$

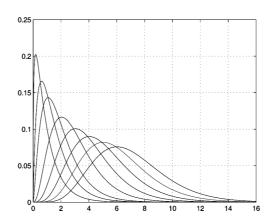


Fig. 5. Graphs of $\varphi_{\mu}(z)$, for $\mu=1/2,\,1,\,3/2,\,5/2,\,7/2,\,9/2,\,11/2,\,13/2,$ and that $z_{1/2}=0.19,\,z_1=0.61,\,z_{3/2}=1.08,\,z_{5/2}=2.05,\,z_{7/2}=3.04,\,z_{9/2}=4.03,\,z_{11/2}=5.02,\,z_{13/2}=6.02.$

Figure 5 presents the graphs of φ_{μ} for $\mu=1/2,1,3/2,5/2,7/2,9/2,11/2$ and 13/2. We also approximate z_{μ} , the unique positive real number which achieves the max of φ_{μ} . This will give us the value $m_{\mu} \stackrel{\text{def}}{=} m_{\mathcal{G}}^*$, for these $\mathcal{G} \equiv \mathcal{L}_a$ (note that, for a given μ , the value does not depend on a; this is because of the scaling property).

It is not difficult to show that: z_{μ} is the unique solution of

$$(E_{\mu}): \frac{1}{2z} = \int_0^{\infty} \frac{dh}{(1+h)^{\mu}} e^{-hz}$$

and also

$$m_{\mu} = \frac{1}{\Gamma(\mu+1)} e^{-z_{\mu}} \frac{(z_{\mu})^{\mu}}{2}.$$

Note that

$$m_{\mu} \le m'_{\mu} \stackrel{\text{def}}{=} \frac{1}{\Gamma(\mu+1)} \sup_{z \ge 0} \left(e^{-z} \frac{z^{\mu}}{2} \right).$$

Figure 6 presents the graphs of m_{μ} and m'_{μ} .

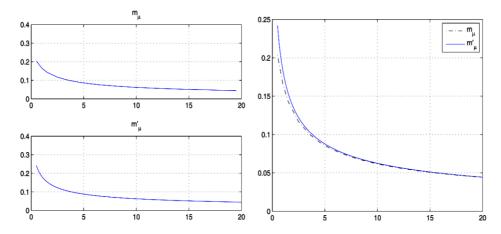


Fig. 6. Graphs of m_{μ} and m'_{μ} .

ACKNOWLEDGMENT

The first author's research is partially supported by the National Science Council under Grant #NSC 99-2115-M-009-003-, National Center for Theoretical Sciences (NCTS) and Center of Mathematical Modeling and Scientific Computing (CMMSC). The second author was supported in part by NSF Grant DMS-0907513. The second author is grateful to the Academia Sinica Institute of Mathematics (Taipei, Taiwan) and the City University of Hong Kong for their hospitality and support during extended visits.

REFERENCES

- 1. J. du Toit, G. Peskir and A. N. Shiryaev, Predicting the last zero of Brownian motion with drift, *Stochastics*, **80** (2008), 229-245.
- 2. T. Jeulin, Semi-martingales et grossissements d'une filtration, LNM 833, Springer, Berlin, 1980.
- 3. T. Jeulin and M. Yor, eds., *Grossissements de filtrations: exemples et applications*, LNM 1118, Springer-Verlag, 1985.
- 4. F. Knight and B. Maisonneuve, A characterization of stopping times, *The Annals of Probability*, **22(3)** (1994), 1600-1606.
- 5. I. Karatzas and M. Shreve, *Brownian Motion and Stochastic Calculus*, 2nd ed., Springer, Berlin, 1991.
- 6. D. Madan, R. Roynette and M. Yor, Option prices as probabilities, *Finance Research Letters*, **5** (2008), 79-87, doi:10.1016/j.frl.2008.02.002
- 7. D. Madan, R. Roynette and M. Yor, Unifying Black-Scholes type formulae which involve last passage times up to finite horizon. *Asia-Pacific Financial Markets*, **15** (2008), 97-115.
- 8. R. Mansuy and M. Yor, *Random times and enlargements of filtrations in a Brownian setting*, LNM 1873, Springer, Berlin, 2006.
- 9. A. Nikeghbali and M. Yor, Doob's maximal identity, multiplicative decomposition and enlargements of filtrations, *Ill. Journal of Maths.*, **50** (2006), 791-814.

Ching-Tang Wu Department of Applied Mathematics National Chiao Tung University Hsinchu 30050, Taiwan E-mail: ctwu@math.nctu.edu.tw

Ju-Yi Yen Vanderbilt University Nashville, Tennessee 37240 U.S.A. E-mail: ju-yi.yen@vanderbilt.edu

Marc Yor Institut Universitaire de France and Laboratoire de Probabilités et Modèles Aléatoires Université Pierre et Marie Curie Case Courrier 188, 4, Place Jussieu, 75252 Paris Cedex 05, France