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MEASURING THE “NON-STOPPING TIMENESS” OF ENDS OF
PREVISIBLE SETS

Ching-Tang Wu*, Ju-Yi Yen and Marc Yor

Abstract. In this paper, we propose some “measurements” of the “non-stopping
timeness” of ends G of previsible sets, such that G avoids stopping times, in an
ambiant filtration. We then study several explicit examples, involving last passage
times of some remarkable martingales.

1. INTRODUCTION: ABOUT ENDS OF PREVISIBLE SETS

In this paper, we are interested in random times G defined on a filtered probability
space (Ω,F , (Ft), P ) as ends of (Ft)-previsible sets Γ, that is,

(1) G ≡ GΓ = sup{t : (t, ω) ∈ Γ}.
For simplicity, we shall make the following assumptions:
(C) All ((Ft), P )-martingales are continuous;
(A) For any (Ft)-stopping time T , P (G = T ) = 0.

To such a random time, one associates the Azéma supermartingale

ZG
t = P (G > t|Ft),

which, under (C) and (A), admits a continuous version as shown by the following
theorem.

Theorem 1.1. Under (C) and (A), there exists a unique positive local martingale
(Nt, t ≥ 0), with N0 = 1, such that

ZG
t = P (G > t|Ft) =

Nt

St
,

where St := sup
s≤t

Ns for t ≥ 0.
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Proof. See [8]: page 16, Proposition 1.3.

Note that since G < ∞ a.s., Nt −→
t→∞ 0 a.s. We note further that log(S∞) is

distributed exponentially, since by Doob’s maximal identity

log(S∞)
(law)
= log

(
1
U

)
,

where U is uniform on [0, 1]. Then, the additive decomposition of the supermartingale
Nt/St is given by

(2)
Nt

St
= 1 +

∫ t

0

dNu

Su
− log(St) = E[log(S∞)|Ft] − log(St).

Note that the martingale E[log(S∞)|Ft] belongs to BMO since from (2),

E[log(S∞)− logSt|Ft] ≤ 1.

In a number of questions, it is very interesting to consider the smallest filtration
(F ′

t)t≥0, which contains (Ft), and makes G a stopping time; this filtration is usually
denoted (FG

t )t≥0. One of the interests of (ZG
t ) is that it allows to write any (Ft)-

martingale as a semimartingale in (FG
t )t≥0; see e.g. [2, 3, 8, 9], for both general

formulae and many examples.
Recently, it has been understood that Black-Scholes like formulae are closely related

with certain such G’s, thus throwing a new light on a cornerstone of mathematical
finance, see, e.g. [6, 7]. In the present paper, with (A) as our essential hypothesis,
we would like to measure “how much G differs from an (Ft) stopping time”. The
remainder of this paper consists in two sections. In Section 2, we propose several
criterions to measure the NST (≡ Non Stopping Timeness) of G’s which satisfy (C)
and (A). In Section 3, we compute explicitly this function mG for various examples,
where G is the last passage time at a level of a martingale which converges to 0, as
t → ∞.

2. SEVERAL POSSIBLE ”NST” CRITERIONS

Consider a filtered probability space (Ω,F , (Ft), P ), an (Ft)-previsible set Γ and
a random time G given by (1). Our aim is to discuss the difference between G and an
(Ft)-stopping time. A natural question is to consider the function

mG(t) = E
[(

1(G≥t) − P (G > t|Ft)
)2]

.

If G is an (Ft)-stopping time, the Azéma supermartingale ZG
t ≡ P (G ≥ t|Ft) is

identically equal to 1(G≥t). Thus, mG(t) = 0 for all t. If G is not an (Ft)-stopping
time, a simple but useful remark is

(3) mG(t) = E
[
ZG

t

(
1 − ZG

t

)]
.
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Instead of considering the “full”function (mG(t), t ≥ 0), we may consider only:

(4) m∗
G = sup

t≥0
mG(t)

as a “global” measurement of the NST of G.
Here are two other, a priori natural, measurements of the NST of G:

(5) m∗∗
G = E

[
sup
t≥0

(
ZG

t

(
1 − ZG

t

))]
and

(6) m̃G = sup
T≥0

E
[
ZG

T

(
1 − ZG

T

)]
where T runs over all (Ft) stopping times.
However, we cannot expect to learn very much from m∗∗

G and m̃G , since it is easily
shown the following result.

Lemma 2.2.

(7) m∗∗
G = m̃G =

1
4
.

Proof.
(i) The fact that m∗∗

G = 1/4 follows immediately from

sup
x∈[0,1]

x(1− x) =
1
4
,

and the fact that, a.s., the range of the process (ZG
t , t ≥ 0) is [0, 1] since ZG

0 = 1,
ZG∞ = 0, and (ZG

t , t ≥ 0) is continuous.
(ii) Let us consider Ta = inf{t : ZG

t = a}, for 0 < a < 1. Then

ZG
t (1 − ZG

t )
∣∣
t=Ta

= a(1− a).
Hence,

sup
a∈]0,1[

E
[
ZG

Ta

(
1 − ZG

Ta

)]
= sup

a∈]0,1[
(a(1− a)) =

1
4
.

An immediate result is that 1/4 is an upper bound of mG due to the definition.
Moreover, there are some other measurements which have been investigated in a number
of literatures.

Remark 2.3.
(1) (The optional stopping time discrepancyμG ) It has been shown in [4], of stopping

times, among random times, as the times τ such that for every bounded martingale
(Mt)t≥0 one has
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Mτ = E [M∞|Fτ ] ,

where, under our hypothesis (C), we may define Fτ = σ{Hτ ; H previsible}.
Thus, another measurement of the NST of G is

μG = sup
M∞∈L2(F∞)

E(M2∞)≤1

E
[
(MG − E [M∞|FG])2

]
.

(2) (Distance from stopping times) We introduce

νG = inf
T≥0

E|G − T |,

where T runs over all (Ft) stopping times. However, this quantity may be
infinite as G may have infinite expectation. We note that this distance was
precisely computed by du Toit-Peskir-Shiryaev in the example of [1]. A more
adequate distance may be:

ν′
G = inf

T≥0

(
E

[ |G − T |
1 + |G − T |

])
In this paper we concentrate uniquely on the study of (mG(t), t ≥ 0) using the

technique of Azéma supermartingale and enlargement of filtration.

3. A STUDY OF SEVERAL INTERESTING EXAMPLES OF FUNCTIONS mG(t)

3.1. Some general formulae

We shall compute (mG(t), t ≥ 0) in some particular cases where

G = GK = sup{t ≥ 0 : Mt = K}, K ≤ 1,

with M0 = 1, Mt ≥ 0, a continuous local martingale such that Mt −→
t→∞ 0. We recall

that (see, e.g. [2, 8]):

Zt = P (GK ≥ t|Ft) = 1 ∧
(

Mt

K

)
.

Thus

(8) mK(t) = E [Zt (1 − Zt)] =
1

K2
E
[
Mt (K − Mt)

+] .
Consider the particular case Mt = Et = exp(Bt − t/2), with (Bt) a standard

Brownian motion, and GK = sup{t : Et = K} for K ≤ 1.
From formula (8), we deduce:
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mK(t) =
1

K2
E
[Et (K − Et)

+]
=

1
K2

E

[(
K − exp

(
Bt +

t

2

))+
]
(by Cameron-Martin)

=
1

K2

{
KP

(
exp

(
Bt+

t

2

)
< K

)
−E

[
1(exp(Bt+

t
2)<K) exp

(
Bt+

t

2

)]}
.

Set K = el, we have

mK(t) = e−lP

(
Bt +

t

2
< l

)
− ete−2lP

(
Bt +

3t

2
< l

)
=
(
e−l − et−2l

)
P

(
B1 < −3

√
t

2
+

l√
t

)
+e−lP

(
−3

√
t

2
+

l√
t

< B1 < −
√

t

2
+

l√
t

)
.

In particular,

m1(t) =
(
1 − et

)
P

(
B1 < −3

√
t

2

)
+ P

(
−3

√
t

2
< B1 < −

√
t

2

)
.

Figure 1 presents the graphs of mK(t) for some K’s.

Fig. 1. Graphs of mK (t), for K = 0.1, 0.2, ...1.
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3.2. The case G = Gγa
T

= sup{u ≤ T : Bu = a}
For fixed time T and a ∈ R, the associated Azéma supermartingale is of the form

Zt = Φ
( |Bt − a|√

T − t

)
1{t<T }

(see, e.g., Table (1α) of Progressive Enlargements, p.32 of [8]), where Φ(x) =√
2
π

∫ ∞

x
e−u2/2 du. Then for t < T , using change of variables we have

ma,T
G (t) = E

[
Φ
( |√t B1 − a|√

T − t

)(
1− Φ

( |√t B1 − a|√
T − t

))]
= ma/

√
T

(√
T − t

t

)
,

where

mD(c) : =
c√
2π

∫ ∞

0
Φ(y)(1− Φ(y))

(
exp

(
−(cy + D

√
c2 + 1)2

2

)

+ exp

(
−(cy − D

√
c2 + 1)2

2

))
dy.

Hence
ma,T

G := sup
0≤t≤T

ma,T
G (t) = sup

c≥0
ma/

√
T (c).

Remark 3.4.
(1) For a ∈ R, ma,T

G = m
−a,T
G , since mD(c) = m−D(c).

(2) m
0,T
G is independent of T , since

m0,T
G = sup

c≥0

2c√
2π

∫ ∞

0
Φ(y)(1− Φ(y)) exp

(
−c2y2

2

)
dy

is independent of T .
(3) the value of ma,T

G depends only on D := a/
√

T , e.g., (a, T ) = (1, 1) and
(a, T ) = (1/2, 1/4) have the same ma,T

G value, since D = 1 in both cases.

Remark 3.5. Table 1 gives the values of ma,T
G for some D.

Table 1. The values of ma,T
G for some D

D 0 0.1 0.2 0.3 0.4
ma,T

G 0.17548 0.175531 0.173103 0.220612 0.244867
D 0.5 0.6 0.7 1 1.1

ma,T
G 0.249704 0.24059 0.218382 0.132556 0.105833
D 1.2 1.5 2 3 5

m
a,T
G 0.0840563 0.0416004 0.0122678 0.000653202 1.30174× 10−7
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In fact, if D satisfies Φ(D) =
1
2
(i.e., D around 0.47693627), then ma,T

G =
1
4
and

the maximum occurs at t = 0. The same as m∗∗
G and m̃G .

Figures 2–4 present the graphs mD(c) for some D. The horizontal axis is the value

of c =

√
T − t

t
and the vertical axis is the value of mD(c), and its maximum is exactly

ma,T
G .

Fig. 2. D = 0: ; D = 0.1: ; D = 0.2: .

Fig. 3. D = 0.2: ; D = 0.3: ; D = 0.4: .

3.3. The case G = GTa = sup{t < Ta : Bt = 0}
Here, we denote Ta = inf{u : Bu = a}, for a > 0; and St = sup

0≤u≤t
Bu. The

corresponding Azéma supermartingale is given by

Zt = 1 − 1
a

B+
t∧Ta

,

see, e.g., Table (1α) of Progressive Enlargements, p. 32 of [8]. Thus, we obtain:
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mG(t) = E

[(
1
a

B+
t∧Ta

)(
1 − 1

a
B+

t∧Ta

)]
=

1
a2

E
[
1(t<Ta)1(Bt>0)Bt(a − Bt)

]
=

1
a2

E
[
1(St<a)1(Bt>0)Bt(a − Bt)

]
.

Fig. 4. D = 0.7: ; D = 1: ; D = 1.2: .

Let
ϕ(x) = E

[
1(S1<x)1(B1>0)B1(x − B1)

]
,

then

mG(t) =
t

a2
ϕ

(
a√
t

)
.

Now, it remains to compute the function ϕ. We note that

ϕ(x) = E
[
B+

1 (x − B1)+
]− E

[
1(S1>x)B

+
1 (x− B1)+

]
.

We shall take advantage of the very useful formula:

P (S1 > x|B1 = a) = exp(−2x(x − a)), x ≥ a > 0,

see, e.g., [5], p.425. Thus, we find

ϕ(x) =
1√
2π

∫ x

0
dy y(x − y)

(
exp

(
−y2

2

)
− exp

(
−1

2
(2x− y)2

))
Thus,

ϕ(x)
x2

=
x√
2π

∫ 1

0
du u(1− u)

(
exp

(
−x2u2

2

)
− exp

(
−x2

2
(2 − u)2

))
.
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Note that the value of sup
t>0

mG(t) = sup
x>0

ϕ(x)
x2

is independent of the value of a, since

mG(t) depends only on the value of x := a/
√

t.

3.4. The case G = La = sup{u : Ru = a}
We have

Zt = 1 ∧
(

a

Rt

)2μ

,

see, e.g., Table (1α) of Progressive Enlargements, p.32 of [8]. Here, (Ru) is a Bessel
process of index μ starting at 0, i.e., R is a d-dimensional Bessel process with d =
2(μ + 1). Thus,

mG(t) = E

[(
1 ∧

(
a

Rt

)2μ
)(

1 − 1 ∧
(

a

Rt

)2μ
)]

= E

[
1( a√

tR1
<1
) ( a√

tR1

)2μ
(

1 −
(

a√
tR1

)2μ
)]

.

Using the fact thatR2
1

(law)
= 2γd/2, where γd/2 has a gamma law with parameter (d/2, 1),

we get

mG(t) = ϕμ

(
a2

2t

)
,

where
ϕμ(z) =

1
Γ(μ + 1)

{
zμe−z − z2μ

∫ ∞

z

du

uμ
e−u

}
.

Fig. 5. Graphs of ϕµ(z), for μ = 1/2, 1, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, and that z1/2 =
0.19, z1 = 0.61, z3/2 = 1.08, z5/2 = 2.05, z7/2 = 3.04, z9/2 = 4.03, z11/2 = 5.02,
z13/2 = 6.02.
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Figure 5 presents the graphs of ϕμ for μ = 1/2, 1, 3/2, 5/2, 7/2, 9/2, 11/2 and
13/2. We also approximate zμ, the unique positive real number which achieves the
max of ϕμ. This will give us the value mμ

def= m∗
G , for these G ≡ La (note that, for a

given μ, the value does not depend on a; this is because of the scaling property).
It is not difficult to show that: zμ is the unique solution of

(Eμ) :
1
2z

=
∫ ∞

0

dh

(1 + h)μ
e−hz

and also
mμ =

1
Γ(μ + 1)

e−zµ
(zμ)μ

2
.

Note that
mμ ≤ m′

μ
def=

1
Γ(μ + 1)

sup
z≥0

(
e−z zμ

2

)
.

Figure 6 presents the graphs of mμ and m′
μ.

Fig. 6. Graphs of mµ and m′
µ.
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Université Pierre et Marie Curie
Case Courrier 188, 4,
Place Jussieu, 75252 Paris
Cedex 05, France


