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AN INTERVAL-TYPE ALGORITHM FOR CONTINUOUS-TIME
LINEAR FRACTIONAL PROGRAMMING PROBLEMS

Ching-Feng Wen

Abstract. An interval-type computational procedure by combining the parametric
method and discretization approach is proposed in this paper to solve a class
of continuous-time linear fractional programming problems (CLFP). Using the
different step sizes of discretization problems, we construct a sequence of convex,
piecewise linear and strictly decreasing upper and lower bound functions. The
zeros of upper and lower bound functions then determine a sequence of intervals
shrinking to the optimal value of (CLFP) as the size of discretization getting
larger. By using the intervals we can find corresponding approximate solutions to
(CLFP). We also establish upper bounds of lengths of these intervals, and thereby
we can determine the size of discretization in advance such that the accuracy of
the corresponding approximate solution can be controlled within the predefined
error tolerance. Moreover, we prove that the searched sequence of approximate
solution functions weakly-star converges to an optimal solution of (CLFP). Finally,
we provide some numerical examples to implement our proposed method.

1. INTRODUCTION

The theory of continuous-time linear programming problem has received consider-
able attention for a long time. Tyndall [36, 37] treated rigorously a continuous-time
linear programming problem with the constant matrices, which was originated from the
“bottleneck problem” proposed by Bellman [4]. Levison [14] generalized the results of
Tyndall by considering the time-dependent matrices in which the functions shown in
the objective and constraints were assumed as continuous on the time interval [0, T ].

Meidan and Perold [15], Papageorgiou [18] and Schechter [28] have also obtained
some interesting results of continuous-time linear programming problem. Anderson et
al. [1, 2, 3], Fleischer and Sethuraman [8], Pullan [19, 20, 21, 22, 23] and Wang et al.
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[38] investigated a subclass of continuous-time linear programming problem, which is
called the separated continuous-time linear programming problem and can be used to
model the job-shop scheduling problems. Recently, Weiss [39] proposed a simplex-like
algorithm to solve the separated continuous-time linear programming problem. Wen
et al. [41] developed a numerical method to solve the non-separated continuous-time
linear programming problem.

On the other hand, the nonlinear type of continuous-time optimization problems
was also studied by Farr and Hanson [6, 7], Grinold [11, 12], Hanson and Mond [13],
Reiland [24, 25], Reiland and Hanson [26] and Singh [32]. The nonsmooth continuous-
time optimization problems was studied by Rojas-Medar et al. [27] and Singh and Farr
[33]. The nonsmooth continuous-time multiobjective programming problems was also
studied by Nobakhtian and Pouryayevali [16, 17].

The optimization problem in which the objective function appears as a ratio of two
real-valued function is known as a fractional programming problem. Due to its signif-
icance appearing in the information theory, stochastic programming and decomposition
algorithms for large linear systems, the various theoretical and computational issues
have received particular attention in the last decades. For more details on this topic,
we may refer to Stancu-Minasian [34] and Schaible et al. [10, 29, 30, 31]. On the
other hand, Zalmai [42, 43, 44, 45] investigated the continuous-time fractional pro-
gramming problems. Moreover, Stancu-Minasian and Tigan [35] studied the stochastic
continuous-time linear fractional programming problem. Under some positivity con-
ditions, by using the minimum-risk approach, the stochastic continuous-time linear
fractional programming problem can be shown to be equivalent to the deterministic
continuous-time linear fractional programming problem.

Let L∞([0, T ], Rp) be the space of all measurable and essentially bounded functions
from a time space [0, T ] into the p-dimensional Euclidean space R

p and let C([0, T ], R
p)

be the space of all continuous functions from [0, T ] into the Rp. In this paper, we
consider the continuous-time linear fractional programming problem (CLFP) that is
formulated as follows:

(CLFP) max
µ +

∫ T

0
(f(t))�x(t)dt

ξ +
∫ T

0

(h(t))�x(t)dt

subject to Bx(t) ≤ g(t) +
∫ t

0
Kx(s)ds for all t ∈ [0, T ]

x ∈ L∞([0, T ], R
q
+),

where f ∈ C([0, T ], R
q), h ∈ C([0, T ], R

q
+), g ∈ C([0, T ], R

p
+) and ξ > 0. It is

obvious that the problem (CLFP) is feasible with the trivial feasible solution x(t) = 0
for all t ∈ [0, T ]. We also assume that B = [Bij]p×q and K = [Kij]p×q are p × q
constant matrices satisfying
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• Kij ≥ 0 for all i = 1, · · · , p and j = 1, · · · , q;

• Bij ≥ 0 and
∑p

i=1 Bij > 0 for all i = 1, · · · , p and j = 1, · · · , q,

and the superscript “�” denotes the transpose operation of matrices. Recently, Wen
and Wu [40] have developed a computational procedure by combining the paramet-
ric method and discrete approximation method to solve a special class of the present
problem (CLFP). In this paper, by extending the methodology of [40], we shall de-
velop a more practical and efficient computational procedure which can generate an
approximate solution with predefined error bound. On the other hand, the convergent
properties of approximate solutions will be studied in this paper, which was not taken
into account in Wen and Wu [40].

This paper is organized as follows. In Section 2, we propose the auxiliary paramet-
ric optimization problems, and establish many useful relations between the parametric
problem and (CLFP), which will be used to design a practical computational proce-
dure. In Section 3, we introduce the discrete approximation method for the auxiliary
parametric optimization problems. In Section 4, by using the different step sizes of dis-
cretization problems, we construct a sequence of convex, piecewise linear and strictly
decreasing upper and lower bound functions with the unique zeros, respectively. In
Section 5, we show that the zeros of upper and lower bound functions determine a
sequence of intervals which will shrink to the optimal value of (CLFP) as the size of
discretization getting larger. Besides, we establish upper bounds of lengths of these
intervals, thereby we can determine the size of discretization in advance such that the
accuracy of the corresponding approximate solution can be controlled within the pre-
defined error tolerance. Moreover, we prove that the searched sequence of approximate
solution functions weakly-star converges to an optimal solution of (CLFP). In the final
Section 6, the computational procedure is proposed and two numerical examples are
provided to demonstrate the usefulness of this practical algorithm.

2. PARAMETRIC CONTINUOUS-TIME LINEAR PROGRAMMING PROBLEMS

Let us write

(1) λ =
µ +

∫ T

0

(f(t))�x(t)dt

ξ +
∫ T

0
(h(t))�x(t)dt

.

Then the problem (CLFP) is equivalent to the following continuous-time optimization
problem
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(CP) max λ

subject to µ +
∫ T

0

(f(t))�x(t)dt = λ ·
(

ξ +
∫ T

0

(h(t))�x(t)dt

)
Bx(t) ≤ g(t) +

∫ t

0
Kx(s)ds for all t ∈ [0, T ]

x ∈ L∞([0, T ], R
q
+) and λ ∈ R.

Remark 2.1. When we say that (x∗, λ∗) is an optimal solution of (CP), it means
that the optimal objective value of (CP) is λ∗. However, when we say that the optimal
objective value of (CP) is λ∗, it does not necessary say that the problem (CP) has
an optimal solution (x∗, λ∗), and it just means that the optimal objective value λ∗ is
obtained by taking the supremum.

Given any optimization problem (P), we denote by V (P) the optimal objective value
of (P); that is, V (P) will be obtained by taking the supremum or infimum.

Since problem (CP) is not a linear programming problem, an auxiliary problem
associated with (CP) will be proposed and formulated as the parametric continuous-
time linear programming problem. For any λ ∈ R, we consider the following parametric
continuous-time linear programming problem:

(CLPλ) max µ− λξ +
∫ T

0
(f(t)− λh(t))�x(t)dt

subject to Bx(t) ≤ g(t) +
∫ t

0
Kx(s)ds for all t ∈ [0, T ](2)

x(t) ∈ L∞([0, T ], R
q
+).

The dual problem (DCLPλ) can be defined as follows:

(DCLPλ) min µ− λξ +
∫ T

0
(g(t))�y(t)dt

subject to B�y(t)−
∫ T

t
K�y(s)ds ≥ f(t)− λh(t) for t ∈ [0, T ](3)

y(t) ∈ L∞([0, T ], R
p
+).

According to the same arguments given in Tyndall [36], the weak and strong duality
properties can be realized below.

Theorem 2.1. (Weak Duality between (CLPλ) and (DCLPλ)). Considering the
primal-dual pair problems (CLP λ) and (DCLPλ), for any feasible solutions x(t) and
y(t) of problems (CLPλ) and (DCLPλ), respectively, we have

µ− λξ +
∫ T

0
(f(t)− λh(t))�x(t)dt ≤ µ− λξ +

∫ T

0
(g(t))�y(t)dt;

that is, V (CLPλ) ≤ V (DCLPλ).
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Theorem 2.2. (Strong Duality between (CLPλ) and (DCLPλ)). There exist op-
timal solutions x (∗,λ)(t) and y(∗,λ)(t) of the primal-dual pair problems (CLP λ) and
(DCLPλ), respectively, such that

µ− λξ +
∫ T

0
(f(t)− λh(t))�x(∗,λ)(t)dt = µ− λξ +

∫ T

0
(g(t))�y(∗,λ)(t)dt;

that is, V (CLPλ) = V (DCLPλ).

Using the solvability of the problem (CLPλ) and by the same arguments given in
Wen and Wu [40], the relations between (CP) and its associated auxiliary problem
(CLPλ) can also be realized. To see this, we denote by Q(λ) = V (CLPλ) the optimal
objective value of (CLPλ), which says that Q(·) is a real-valued function.

First, we can see that the function Q(λ) is continuous and strictly decreasing.

Proposition 2.1. The following statements hold true.
(i) The real-valued function Q(λ) is convex, hence is continuous.
(ii) If λ1 < λ2, then Q(λ1) > Q(λ2); that is, the real-valued function Q(·) is strictly

decreasing.

Many useful relations between (CLPλ) and (CP) are given below.

Proposition 2.2. The following statements hold true.
(i) Given any λ ∈ R, Q(λ) > 0 if and only if λ < V (CP). Equivalently, Q(λ) ≤ 0

if and only if λ ≥ V (CP).
(ii) Suppose that (x∗

λ∗(t), λ∗) is an optimal solution of (CP) such that x ∗
λ∗(t) is an

optimal solution of (CLPλ∗). Then Q(λ∗) = 0.
(iii) If problem (CLPλ) has an optimal solution x̄λ(t) such that Q(λ) = 0, then

(x̄λ(t), λ) is an optimal solution of problem (CP) with V (CP) = λ. In this case,
x̄λ(t) is also an optimal solution of (CLFP).

From Proposition 2.2, it follows that the optimal solution of (CLFP) is equivalent to
determine the root of the nonlinear equation Q(λ) = 0. If the equation Q(λ) = 0 has
a root, then Proposition 2.1 also says that the root is unique. However, it is notoriously
difficult to find the exact solution of every (CLPλ). In the next section, we shall use the
discrete approximation procedure developed by Wen et al. [41] to find the approximate
value of Q(λ) and estimate its error bound.

3. A DISCRETE APPROXIMATION METHOD FOR (CLPλ)

Now, we are going to propose the discrete approximation method to solve the
parametric problem (CLPλ). In this case, the discrete problem derived from problem
(CLPλ) will be a finite-dimensional linear programming problem.
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For each n ∈ N, we take

Pn =
{

0,
T

n
,
2T

n
, · · · , (n− 1)T

n
, T

}
as a partition of [0, T ], which divides [0, T ] into n subintervals with equal length T/n.
For l = 1, · · · , n, let

(4) a(n,λ)
l =

(
a

(n,λ)
1l , a

(n,λ)
2l , · · · , a(n,λ)

ql

)� ∈ R
q

and

(5) b(n)
l =

(
b
(n)
1l , b

(n)
2l , · · · , b(n)

pl

)� ∈ R
p,

where

(6)
a

(n,λ)
jl = min

{
fj(t)− λhj(t) : t ∈

[
(l− 1)T

n
,
lT

n

]}
for j = 1, · · · , q and l = 1, · · · , n.

and

(7) b
(n)
il = min

{
gi(t) : t ∈

[
(l− 1)T

n
,
lT

n

]}
for i = 1, · · · , p and l = 1, · · · , n.

For convenience, the “empty sum”
∑0

l=1 xl is defined to be the zero vector. Ac-
cording to the continuous-time linear programming problem (CLPλ), its discrete version
can be defined as the following finite-dimensional linear programming problem

(P(λ)
n ) maximize µ− λξ +

T

n

n∑
l=1

(a(n,λ)
l )�xl

subject to Bxl ≤ b(n)
l +

T

n
K

l−1∑
ω=1

xω for l = 1, · · · , n

xl ∈ R
q
+ for l = 1, · · · , n.

The dual problem (D(λ)
n ) of (P(λ)

n ) is defined by

(D(λ)
n ) minimize µ− λξ +

T

n

n∑
l=1

(b(n)
l )�yl

subject to B�yl ≥ a(n,λ)
l +

T

n
K�

n∑
ω=l+1

yω(8)

yl ∈ R
p
+ for l = 1, · · · , n.

where the “empty sum”
∑n

l=n+1 yl is defined to be the zero vector.
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Remark 3.1. We have the following observations.
• For each n ∈ N and λ ∈ R, the problem (P(λ)

n ) is feasible, since (x1, x2, · · · , xn)
with xl = 0 for all l = 1, · · · , n is a feasible solution of (P(λ)

n ).

• The feasibility of (D(λ)
n ) can be realized by Lemma 3.3 below.

• The above two observations say that the strong duality theorem holds true for the
primal-dual pair problems (P(λ)

n ) and (D(λ)
n ), i.e., −∞ < V (P(λ)

n ) = V (D(λ)
n ) <

∞.

It can be shown that the feasible sets of the problems (P(λ)
n ) are uniformly bounded

for all n ∈ N and λ ∈ R. To see this, let

(9) σ = min{Bij : Bij > 0} ,

(10) ν = max
j=1,··· ,q

{
p∑

i=1

Kij

}
,

(11) ζ = max {gi(t) : i = 1, · · · , p and t ∈ [0, T ]}
and

(12) τλ = max
j=1,··· ,q

max
t∈[0,T ]

max { fj(t)− λhj(t), 0 } .

From (6) and (7), it follows that a
(n,λ)
jl ≤ τλ and b

(n)
il ≤ ζ for i = 1, · · · , p, j = 1, · · · , q

and l = 1, · · · , n.
By slightly modifying the arguments given in [41], we have the following useful

results.

Lemma 3.1. Given any n ∈ N and λ ∈ R, if (x(n,λ)
1 , x(n,λ)

2 , · · · , x(n,λ)
n ) is a feasi-

ble solution of the primal problem (P (λ)
n ), where x(n,λ)

l =(x(n,λ)
1l , x

(n,λ)
2l , · · · , x(n,λ)

ql )�∈
R

q
+, then

(13) 0 ≤ x
(n,λ)
jl ≤ ζ

σ
· exp

(
qνT

σ

)
for all j = 1, · · · , q and l = 1, · · · , n

and

(14) µ− λξ ≤ V (P(λ)
n ) ≤ µ− λξ + q · τλ · T · ζ

σ
· exp

(
qνT

σ

)
.

This says that the feasible sets of the problems (P (λ)
n ) are uniformly bounded in the

sense that the bounds of x
(n,λ)
jl are independent of n and λ.
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Lemma 3.2. Given any n ∈ N and λ ∈ R, let (ŷ(n,λ)
1 , ŷ(n,λ)

2 , · · · , ŷ(n,λ)
n ) with

ŷ(n,λ)
l =(ŷ(n,λ)

1l ,ŷ(n,λ)
2l , · · · ,ŷ(n,λ)

pl )� be defined by

(15) ŷ
(n,λ)
il =

τλ

σ
·
(

1 +
νT

nσ

)n−l

≥ 0 for all i = 1, · · · , p and l = 1, · · · , n.

Then (ŷ(n,λ)
1 , ŷ(n,λ)

2 , · · · , ŷ(n,λ)
n ) is a feasible solution of the problem (D (λ)

n ) satisfying

(16) ŷ
(n,λ)
il ≤ τλ

σ
· exp

(
νT

σ

)
for all i = 1, · · · , p and l = 1, · · · , n.

Lemma 3.3. Given any n ∈ N and λ ∈ R, let ŷ
(n,λ)
il be defined in (15). Given

a feasible solution (y (n,λ)
1 , y(n,λ)

2 , · · · , y(n,λ)
n ) of problem (D(λ)

n ), let (ȳ(n,λ)
1 , ȳ(n,λ)

2 ,

· · · , ȳ(n,λ)
n ) with ȳ(n,λ)

l = (ȳ(n,λ)
1l ,ȳ(n,λ)

2l , · · · , ȳ
(n,λ)
pl )� be defined by

(17) ȳ
(n,λ)
il = min

{
y

(n,λ)
il , ŷ

(n,λ)
il

}
for all i = 1, · · · , p and l = 1, · · · , n.

Then (ȳ(n,λ)
1 , ȳ(n,λ)

2 , · · · , ȳ(n,λ)
n ) is a feasible solution of (D (λ)

n ) satisfying

(18) 0 ≤ ȳ
(n,λ)
il ≤ τλ

σ
· exp

(
νT

σ

)
for all l = 1, · · · , n and i = 1, · · · , p.

Moreover, if (y(n,λ)
1 , y(n,λ)

2 , · · · , y(n)
n ) is an optimal solution of (D (λ)

n ), then the feasible
solution (ȳ(n,λ)

1 , ȳ(n,λ)
2 , · · · , ȳ(n,λ)

n ) is also an optimal solution of (D (λ)
n ).

Remark 3.2. We are going to claim that there exists an optimal solution (ȳ(n,λ)
1 ,

ȳ(n,λ)
2 , · · · , ȳ(n,λ)

n ) of (D(λ)
n ) satisfying the inequalities (18). To see this, let (y (n,λ)

1 ,

y(n,λ)
2 , · · · , y(n,λ)

n ) be an optimal solution of (D(λ)
n ). Using Lemma 3.2 and referring to

(17), we can always construct an optimal solution (ȳ(n,λ)
1 , ȳ(n,λ)

2 , · · · , ȳ(n,λ)
n ) of (D(λ)

n )
that is defined by

ȳ
(n,λ)
il =


y

(n,λ)
il , if y

(n,λ)
il ≤ τλ

σ

(
1 +

νT

nσ

)n−l

ŷ
(n,λ)
il =

τλ

σ

(
1 +

νT

nσ

)n−l

, otherwise

such that the inequalities (18) are satisfied. Moreover, we have

(19) µ− λξ ≤ V (P(λ)
n ) = V (D(λ)

n ) ≤ µ− λξ + p · τλ · T · ζ
σ
· exp

(
νT

σ

)
.



An Interval-type Algorithm for Continuous-time Linear Fractional Programming Problems 1431

Besides, we can construct the feasible solutions of the problems (CLPλ) by virtue
of the optimal solution of the problem (P(λ)

n ). Let (x̄(n,λ)
1 , x̄(n,λ)

2 , · · · , x̄(n,λ)
n ) be an

optimal solution of (P(λ)
n ). For j = 1, · · · , q, we define the step functions x̄

(n,λ)
j :

[0, T ]→ R as follows:

(20) x̄
(n,λ)
j (t) =

 x̄
(n,λ)
jl , if

(l− 1)T
n

≤ t <
lT

n
x̄

(n,λ)
jn , if t = T,

where l = 1, · · · , n. Then we can form a vector-valued function x̄(n,λ) : [0, T ]→ R
q

by

(21) x̄(n,λ)(t) =
(
x̄

(n,λ)
1 (t), x̄(n,λ)

2 (t), · · · , x̄(n,λ)
q (t)

)�
.

In this case, we say that x̄(n,λ)(t) is a natural solution of (CLPλ) constructed from
(x̄(n,λ)

1 , x̄(n,λ)
2 , · · · , x̄(n,λ)

n ). After some algebraic calculations, it is not hard to show
the feasibility of natural solutions of (CLPλ), which will be presented below.

Proposition 3.1. Let (x̄(n,λ)
1 , x̄(n,λ)

2 , · · · , x̄(n,λ)
n ) be an optimal solution of (P (λ)

n ).
Then the natural solution x̄(n,λ)(t) of problem (CLPλ) constructed from (x̄(n,λ)

1 , x̄(n,λ)
2 ,

· · · , x̄(n,λ)
n ) is a feasible solution of (CLPλ). Moreover, we have

(22) Q(λ) = V (CLPλ) ≥ V (P(λ)
n )

for all n ∈ N.

Furthermore, by the forthcoming results, we can also see that

lim
n→∞V (P(λ)

n ) = Q(λ).

For i = 1, · · · , p and j = 1, · · · , q, we define the step functions as follows

(23) ϕ
(n,λ)
j (t) =

 a
(n,λ)
jl , if

(l− 1)T
n

≤ t <
lT

n
a

(n,λ)
jn , if t = T

and

(24) g
(n)
i (t) =

 b
(n)
il , if

(l− 1)T
n

≤ t <
lT

n
b
(n)
in , if t = T ,

where l = 1, · · · , n, and a
(n,λ)
jl and b

(n)
il are defined in (6) and (7), respectively.
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Remark 3.3. Since each fj(t)−λ hj(t) is continuous on the compact interval [0, T ]
for j = 1, · · · , q, it follows that each fj(t)−λ hj(t) is also uniformly continuous on the
compact interval [0, T ] for all j. Therefore, the sequence of step functions {ϕ(n,λ)

j (t)}
converges to fj(t) − λ hj(t) on [0, T ] for j. Similarly, we can also conclude that the
sequence of step functions {g(n)

i (t)} converges to gi(t) on [0, T ] for i = 1, · · · , p.

For further discussion, we define

(25) ρ = max
j=1,··· ,q

{∑p
i=1 Kij∑p
i=1 Bij

,
1∑p

i=1 Bij

}
.

Let (ȳ(n,λ)
1 , ȳ(n,λ)

2 , · · · , ȳ(n,λ)
n ) be an optimal solution of (D(λ)

n ). From Lemma 3.3, we
can assume that this optimal solution satisfies the inequalities (18). We also adopt the
following notations

εn(λ) = max
j=1,··· ,q

sup
t∈[0,T ]

{
fj(t)− λhj(t)− ϕ

(n,λ)
j (t)

}
(26)

ε̄n = max
i=1,··· ,p

sup
t∈[0,T ]

{
gi(t)− g

(n)
i (t)

}
(27)

δn(λ) = max
i=1,··· ,p

max
l=1,··· ,n

{
T

n
ȳ

(n,λ)
il

}
.(28)

By Remark 3.3 and Lemma 3.3, we see that for all λ,

εn(λ)→ 0, ε̄n → 0, and δn(λ)→ 0, as n→∞.

By slightly modifying the results given in [41], we see that the natural solution x̄(n,λ)(t)
of problem (CLPλ) constructed from an optimal solution of (P(λ)

n ) is an approximate
solution of (CLPλ), and its error bound can be estimated.

Proposition 3.2. The following statements hold true.

(i) We have

(29) 0 ≤ Q(λ)− V (P(λ)
n ) ≤ εn(λ),

where

(30)
εn(λ) : = ε̄n · p · δn(λ) · (n + exp (ρT )− 1)

+(εn(λ) + δn(λ))
∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt.

(ii) We have
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lim
n→∞ V (D(λ)

n ) = lim
n→∞ V (P(λ)

n ) = Q(λ).

(iii) Let x̄(n,λ)(t) be the natural solutions of (CLPλ). Then the error between the
optimal objective value of (CLPλ) and the objective value of x̄(n,λ)(t) is less
than or equal to εn(λ).

4. LOWER AND UPPER BOUND FUNCTIONS

In the sequel, we are going to develop a computational procedure for solving prob-
lem (CLFP). From Proposition 2.2, we just need to obtain the root λ∗ of Q(λ) = 0.
Let Vn(λ) := V (P(λ)

n ). Then for all n, Vn(λ) is a function of λ. Wen and Wu [40]
utilized the zero λn of the continuous function Vn(λ) and the zero λ◦

n of the continuous
function Vn(λ)+ εn(λ) to construct an interval In = [λn, λ◦

n] containing λ∗. By using
the fact that the length of the interval In approaches to zero as n tends to infinity, the
approximate solutions of (CLFP) can be obtained. Based on this methodology, we shall
derive new lower and upper bound functions of Q(λ) such that they are continuous,
convex, piecewise linear and strictly decreasing. These functions will be used to derive
the upper and lower bounds of λ∗ in the sense that these bounds can form a closed
interval containing λ∗. Besides, we can also establish upper bounds of length of these
closed intervals containing λ∗. These new lower and upper bound functions of Q(λ)
make it possible to design a more practical and efficient algorithm for solving (CLFP).

Now we consider the following parametric linear programming problem:

(ΨP(λ)
n ) maximize µ− λξ +

n∑
l=1

(
∫ l

n
T

l−1
n

T
f(t)− λ h(t)dt)�xl

subject to Bxl ≤ b(n)
l +

T

n
K

l−1∑
ω=1

xω for l = 1, · · · , n

xl ∈ R
q
+ for l = 1, · · · , n.

The dual problem (ΨD(λ)
n ) of (ΨP(λ)

n ) is defined by

(ΨD(λ)
n ) minimize µ− λξ +

n∑
l=1

(b(n)
l )�yl

subject to B�yl ≥
∫ l

n
T

l−1
n

T
{f(t)− λ h(t)}dt +

T

n
K�

n∑
ω=l+1

yω

and yl ∈ R
p
+ for l = 1, · · · , n.

In order to derive a lower bound function of Q(λ), given any n ∈ N, we define the
function

(31) Ln(λ) = V (ΨP(λ)
n ).
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Since (ΨP(λ)
n ) and (P(λ)

n ) have the same feasible regions, it says that (ΨP(λ)
n ) is also

solvable. This also says that the strong duality theorem holds true for the primal-dual
pair problems (ΨP(λ)

n ) and (ΨD(λ)
n ), i.e., −∞ < V (ΨP(λ)

n ) = V (ΨD(λ)
n ) < ∞. On

the other hand, by the same arguments for proving Lemma 3.1, we can obtain

(32) µ− λξ ≤ V (ΨP(λ)
n ) = Ln(λ) ≤ µ− λξ + q · τλ · T · ζ

σ
· exp

(
qνT

σ

)
for all λ.

Besides, by the Mean Value Theorem for Definite Integrals, for all l = 1, 2, · · · , n and
j = 1, 2, · · · , q,∫ l

n
T

l−1
n

T

{fj(t)− λ hj(t)}dt =
T

n
{fj(tjl)− λ h(tjl)} for some tjl ∈ [

l− 1
n

T,
l

n
T ].

Hence, by modifying the arguments for proving Lemmas 3.2 and 3.3, we have that
there exists an optimal solution (ȳ(n,λ)

1 , ȳ(n,λ)
2 , · · · , ȳ(n,λ)

n ) of (ΨD(λ)
n ) satisfying the

following inequalities:

(33) 0 ≤ ȳ
(n,λ)
il ≤ T

n
· τλ

σ
· exp

(
νT

σ

)
for all l = 1, · · · , n and i = 1, · · · , p.

This implies

(34)
µ− λξ ≤ V (ΨP(λ)

n )

= V (ΨD(λ)
n ) = Ln(λ) ≤ µ− λξ + p · τλ · T · ζ

σ
· exp

(
νT

σ

)
fo all λ.

For further discussion, we define

(35) c1 = max
j=1,··· ,q

max
t∈[0,T ]

max
{

fj(t)− µ

ξ
· hj(t), 0

}
,

(36) c2 = p · c1 · T · ζ
σ
· exp

(
νT

σ

)
,

(37) ĉ2 = q · c1 · T · ζ
σ
· exp

(
qνT

σ

)
and

(38) Λ = min{c2, ĉ2} ≥ 0.

Since hj ≥ 0 for all j = 1, · · · , q, from (12), we have

(39) τλ ≤ c1, for all λ ≥ µ

ξ
.
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Hence, by (32), (34), (36), (37) and (38), we have

(40) Ln(λ) ≤ µ− λξ + Λ for all λ ≥ µ

ξ
.

In the sequel, we shall provide some useful lemmas for further study.

Lemma 4.1. The following statements hold true.

(i) For each n∈N, Ln(λ) is a continuous, convex, piecewise linear and strictly de-
creasing function of λ. Moreover, each linear piece of L n(λ) corresponds to an
interval of λ over which the problem (ΨP (λ)

n ) has the same optimal solution.

(ii) For each n ∈ N and λ ∈ R, we have V (P(λ)
n ) ≤ Ln(λ) ≤ Q(λ).

(iii) Let

(41) ηL = max
{

µ + Λ
ξ

, 0
}

.

Then ηL ≥ µ/ξ and there exists a unique λL
n ∈ [µ/ξ, ηL] such that Ln(λL

n) = 0
for each n ∈ N.

Proof. To prove part (i), using the same arguments for proving Proposition 2.1, we
can prove that Ln(λ) is convex, which also says that Ln(λ) is continuous. Since ξ > 0
and h(t) ≥ 0, it follows that Ln(λ) is strictly decreasing. Besides, by the knowledge
of sensitivity analysis for linear programming, it is well known (refer to [5]) that there
exist stable ranges of λ such that (ΨP(λ)

n ) has the same optimal solution when λ stays
at each stable range. Hence, we see that Ln(λ) is piecewise linear and each linear
piece corresponds to an interval of λ over which the problem (ΨP(λ)

n ) has the same
optimal solution.

To prove part (ii), let (x̄(n,λ)
1 , x̄(n,λ)

2 , · · · , x̄(n,λ)
n ) be an optimal solution of (ΨP(λ)

n ).
Then the corresponding natural solution x̄(n,λ)(t) defined in (20) is also a feasible
solution of problem (CLPλ) by Proposition 3.1. Since the objective value of (CLPλ)
at x̄(n,λ)(t) is equal to V (ΨP(λ)

n ), it follows that

Ln(λ) = V (ΨP(λ)
n ) ≤ V (CLPλ) = Q(λ).

On the other hand, since the objective function of (P(λ)
n ) can be rewritten as

µ− λξ +
T

n

n∑
l=1

(a(n,λ)
l )�xl = µ− λξ +

n∑
l=1

(
∫ l

n
T

l−1
n

T
a(n,λ)

l dt)�xl,

by the definition of a(n,λ)
l , we see that V (P(λ)

n ) ≤ Ln(λ) for all n.
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To prove part (iii), it is obvious that ηL ≥ µ/ξ. Since ηL ≥ µ+Λ
ξ and by (40), we

have
Ln(ηL) ≤ µ− ηLξ + Λ ≤ 0.

On the other hand, by (32), we also have Ln(µ/ξ) ≥ 0. The continuity of Ln(λ)
says that there exists λL

n ∈ [µ/ξ, ηL] such that Ln(λL
n) = 0. Finally, by part (i), the

strictly decreasing property of Ln shows the uniqueness of root λL
n . This completes the

proof.

Remark 4.1. For further discussion, we define the function

(42) L̂n(λ) = V (Ψ̂P
(λ)

n ),

where the problem (Ψ̂P
(λ)

n ) is obtained from (ΨP(λ)
n ) by removing the term µ − λξ

of the objective function. By the nonnegativity of h, it is easy to see that L̂n(λ) is a
decreasing function of λ . Besides, since (Ψ̂P

(λ)

n ) and (ΨP(λ)
n ) have the same feasible

regions, they also have the same optimal solutions. Hence,

(43) Ln(λ) = µ− λ ξ + L̂n(λ).

In order to derive the upper bound function of Q(λ), let

(44) δ̂n(λ) =
T

n
· τλ

σ
· exp

(
νT

σ

)
and

(45)
ε̂n(λ) = ε̄n · p · δ̂n(λ) · (n + exp (ρT )− 1)

+
(
εn(λ) + δ̂n(λ)

)∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt.

Using (18), (28) and (30), we immediately have

(46) δn(λ) ≤ δ̂n(λ) and εn(λ) ≤ ε̂n(λ).

By (39), we also have

(47) δ̂n(λ) ≤ T

n
· c1

σ
· exp

(
νT

σ

)
for all λ ≥ µ

ξ
.

Lemma 4.2. Suppose that the functions f j and hj satisfy the Lipschitz conditions
for 1 ≤ j ≤ q. Then, for all n ∈ N and λ ≥ µ

ξ , there exist d ≥ 0 and rn ≥ 0 such that

(48) 0 ≤ ε̂n(λ) ≤ d

n
· (1 + λ) + rn

and rn → 0 as n→∞.
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Proof. From (26), we have

(49) εn(λ) = max
j=1,··· ,q

max
l=1,··· ,n

{
max
t∈I

(n)
l

{fj(t)− λhj(t)} − a
(n,λ)
jl

}
,

where
I

(n)
l =

[
l− 1

n
T,

l

n
T

]
.

Therefore, there exist j0 ∈ {1, · · · , q} and t1, t2 ∈ I
(n)
l such that

(50) εn(λ) = fj0(t1)− λhj0(t1)− [fj0(t2)− λhj0(t2)] .

Since fj and hj satisfy the Lipschitz conditions for all j = 1, · · · , q, there exists a
constant c3 such that

(51) |fj(t1)− fj(t2)| ≤ c3 |t1 − t2| and |hj(t1)− hj(t2)| ≤ c3 |t1 − t2|
for all t1, t2 ∈ [0, T ]. Then. we have

(52)

εn(λ) = fj0(t1)− fj0(t2)− λ [hj0(t1)− hj0(t2)]

≤ c3 |t1 − t2|+ λc3 |t1 − t2|

≤ (1 + λ)c3 · T
n

.

Now, we define

c4 =
∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt(53)

d = c3c4T(54)

rn =
c2

nζ

[
ε̄n(n + exp(ρT )− 1) +

c4

p

]
.(55)

Then, for all λ ≥ µ
ξ , we have

ε̂n(λ) = ε̄n · p · δ̂n(λ) · (n + exp (ρT )− 1)

+
(
εn(λ) + δ̂n(λ)

)∫ T

0
ρ · exp (ρ(T − t)) (g(t))�1dt.

= n · p · ε̄n · δ̂n(λ) + δ̂n(λ) [p · ε̄n (exp (ρT )− 1) + c4] + c4 · εn(λ)
≤ rn + c4 · εn(λ) (by (36), (47) and (55))

≤ rn + c3c4(1 + λ) · T
n

(by (52) )

=
d

n
· (1 + λ) + rn.
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It is easy to see that ε̂n(λ) ≥ 0 and d ≥ 0. Finally, since ε̄n → 0 as n → ∞, it says
that rn → 0 as n→∞. This completes the proof.

We define the function

(56) Un(λ) = Ln(λ) +
d

n
(1 + λ) + rn,

where d and rn are defined in (54) and (55), respectively.

Lemma 4.3. Suppose that the functions f j and hj satisfy the Lipschitz conditions
for 1 ≤ j ≤ q. The following statements hold true.

(i) For each n ∈ N, Un(λ) is a continuous, convex and piecewise linear function
of λ. Moreover, if n > d/ξ, then Un(λ) is strictly decreasing.

(ii) We have Q(λ) ≤ Un(λ) for all λ ≥ µ
ξ .

(iii) Suppose that n ∈ N with n > d/ξ. Let

(57) ηU
n =

µ + c2 + (d/n) + rn

ξ − (d/n)
.

Then µ
ξ ≤ ηU

n and there exists a unique λU
n ∈ [µ/ξ, ηU

n ] such that Un(λU
n ) = 0.

Moreover, we have

(58) ηU
n →

µ + c2

ξ

as n→∞
Proof. To prove part (i), by (56) and part (i) of Lemma 4.1, it is easy to see that

Un(λ) is convex, piecewise linear and continuous. Since

Un(λ) = µ− λξ + L̂n(λ) +
d

n
· (1 + λ) + rn (by (56) and (43))

=
(

d

n
− ξ

)
λ + µ + L̂n(λ) +

d

n
+ rn,

we see that if n > d/ξ then Un(λ) is strictly decreasing by Remark 4.1.
To prove part (ii), we have

Q(λ) ≤ V (P(λ)
n ) + εn(λ) (by part (i) of Proposition 3.2)

≤ Ln(λ) + ε̂n(λ) (by (46) and part (ii) of Lemma 4.1)

≤ Ln(λ) +
d

n
· (1 + λ) + rn for all λ ≥ µ

ξ
(by (48))

= Un(λ).
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To prove part (iii), since n > d/ξ, i.e., ξ − (d/n) > 0, it follows that

ηU
n ≥

µ + c2 + (d/n) + rn

ξ
≥ µ

ξ
.

On the other hand, by (34) and (39), we have

(59) Ln(λ) ≤ µ− λξ + c2 for all λ ≥ µ

ξ
.

Hence, by (56), we have

Un(λ) ≤ µ− λξ + c2 +
d

n
· (1 + λ) + rn for all λ ≥ µ

ξ
,

which implies

Un(ηU
n ) ≤ µ− ηU

n ξ + c2 +
d

n
· (1 + ηU

n ) + rn = 0.

From (32) and (48), we see that Ln(µ/ξ) ≥ 0 and d
n ·(1+λ)+rn ≥ 0. Therefore, from

(56), we have Un(µ/ξ) ≥ 0. By the continuity of Un(λ), there exists λU
n ∈ [µ/ξ, ηU

n ]
such that Un(λU

n ) = 0. Finally, by part (i), the strictly decreasing property of Un shows
the uniqueness of root λU

n . Besides, since rn → 0 as n → ∞ by Lemma 4.2, from
(57), we can obtain (58). This completes the proof.

5. APPROXIMATE SOLUTIONS

Next, we are going to demonstrate the solvability of (CLFP) and show that it is
possible to generate an approximate solution of (CLFP) according to a pre-determined
error bound.

Lemma 5.1. Let λL
n and λU

n be the roots of equations Ln(λ) = 0 and Un(λ) = 0,
respectively. Then the following statements hold true.

(i) The sequences {λL
n}∞n=1 and {λU

n }∞n=1 are bounded and

(60)
d

n

(
1 + ηU

n

)
+ rn → 0

as n→∞, where ηU
n is given in (57).

(ii) We have

(61) 0 ≤ λU
n − λL

n ≤
1
ξ

[
d

n

(
1 + ηU

n

)
+ rn

]
and λU

n − λL
n → 0 as n→∞.
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Proof. To prove part (i), since λL
n ∈ [µ/ξ, ηL] for all n and ηL is independent on

n by Lemma 4.1, the sequence {λL
n}∞n=1 is bounded. Similarly, since λU

n ∈ [µ/ξ, ηU
n ]

and the sequence {ηU
n } is convergent by Lemma 4.3, the sequence {λU

n }∞n=1 is also
bounded. Since rn → 0 as n → ∞ by Lemma 4.2, and the sequence {ηU

n }∞n=1 is
bounded by (58), we obtain (60).

To prove part (ii), by Lemma 4.1 (ii) and Lemma 4.3 (ii), we have Ln(λ) ≤ Un(λ)
for all λ ≥ µ

ξ . Since Ln(λL
n) = Un(λU

n ) = 0, we have

Ln(λU
n ) ≤ Un(λU

n ) = Ln(λL
n) = 0,

and this implies λU
n ≥ λL

n , since Ln(λ) is strictly decreasing. By (43), we have

(62) µ− λL
nξ + L̂n(λL

n) = 0

and

(63) µ− λU
n ξ + L̂n(λU

n ) +
d

n

(
1 + λU

n

)
+ rn = 0.

Let �n = L̂n(λL
n) − L̂n(λU

n ), then we have �n ≥ 0 by Remark 4.1. By subtracting
(63) from (62), we obtain(

λU
n − λL

n

)
ξ + ∆n − d

n

(
1 + λU

n

)− rn = 0,

which implies (
λU

n − λL
n

)
ξ − d

n

(
1 + λU

n

)− rn ≤ 0.

Since λU
n ≤ ηU

n by part (iii) of Lemma 4.3, we obtain the desired inequalities (61).
Finally, from (60), we have λU

n − λL
n → 0 as n→∞. This completes the proof.

The following results show that the problem (CLFP) is solvable, and they are very
useful for designing a practical algorithm.

Theorem 5.1. Suppose that functions fj and hj satisfy the Lipschitz conditions for
1 ≤ j ≤ q. Then, the following statements hold true.

(i) Given any n ∈ N with n > d/ξ, we have

(64) − d

n

(
1 + λU

n )− rn ≤ Q(λU
n

) ≤ 0 ≤ Q(λL
n) ≤ d

n

(
1 + λL

n

)
+ rn.

(ii) Given any n ∈ N with n > d/ξ, there exists λ∗ ∈ [λL
n, λU

n ] such that Q(λ∗) = 0.
Moreover, if xλ∗ is an optimal solution of (CLP λ∗), then xλ∗ is an optimal
solution of (CLFP) with V (CP) = V (CLFP) = λ∗.



An Interval-type Algorithm for Continuous-time Linear Fractional Programming Problems 1441

(iii) We consider the sequence {λ∗
n}∞n=1 defined by

(65) λ∗
n =

1
2

(
λL

n + λU
n

)
.

Then

|λ∗
n − λ∗| ≤ 1

2
(
λU

n − λL
n

)→ 0 as n→∞,

i.e., λ∗
n→ λ∗ as n→∞.

(iv) Let x̄(n,λ∗
n)(t) be the natural solution of problem (CLP λ∗

n
) constructed from the

optimal solution of (ΨP (λ∗
n)

n ). Then x̄(n,λ∗
n)(t) is also a feasible solution of

problem (CLFP). Let

(66) θ̂
(
x̄(n,λ∗

n)(t)
)

= µ− λ∗
nξ +

∫ T

0
(f(t)− λ∗

nh(t))�x̄(n,λ∗
n)(t)dt

be the objective value of (CLPλ∗
n
) of the feasible solution x̄(n,λ∗

n)(t), and let

θ
(
x̄(n,λ∗

n)(t)
)

=
µ +

∫ T

0
(f(t))�x̄(n,λ∗

n)(t)dt

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

be the objective value of (CLFP) of the feasible solution x̄(n,λ∗
n)(t). Then

(67) 0 ≤ V (CLFP)− θ
(
x̄(n,λ∗

n)(t)
)
≤ Er

(
x̄(n,λ∗

n)(t)
)

,

where

(68) Er
(
x̄(n,λ∗

n)(t)
)

=
1
2

(
λU

n − λL
n

)
+

∣∣∣θ̂ (
x̄(n,λ∗

n)(t)
)∣∣∣

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

.

Moreover, we have
(69)

0 ≤ Er
(
x̄(n,λ∗

n)(t)
)
≤ 1

2
(
λU

n − λL
n

)
+

∣∣∣θ̂ (
x̄(n,λ∗

n)(t)
)∣∣∣

ξ
≤ 1

ξ

[
d

n

(
1 + ηU

n

)
+ rn

]
and Er

(
x̄(n,λ∗

n)(t)
) → 0 as n → ∞. In other words, the natural solution

x̄(n,λ∗
n)(t) is an approximate solution of (CLFP) with error bound Er

(
x̄(n,λ∗

n)(t)
)
.
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Proof. To prove part (i), since Ln(λL
n) = 0, by Proposition 3.2, (46) and (48),

we have

(70) 0 ≤ Q(λL
n) = Q(λL

n)− Ln(λL
n) ≤ εn(λL

n) ≤ ε̂n(λL
n) ≤ d

n
(1 + λL

n) + rn.

Similarly, we also have

0 ≤ Q(λU
n )− Ln(λU

n ) ≤ ε̂n(λU
n ) ≤ d

n
(1 + λU

n ) + rn,

which implies

(71) Ln(λU
n ) ≤ Q(λU

n ) ≤ Ln(λU
n ) +

d

n
(1 + λU

n ) + rn.

Since Ln(λU
n ) + d

n (1 + λU
n ) + rn = Un(λU

n ) = 0, from (71), we have

−d

n
(1 + λU

n )− rn ≤ Q(λU
n ) ≤ 0.

Therefore, from (70), we obtain the desired inequalities (64).
To prove part (ii), since Q(λ) is continuous by Proposition 2.1, using part (i), there

exists λ∗ ∈ [λL
n, λU

n ] such that Q(λ∗) = 0. The remaining properties follow from
Proposition 2.2.

To prove part (iii), since λL
n ≤ λ∗ for n > d/ξ by part (ii), by part (ii) of Lemma 5.1,

we obtain

|λ∗
n − λ∗| =

∣∣∣∣12 (
λL

n + λU
n

)− λ∗
∣∣∣∣ ≤ 1

2
(
λL

n + λU
n

)−λL
n =

1
2

(
λU

n − λL
n

)→ 0 as n→∞.

To prove part (iv), it is obvious that x̄(n,λ∗
n)(t) is a feasible solution of (CLFP).

Since

θ̂
(
x̄(n,λ∗

n)(t)
)

= µ− λ∗
nξ +

∫ T

0
(f(t)− λ∗

nh(t))�x̄(n,λ∗
n)(t)dt,

we obtain

µ +
∫ T

0
(f(t))�x̄(n,λ∗

n)(t)dt = θ̂
(
x̄(n,λ∗

n)(t)
)

+ λ∗
n

(
ξ +

∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

)
,

which implies

µ +
∫ T

0
(f(t))�x̄(n,λ∗

n)(t)dt

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

= λ∗
n +

θ̂
(
x̄(n,λ∗

n)(t)
)

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

,
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i.e.,

λ∗ ≥ θ
(
x̄(n,λ∗

n)(t)
)

= λ∗
n +

θ̂
(
x̄(n,λ∗

n)(t)
)

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

.

Therefore, we obtain

0 ≤ λ∗ − θ
(
x̄(n,λ∗

n)(t)
)

= (λ∗ − λ∗
n)−

θ̂
(
x̄(n,λ∗

n)(t)
)

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

≤ |λ∗ − λ∗
n|+

∣∣∣θ̂ (
x̄(n,λ∗

n)(t)
)∣∣∣

ξ +
∫ T

0

(h(t))�x̄(n,λ∗
n)(t)dt

≤ 1
2

(
λU

n − λL
n

)
+

∣∣∣θ̂ (
x̄(n,λ∗

n)(t)
)∣∣∣

ξ +
∫ T

0
(h(t))�x̄(n,λ∗

n)(t)dt

= Er
(
x̄(n,λ∗

n)(t)
)

.

We remain to show that Er
(
x̄(n,λ∗

n)(t)
) → 0 as n → ∞. Since x̄(n,λ∗

n)(t) is the
natural solution constructed from the optimal solution of (ΨP(λ∗

n)
n ), from the expression

(66), we see that θ̂
(
x̄(n,λ∗

n)(t)
)

= V (ΨP(λ∗
n)

n ) = Ln(λ∗
n). We have

∣∣∣θ̂ (
x̄(n,λ∗

n)(t)
)∣∣∣ = |Ln(λ∗

n)| =
∣∣∣∣Ln

(
λL

n + λU
n

2

)∣∣∣∣
≤ 1

2

∣∣Ln(λL
n)

∣∣ +
1
2

∣∣Ln(λU
n )

∣∣ (by the convexity of Ln(λ))

=
1
2

[
d

n
(1 + λU

n ) + rn

]
(since Ln(λL

n)=0 and 0=Un(λU
n )=Ln(λU

n ) + d
n (1 + λU

n ) + rn)

≤ 1
2

[
d

n

(
1 + ηU

n

)
+ rn

]
(since λU

n ≤ ηU
n ).

By Lemma 5.1, we obtain the inequalities (69). Finally, using (60) and (69), we have
Er

(
x̄(n,λ∗

n)(t)
)→ 0 as n→∞. This completes the proof.

Now, we shall demonstrate the convergent property of the sequence {x̄(n,λ∗
n)(t)}

that are natural solutions of (CLPλ∗
n
) constructed from the optimal solutions of problems

(ΨP(λ∗
n)

n ). We recall that the dual space of the separable Banach space L1[0, T ] can be
identified with L∞[0, T ]. The following lemmas are very useful for further discussion.
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Lemma 5.2. (Friedman [9]). Let {fk} be a sequence in L∞([0, T ], R). If the
sequence {fk} is uniformly bounded with respect to ‖ · ‖∞, then there exists a subse-
quence {fkj} which weakly-star converges to f0 ∈ L∞([0, T ], R). In other words, for
any g ∈ L1([0, T ], R), we have

lim
kj→∞

∫ T

0

fkj (t)g(t)dt =
∫ T

0

f0(t)g(t)dt.

Lemma 5.3. If the sequence {fk}∞k=1 is uniformly bounded on [0, T ] with respect
to ‖ · ‖∞, and weakly-star converges to f0 ∈ L∞([0, T ], R), then

f0(t) ≤ lim sup
k→∞

fk(t) a.e. in [0, T ]

and
f0(t) ≥ lim inf

k→∞
fk(t) a.e. in [0, T ].

Proof. The results follow from the similar arguments of Levinson [14, Lemma
2.1].

Theorem 5.2. We consider the sequence {x̄(n,λ∗
n)(t)} that is obtained accord-

ing to part (iv) of Theorem 5.1. Then the sequence {x̄(n,λ∗
n)(t)} has a subsequence

{x̄(nν,λ∗
nν )(t)} which weakly-star converges to an optimal solution x̄(∗,λ∗)(t) of (CLFP).

Proof. According to the previous formulas for constructing the feasible solu-
tions x̄(n,λ∗

n)(t), we see that the sequence {x̄(n,λ∗
n)(t)} of vector-valued functions are

uniformly bounded with respect to ‖ · ‖∞ in which the bounds are independent of
n. Using Lemma 5.2, there exists a subsequence {x̄(nν ,λ∗

nν
)(t)} which weakly-star

converges to x(∗,λ∗)(t). Since x̄
(nν ,λ∗

nν )

j (t) ≥ 0 for all t ∈ [0, T ] and j = 1, · · · , q,
using Lemma 5.3, it follows that

x
(∗,λ∗)
j (t) ≥ lim inf

nv→∞ x̄
(nν ,λ∗

nν )
j (t) ≥ 0 a.e. in [0, T ],

i.e., x(∗,λ∗)(t) ≥ 0 a.e. in [0, T ]. Considering the feasibility of x̄(nν ,λ∗
nν

)(t), we have

(72) Bx̄(nν ,λ∗
nν )(t) ≤ g(t) +

∫ t

0
Kx̄(nν,λ∗

nν )(s)ds for all t ∈ [0, T ]

From (72), since B is nonnegative, by taking the limit superior and applying Lemma 5.3,
it follows that

Bx(∗,λ∗)(t) ≤ lim sup
nv→∞

Bx̄(nν ,λ∗
nν )(t) ≤

∫ t

0
Kx(∗,λ∗)(s)ds + g(t) a.e. in [0, T ](73)
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Let N0 be the subset of [0, T ] such that the inequality of (73) is violated and let N1

be the subset of [0, T ] such that x(∗,λ∗)(t) �≥ 0. Then, we define N = N0 ∪N1 and

x̄(∗,λ∗)(t) =

{
x(∗,λ∗)(t) if t �∈ N
0 if t ∈ N ,

where the set N has measure zero. We see that the subsequence {x̄(nν ,λ∗
nν )(t)} is

also weakly-star converges to x̄(∗,λ∗)(t). We remain to show that x̄(∗,λ∗)(t) is an
optimal solution of (CLFP). It is obvious that x̄(∗,λ∗)(t) ≥ 0 for all t ∈ [0, T ] and
x̄(∗,λ∗)(t) = x(∗,λ∗)(t) a.e. in [0, T ]. We consider the following cases.

• For t �∈ N , from (73), we have

Bx̄(∗,λ∗)(t)=Bx(∗,λ∗)(t)≤g(t)+
∫ t

0
Kx(∗,λ∗)(s)ds = g(t)+

∫ t

0
Kx̄(∗,λ∗)(s)ds.

• For t ∈ N , since B is nonnegative, using (72) and weak-star convergence, we
also have

Bx̄(∗,λ∗)(t) = 0 ≤ lim sup
nv→∞

Bx(nv ,λ∗
nν )(t)

≤ g(t) +
∫ t

0
Kx(∗,λ∗)(s)ds = g(t) +

∫ t

0
Kx̄(∗,λ∗)(s)ds.

Therefore, we obtain

Bx̄(∗,λ∗)(t) ≤ g(t) +
∫ t

0
Kx̄(∗,λ∗)(s)ds for all t ∈ [0, T ],

which says that x̄(∗,λ∗)(t) is a feasible solution of (CLFP). By (67), we have

(74) 0 ≤ V (CLFP)− θ
(
x̄(nν ,λ∗

nν
)(t)

)
≤ Er

(
x̄(nν ,λ∗

nν
)(t)

)
,

where

(75) θ
(
x̄(nν ,λ∗

nν
)(t)

)
=

µ +
∫ T

0
(f(t))�x̄(nν ,λ∗

nν
)(t)dt

ξ +
∫ T

0
(h(t))�x̄(nν ,λ∗

nν )(t)dt

.

By considering the weak-star convergence on (75), it follows that

(76) lim
nν→∞ θ

(
x̄(nν ,λ∗

nν )(t)
)

= θ
(
x̄(∗,λ∗)(t)

)
.



1446 Ching-Feng Wen

Since Er
(
x̄(nν ,λ∗

nν )(t)
)
→ 0 as nν → ∞, by taking the limit on both sides of (74)

and using (76), we obtain

V (CLFP) = θ
(
x̄(∗,λ∗)(t)

)
=

µ +
∫ T

0

(f(t))�x̄(∗,λ∗)(t)dt

ξ +
∫ T

0
(h(t))�x̄(∗,λ∗)(t)dt

,

which says that x̄(∗,λ∗)(t) is an optimal solution of (CLFP), and the proof is
complete.

6. INTERVAL-TYPE ALGORITHM AND NUMERICAL EXAMPLES

Since Ln(λ) and Un(λ) are convex and piecewise linear continuous functions of
λ, we can easily find the root the equations Ln(λ) = 0 and Un(λ) = 0 by the bisection
method in a finite number steps. For example, in order to find the roots of the equation
Ln(λ) = 0, this method starts with an interval [βL, βU ] which contains the root λL

n

of equation Ln(λ) = 0. We take the midpoint βM = (βL + βU )/2 of the interval.
Depending on whether Ln(βM ) ≥ 0 or Ln(βM) < 0, one considers the interval
[βM , βU ] or the interval [βL, βM ] as the next interval containing λL

n . The more precise
computational procedure is shown below.

Subroutine ZERO(Ln) (resp. ZERO(Un)). Given any fixed n ∈ N, find the roots
of the equations Ln(λ) = 0 and Un(λ) = 0.
• Step 1. Set βL = µ/ξ and βU = ηL (resp. βU = ηU

n ).

• Step 2. Calculate

β̂ = βL − Ln(βL) · (βL − βU)
Ln(βL)− Ln(βU)

(resp. β̂ = βL − Un(βL) · (βL − βU)
Un(βL)− Un(βU)

).

If Ln(β̂) = 0 (resp. Un(β̂) = 0) then STOP and return λL
n = β̂ (resp. λU

n = β̂)
as the root. Otherwise, set βM ← (βL + βU)/2 and go to Step 3.

• Step 3. If Ln(βM) > 0 (resp. Un(βM ) > 0), then set βL ← βM , βU ← β̂ and
go to Step 2. Otherwise, set βU ← βM and go to Step 2.

According to Theorem 5.1, we are in a position to provide a computational proce-
dure to obtain the approximate solution of (CLFP). For n > d/ξ, we define

(77) ωn =
1
ξ

[
d

n
(1 + ηU

n ) + rn

]
,

where d, rn and ηU
n are defined in (54), (55) and (57), respectively. By (69), we have

0 ≤ Er
(
x̄(n,λ∗

n)(t)
)
≤ ωn.
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Suppose that the error tolerance ε is pre-determined by the decision-makers. By calcu-
lating ωn according to (77), we can determine the natural number n ∈ N such that

ωn ≤ ε and n >
d

ξ
,

which also says that
0 ≤ Er

(
x̄(n,λ∗

n)(t)
)
≤ ε.

This also means that the corresponding approximate solution x̄(n,λ∗
n)(t) is acceptable,

since the error tolerance ε is attained. Now, the main computational procedure is given
below.
Main Program.

• Step 1. Set the error tolerance ε and the initial number n such that n > d/ξ.

• Step 2. Evaluate ωn as defined in (77).

• Step 3. If ωn > ε then set n← n+1 and go to Step 2; otherwise go to Step 4.

• Step 4. Find the roots λL
n and λU

n by invoking the subroutine ZERO(Ln) and
ZERO(Un) described above. Set λ∗

n← 1
2 (λL

n + λU
n ).

• Step 5. Find the optimal solution of finite-dimensional linear programming prob-
lem (ΨP(λ∗

n)
n ) using well-known efficient algorithms. Use this optimal solution

to construct the natural solution x̄(n,λ∗
n)(t) according to (20). Evaluate the error

bound Er(x̄(n,λ∗
n)(t)) defined in (68).

• Step 6. Return x̄(n,λ∗
n)(t) as an approximate optimal solution of the original

problem (CLFP) with error bound Er(x̄(n,λ∗
n)(t)).

We have to mention that the evaluations of Step 2 are independent of Step 4 and
Step 5, i.e., we can estimate the rough error bound ωn of the desired approximate
solution x̄(n,λ∗

n)(t) without using the results of Step 4. It also means that we can save
the computational time, since the main successive iterations occur in Steps 1-3, where
the workload does not need the heavy computation.

In the sequel, we provide two numerical examples to demonstrate the usefulness
of the numerical method established in this paper. For the given error tolerance ε, we
first determine n ∈ N such that ωn ≤ ε by using Steps 1-3. And then, by Steps 4-6,
we can obtain the corresponding approximate solution x̄(n,λ∗

n)(t) of (CLFP) with error
bound Er(x̄(n,λ∗

n)(t)) ≤ ωn ≤ ε.

Example 6.1. We consider the following problem
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maximize

1
3

+
∫ 1

0

[
ln

(
t +

1
2

)
· x1(t) + t2 · x2(t)

]
dt

1
2

+
∫ 1

0
[cos(t) · x1(t) + sin(1− t) · x2(t)] dt

subject to 6 x1(t) ≤ t +
∫ t

0
[x1(s) + 2 x2(s)] ds for all t ∈ [0, 1]

5 x2(t) ≤ 2 t +
∫ t

0
[3 x1(s) + x2(s)] ds for all t ∈ [0, 1]

xj(t) ∈ L∞
+ [0, 1] for j = 1, 2.

Using the proposed computational procedure, the numerical results are shown in the
following table.

ε λL
n λU

n λ∗
n θ

(
x̄(n,λ∗

n)(t)
)

Er(x̄(n,λ∗
n)(t))

0.05 0.810441805 0.832076481 0.821259143 0.810439836 0.021636646
0.01 0.810510648 0.815905402 0.813208025 0.810510531 0.005394871
0.005 0.810522108 0.813218329 0.811870219 0.810522073 0.002696256
0.001 0.810530704 0.811204541 0.810867622 0.810530700 0.000673841
0.0005 0.810532136 0.810869037 0.810700586 0.810532135 0.000336902
0.0001 0.810533389 0.810575500 0.810554444 0.810533389 0.000042111

The approximate optimal solution x̄(n,λ∗
n)(t) = (x̄(n,λ∗

n)
1 (t), x̄(n,λ∗

n)
2 (t))� of the above

problem can be obtained by (20) with approximate objective value θ
(
x̄(n,λ∗

n)(t)
)

and
error Er(x̄(n,λ∗

n)(t)).

Example 6.2. We consider the following problem

maximize

1
3

+
∫ 1

0

[
ln

(
t +

1
2

)
· x1(t) + t2 · x2(t) + x3(t)

]
dt

1
2

+
∫ 1

0
[cos(t) · x1(t) + sin(1− t) · x2(t) + t · x3(t)] dt

subject to 7 x1(t) ≤ t +
∫ t

0
[x1(s) + x2(s)] ds for all t ∈ [0, 1]

5 x2(t) ≤ 3 t +
∫ t

0
[2 x2(s) + x3(s)] ds for all t ∈ [0, 1]

6 x3(t) ≤ 2 t +
∫ t

0
[x1(s) + x2(s) + 3 x3(s)]ds for all t ∈ [0, 1]

xj(t) ∈ L∞
+ [0, 1] for j = 1, 2, 3.

Using the proposed computational procedure, the numerical results are shown in the
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following table.

ε λL
n λU

n λ∗
n θ

(
x̄(n,λ∗

n)(t)
)

Er(x̄(n,λ∗
n)(t))

0.05 1.013402519 1.037701512 1.025552015 1.013352019 0.024349493
0.01 1.013682268 1.016691382 1.015186825 1.013681550 0.003009832
0.005 1.013702240 1.015205787 1.014454014 1.013702048 0.001503740
0.001 1.013717220 1.014092917 1.013905069 1.013717209 0.000375709
0.0005 1.013719717 1.013907549 1.013813633 1.013719714 0.000187835
0.0001 1.013721589 1.013768544 1.013745067 1.013721589 0.000046955

The approximate optimal solution x̄(n,λ∗
n)(t) = (x̄(n,λ∗

n)
1 (t), x̄(n,λ∗

n)
2 (t), x̄(n,λ∗

n)
3 (t))� of

the above problem can be obtained by (20) with approximate objective value θ
(
x̄(n,λ∗

n)(t)
)

and error Er(x̄(n,λ∗
n)(t)).
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