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THE EXISTENCE RESULTS FOR OPTIMAL CONTROL PROBLEMS
GOVERNED BY QUASI-VARIATIONAL INEQUALITIES IN REFLEXIVE

BANACH SPACES

Zhong-bao Wang, Nan-jing Huang and Ching-Feng Wen*

Abstract. In this paper, some existence results for optimal control problems
governed by abstract quasi-variational inequalities are proved in reflexive Banach
spaces. As an application, an existence of the optimal control for the bilateral
obstacle optimal control problem is also given under some suitable conditions, in
which the state satisfies a quasilinear elliptic variational inequality with a source
term.

1. INTRODUCTION

The obstacle problems and the optimal control of obstacle have attracted much at-
tention in recent years (see, for example, [1-18]). Necessary and sufficient conditions
for optimal control problems governed by variational inequalities have been investi-
gated. Different methods have been used to consider this problem.

The optimal control problem for a abstract variational inequality proposed by Zhou
et al. [10] is the following minimization problem:

(1.1)
min J1(w, u)

subject to (w, u) ∈ Uad ×K1 and u ∈ S1(w),

where, for each w ∈ Uad, S1(w) is the solution set of the following variational in-
equality problem:

(1.2) 〈A1(u), v− u〉 ≥ 〈F1(u)− B1(w), v− u〉, ∀ v ∈ K1,
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and K1 is a closed and convex cone of a reflexive Banach space V with a dual space
V ∗, Uad is a nonempty closed set of a reflexive Banach space Ū , J : Uad ×K1 → R
is a real-valued function and A1, F1 : K1 → V ∗, B1 : U → V ∗ are three given
mappings. If there exist (w0, u0) ∈ Uad ×K1 and u0 ∈ S(w0) such that

J1(u0, w0) = min
(w,u)∈Uad×K1, u∈S1(w)

J1(u, w),

then w0 is called an optimal control for the minimization problem (1.1). The problem
(1.1) extends the corresponding problem in [5, 6] in many aspects, for details, see [10].
The first work on the optimal obstacle control problem was that of Adams et al. [11] in
1998. Recently, Adams and Lenhart continued the work begun in [11] and a nonzero
source term was added to the right hand side of the state equation. They soon found
that even such a minor change is not a trivial alteration (see [12]). In addition, Lou [15]
considered the existence and regularity of the control problem governed by quasilinear
elliptic variational inequality. Ye and Chen [19] considered an obstacle control problem
where the state satisfies a quasilinear elliptic variational inequality and given existence
and necessary conditions for the obstacle control problem. Ye et al. [20] studied the
existence of an optimal control problem for a quasi-linear elliptic obstacle variational
inequality in which the obstacle is taken as the control. Ye et al. [21] obtained the
existence and incomplete necessary condition of an obstacle control problem where the
state satisfies a quasilinear elliptic variational inequality with a source term and the
control functions are the upper and the lower obstacles. Chen and Ye [23] considered
existence and necessary conditions for bilateral obstacle optimal control defined by a
quasilinear elliptic variational inequalities.

Motivated and inspired by the work mentioned above, we establish the existence
results for optimal control problems governed by abstract quasi-variational inequalities
in reflexive Banach spaces. As an application, we consider a bilateral obstacle optimal
control problem where the state satisfies a quasilinear elliptic variational inequality with
a source term and give an existence of the optimal control for the bilateral obstacle
optimal control problem under some suitable conditions. The results presented in this
paper extend and improve some corresponding results in [10, 14, 21, 23].

2. EXISTENCE RESULTS FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY ABSTRACT

QUASI-VARIATIONAL INEQUALITIES

Throughout this paper, unless otherwise stated, we assume that R = (−∞,+∞),
W , X are two reflexive Banach spaces, X∗ is the dual space of X , U is a nonempty
closed convex set of W and K : U → 2X is a set-valued mapping. We use → for
convergence in strong sense and ⇀ for convergence in weak sense. Let J : U ×
K(U) → R be a real-valued function and A : K(U) → 2X∗ , B : U → X∗ be
two given mappings. Consider the following optimal control problem governed by a
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generalized quasi-variational inequality:

(2.1) min J(u, w)
subject to (w, u) ∈ U ×K(w) and u ∈ S(w),

where for each w ∈ U , S(w) = {u : (u, u∗) ∈ Ŝ(w)} and Ŝ(w) is the solution set of
the following abstract generalized quasi-variational inequality problem: find u ∈ K(w)
and u∗ ∈ A(u) such that

(2.2) 〈u∗ + B(w), v − u〉 ≥ 0, ∀ v ∈ K(w).

Some special cases are as follows:
(I) If A2, F2 : K(U) → X∗ are single-valued mappings and A = A2 − F2, then

the problem (2.1) becomes the following problem:

(2.3) min J(u, w)
subject to (w, u) ∈ U ×K(w) and u ∈ S2(w),

where for each w ∈ U , S2(w) is the solution set of the following abstract variational
inequality problem: find u ∈ K(w) such that

(2.4) 〈A2(u)− F2(u) + B(w), v− u〉 ≥ 0, ∀ v ∈ K(w).

(II) If K2 is a nonempty closed and convex cone of X and for each w ∈ U ,
K(w) = K2, then the problem (2.3) becomes the problem (1.1). Thus the problem
(2.3) also contains the corresponding problem in [5, 6] as special cases, for details, see
[10].

Definition 2.1. Let D be a nonempty subset of X . A mapping T : D → X∗ is a
single-valued mapping.

(1) T is said to be of class (S)+ if for any sequence {yj} ⊂ D, yj ⇀ y0 ∈ D
satisfying
lim supj→∞〈T (yj), yj − y0〉 ≤ 0 implies that yj → y0.

(2) T is said to be generalized pseudo-monotone if for each sequence {yj} ⊂ D,
yj ⇀ y0 ∈ D, T (yj) ⇀ w0 and lim supj→∞〈T (yj), yj − y0〉 ≤ 0, then we have
w0 = T (y0) and 〈T (yj), yj〉 → 〈w0, y0〉.

(3) T is said to be demicontinuous if for any sequence {yj} ⊂ D, yj → y0 ∈ D,
we have T (yj) ⇀ T (y0).

(4) T is said to be continuous if for any sequence {yj} ⊂ D, yj → y0 ∈ D, we
have T (yj) → T (y0).
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(5) T is said to be pseudo-monotone if for each sequence {yj} ⊂ D, yj ⇀ y0 ∈ D

and
lim supj→∞〈T (yj), yj − y0〉 ≤ 0 imply

〈T (y0), y0 −w〉 ≤ lim inf
j→∞

〈T (yj), yj −w〉
for all w ∈ D.

(6) T is said to be monotone if for any 〈T (y)− T (x), y − x〉 ≥ 0, ∀ x, y ∈ D.

(7) T is said to be uniformly monotone if for any 〈T (y)− T (x), y − x〉 ≥ a(‖x−
y‖)‖x−y‖, ∀ x, y ∈ D, where the continuous function a : [0,+∞) → [0,+∞)
is strictly monotone increasing with a(0) = 0 and a(t) → +∞, as t→ +∞.

(8) T is said to be strongly monotone if there is a constant c > 0 such that

〈T (y)− T (x), y− x〉 ≥ c‖x− y‖2, ∀ x, y ∈ D.

(9) T is said to be coercive if

lim
‖u‖→+∞

〈T (u), u〉
‖u‖ = +∞.

(10) T is said to be strongly continuous if yj ⇀ y0 in D, then T (yj) → T (y0).
(11) T is said to be hemicontinuous if t �→ 〈T (u + tv), w〉 with (u + tv) ∈ D is

continuous on [0, 1] for all u, v ∈ D, w ∈ X .
(12) T is said to be compact if T is continuous and T (C) is relatively compact for

any bounded subset C of D, i.e., T (C) is a compact set.

Remark 2.1. (See [24], pages 501 and 596).
(1) If T is demicontinuous and of class (S)+, then T is pseudo-monotone.
(2) If D is a nonempty closed convex subset of X and T : D → X∗ is a monotone

and hemicontinuous, then T is pseudo-monotone.
(3) If T is uniformly monotone, then T is of class (S)+.
(4) If T : D ⊂ X → X∗ is demicontinuous if and only if T is continuous from the

topology of X to the weakly star topology of X∗.
(5) Let A, B : D → X∗ be operators. If A is of class (S)+ and B is compact, then

A+B is of class (S)+. In addition, If A is pseudo-monotone and B is strongly
continuous, then A+B is pseudo-monotone.

(6) We have the following implications:

T is uniformly monotone ⇒ T is monotone,

T is continuous ⇒ T is demicontinuous ⇒ T is hemicontinuous,

and T is strongly monotone ⇒ T is uniformly monotone ⇒ T is coercive.
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Definition 2.2. Let D be a nonempty subset of X . A mapping T1 : D → 2X∗ is a
set-valued mapping. T1 is said to be pseudo-monotone if for each sequence {yj} ⊂ D,
yj ⇀ y0 ∈ D, y∗j ∈ T1(yj) and lim supj→∞〈y∗j , yj − y0〉 ≤ 0, then for each v ∈ D,
there exists y∗v ∈ T (y0) with the property that

〈y∗v , y0 − v〉 ≤ lim inf
j→∞

〈y∗j , yj − v〉.

Definition 2.3. Let G : X1 → 2X2 be a multi-valued mapping from a topological
space X1 into a topological space X2. G is said to be

(1) with convex (or closed, or bounded etc.) values if for each x ∈ X1, G(x) is a
convex (or closed, or bounded etc.) subset of X2;

(2) upper semicontinuous at x0 ∈ X1 if for every open set V0 with G(x0) ⊂ V0 in
X2, there is an open neighborhood U(x0) of x0 in X1, such that G(x) ⊂ V0 for
all x ∈ U(x0);

(3) upper semicontinuous if G is upper semicontinuous for each x ∈ X1.
(4) bounded if G(C̃) is a bounded set for any bounded subset C̃ of X1.

Definition 2.4. Let O be a nonempty subset of X and K ′ : O → 2X be a set-
valued mapping. For any {wn} ⊂ O with wn ⇀ w0 ∈ O, we say that the sequence of
sets K(wn) Mosco-converges to K(w) if the following two assumptions are satisfied:

(i) for every sequence un ∈ K ′(wn) such that un weakly converges to u0, then
u0 ∈ K ′(w0);

(ii) for every u0 ∈ K ′(w0), there exists un ∈ K ′(wn) (for n large enough) such that
un strongly converges to u0.

Definition 2.5. Let Õ be a nonempty subset of X and T ′
1 : Õ → 2E∗ be a set-

valued mapping. T ′
1 is said to be upper semicontinuous on finite-dimensional subspaces

of X if for each finite dimensional subspace L′ of X , T ′
1 |L′ : L′ ∩ Õ → 2X∗ is upper

semicontinuous continuous, where X∗ equipped with its weakly star topology.

Remark 2.2. If T1 is a single-valued mapping, then Definition 2.2 becomes (5)
in Definition 2.1. If O = X , then Definition 2.4 becomes the Definition 2 in [25].
In Definition 2.5, if T ′

1 is a single valued mapping, then T ′
1 is called continuous on

finite-dimensional subspaces of X . It is clear that, if T ′
1 is demicontinuous, then it is

continuous on finite-dimensional subspaces of X , for details, see [26].

Lemma 2.1. ([26]). Suppose that C is a convex and compact set in R n and
H : C → 2Rn is an upper semicontinuous set-valued mapping with compact convex
values. Then there exist u ∈ C and u∗ ∈ H(u) such that

〈u∗, v − u〉 ≥ 0, ∀ v ∈ C.
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Lemma 2.2. ([27]). Let K̃ ′ be a nonempty convex set in a vector space X ′ and
D′ a nonempty compact convex subset of a Hausdorff topological vector space Y ′.
Suppose that f̄ is a real-valued function on K̃ ′ ×D′ such that

(i) for each fixed x ∈ K̃ ′, f̄(x, y) is lower semicontinuous and convex on D ′;
(ii) for each fixed y ∈ D ′, f̄(x, y) is concave on K̃ ′. Then

sup
x∈K̃′

inf
y∈D′

f̄(x, y) = inf
y∈D′

sup
x∈K̃′

f̄(x, y).

Lemma 2.3. Let X be a reflexive Banach space and D be a nonempty subset of
X . If T : D → X∗ is a bounded generalized pseudo-monotone mapping from D into
X∗, then T is pseudo-monotone.

Proof. For any {yj} ⊂ D with yj ⇀ y0 ∈ D and lim supj→∞〈T (yj), yj−y0〉 ≤ 0,
we now show that

〈T (y0), y0 −w〉 ≤ lim infj→∞〈T (yj), yj − w〉, ∀w ∈ D.

Suppose on the contrary that the assertion is false. Then there exists v ∈ D such that

〈T (y0), y0 − v〉 > lim infj→∞〈T (yj), yj − v〉.
Since T is bounded and yj ⇀ y0, {T (yj)} is bounded. Without loss of generality,
we can assume that T (yj) ⇀ w0 ∈ X∗. The generalized pseudo-monotonicity of T
implies that w0 = T (y0) and 〈T (yj), yj〉 → 〈w0, y0〉. Hence

〈T (y0), y0 − v〉 = lim infj→∞〈T (yj), yj − v〉,
which is a contradiction. Thus the assertion is true and T is pseudo-monotone. This
completes the proof.

Theorem 2.1. Assume thatW , X are two reflexive Banach spaces, U is a nonempty
closed convex set of W and K : U → 2X is a mapping with nonempty closed and
convex values such that, for each w ∈ U , 0 ∈ K(w). Suppose that for each w ∈ U ,
A : K(w) → 2X∗ is a pseudo-monotone mapping and the following conditions are
satisfied:

(i) A is upper semicontinuous on finite dimensional subspaces of X;
(ii) for each x ∈ K(U), A(x) is a closed convex and bounded set;
(iii) for any w ∈ U ,

(2.5) lim
u∈K(w), ‖(w,u)‖→+∞

inf
u∗∈A(u)

〈u∗ +B(w), u〉 = +∞.

Then, for each w ∈ U , the abstract generalized quasi-variational inequality problem
(2.2) has a solution and so S(w) �= ∅.
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Proof. For any given w ∈ U , letting Br = {v ∈ X : ‖v‖ ≤ r} and Kr =
Br ∩K(w), we get that Kr is a bounded, closed and convex subset of X . We claim
that, for this w ∈ U , there exist ur ∈ Kr and u∗r ∈ A(ur) such that

(2.6) 〈u∗r + B(w), v− ur〉 ≥ 0, ∀ v ∈ Kr.

Indeed, denote by F the set of all finite dimensional subspaces L of X such that
L ∩Kr �= ∅. Fix a subspace L ∈ F and consider a mapping αL : X∗ → L defined
by 〈αLx

∗, y〉 = 〈x∗, y〉 for all y ∈ L. Put Kr
L = Kr ∩ L and define the mapping

AL : Kr
L → 2L by the formula

AL(x) = {αLx
∗ : x∗ ∈ A(x) + B(w)}.

By (i) and (ii), AL is upper semicontinuous on K r
L and has compact convex values.

Since Kr
L is a compact convex set, by Lemma 2.1, we know that there exists uL ∈ Kr

L

and u∗L ∈ AL(uL) such that

〈u∗L, v − uL〉 ≥ 0, ∀ v ∈ Kr
L.

Since u∗L = αLũ
∗ for some ũ∗ ∈ A(uL) + B(w), there exists u∗ ∈ A(uL) such that

〈u∗ +B(w), v − uL〉 ≥ 0, ∀ v ∈ Kr
L

and so

(2.7) sup
u∗∈A(uL)

〈u∗ + B(w), v − uL〉 ≥ 0, ∀ v ∈ Kr
L.

For each Y ∈ F , denote by SY the set of all û ∈ Kr such that there exists a subspace
L ⊇ Y with the property that û ∈ Kr

L and

sup
u∗∈A(û)

〈u∗ +B(w), v − û〉 ≥ 0, ∀ v ∈ Kr
L.

We show that the family {S̄Y } has the finite intersection property, where S̄Y is the
weak closure of SY in X . Indeed, for each Y ∈ F , by putting L = Y , we deduce from
(2.7) that uY ∈ SY . Hence SY is nonempty. Take subspaces L1, L2, · · · , Ln ∈ F
and put M = span{L1, L2, · · · , Ln}. Then M ∈ F and

SM ⊂ ⋂n
i=1 SLi .

This implies that

∅ �= SM ⊂ S̄M ⊂ ⋂n
i=1 SLi ⊂

⋂n
i=1 S̄Li

and so {S̄Y } has the finite intersection property.
Since S̄Y ⊂ Kr and Kr is weakly compact, we obtain
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⋂
Y ∈F S̄Y �= ∅.

This means that there exists a point ur ∈ Kr such that ur ∈ S̄Y for all Y ∈ F . Fix
any v ∈ Kr and choose Y ∈ F such that Y contains v and ur. Since ur ∈ S̄Y , there
exists a sequence {un} ⊂ SY such that un ⇀ ur. By the definition of SY , we have

sup
u∗∈A(un)

〈u∗ + B(w), y − un〉 ≥ 0, ∀ y ∈ Kr
Y

and so
inf

y∈Kr
Y

sup
u∗∈A(un)

〈u∗ + B(w), y − un〉 ≥ 0.

It follows from Lemma 2.2 that

sup
u∗∈A(un),

inf
y∈Kr

Y

〈u∗ + B(w), y − un〉 = inf
y∈Kr

Y

sup
u∗∈A(un)

〈u∗ + B(w), y − un〉 ≥ 0.

Since the extended-real-valued function u∗ �→ infy∈Kr
Y
〈u∗, y − un〉 is upper semicon-

tinuous, there exists u∗n ∈ A(un) such that

inf
y∈Kr

Y

〈u∗n +B(w), y − un〉 ≥ 0

and so
〈u∗n + B(w), y − un〉 ≥ 0, ∀ y ∈ Kr

Y .

In particular,

(2.8) 〈u∗n +B(w), v − un〉 ≥ 0 and 〈u∗n +B(w), ur − un〉 ≥ 0.

From (2.8), we get

lim sup
n→∞

〈u∗n, un − ur〉 = lim sup
n→∞

〈u∗n +B(w), un − ur〉 ≤ 0.

By the pseudo-monotonicity of A, there exists u′∗r ∈ A(ur) such that

(2.9) 〈u′∗r , ur − v〉 ≤ lim inf
n→∞ 〈u∗n, un − v〉.

It follows from (2.8) and (2.9) that

〈u′∗r + B(w), ur − v〉 ≤ lim inf
n→∞ 〈u∗n, un − v〉+ lim inf

n→∞ 〈B(w), un − v〉.
≤ lim inf

n→∞ 〈u∗n + B(w), un − v〉 ≤ 0.

This implies that 〈u ′∗
r + B(w), v − ur〉 ≥ 0 and so

inf
v∈Kr

sup
u′∗

r ∈A(ur)
〈u′∗r + B(w), v − ur〉 ≥ 0.
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Using Lemma 2.2 again, we can prove that there exists u∗r ∈ A(ur) such that

〈u∗r + B(w), v− ur〉 ≥ 0, ∀ v ∈ Kr.

Thus, the claim is proved and (2.6) is true.
In particular, taking v = 0 in (2.6), there are ur ∈ Kr and u∗r ∈ A(ur) such that

(2.10) 〈u∗r +B(w), ur〉 ≤ 0.

It follows from condition (2.5) that {ur} is bounded. Otherwise, if ‖ur‖ → ∞, then
by (2.5), we get

lim
‖ur‖→+∞

inf
u∗∈A(ur)

〈u∗ +B(w), ur〉 = +∞,

which contradicts (2.10). Therefore, {ur} is bounded and so ‖ur‖ ≤M for some real
number M > 0. Let r = M + 1. For each v ∈ K(w), we can choose t ∈ (0, 1) small
enough such that z = ur + t(v − ur) ∈ Kr. Substituting z into (2.6), we obtain that
ur ∈ S(w) and the generalized variational inequality problem (2.2) has a solution. The
proof is completed.

Corollary 2.1. Assume that W , X are two reflexive Banach spaces, U is a
nonempty closed convex set of W and K : U → 2X is a mapping with nonempty
bounded, closed and convex values. Suppose that for each w ∈ U , A : K(w) → 2 X∗

is a pseudo-monotone mapping and the following conditions are satisfied:
(i) A is upper semicontinuous on finite dimensional subspaces of X;
(ii) for each x ∈ K(U), A(x) is a closed convex and bounded set.

Then, for each w ∈ U , the abstract generalized quasi-variational inequality problem
(2.2) has a solution and so S(w) �= ∅.

Proof. Notice that for each w ∈ U , K(w) is bounded. From (2.6), it follows that
for each w ∈ U , S(w) �= ∅. The proof is completed.

Corollary 2.2. Let V , Ū be two reflexive Banach spaces, V ∗ be the dual space
of V , Uad be a nonempty closed convex set of W and K1 be a nonempty closed and
convex subset of V and 0 ∈ K1. Assume that F1 : K1 → V ∗ is a strongly continuous
mapping and A1 : K1 → V ∗ is a demicontinuous pseudo-monotone mapping, or
A1 − F1 is a demicontonuous, bounded and generalized pseudo-monotone mapping.
Suppose that the following coercive condition is satisfied:

(2.11) lim
(w,u)∈Uad×K1, ‖(w,u)‖→+∞

〈A1(u)− F1(u) + B1(w), u〉 = +∞.

Then, for each w ∈ Uad, S1(w) �= ∅, i.e., the abstract variational inequality problem
(1.2) has a solution.
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Proof. Since A1 is a pseudo-monotone mapping and F1 is strongly continuous,
by Remark 2.1, we know A1 − F1 is a pseudo-monotone mapping. Since A1 − F1

is bounded and generalized pseudo-monotone, Lemma 2.3 implies that A1 − F1 is a
pseudo-monotone mapping. Taking A = A1 − F1, by Theorem 2.1, we know for each
w ∈ Uad, S1(w) �= ∅. The proof is completed.

Corollary 2.3. Assume that V , Ū are two reflexive Banach spaces, V ∗ is the dual
space of V , Uad is a nonempty closed convex set of W and K 1 is a closed and convex
cone of V . Suppose that F1 : K1 → V ∗ is a compact mapping and A1 : K1 → V ∗ is a
demicontinuous mapping of class (S) +, or A1−F1 is a demicontonuous, bounded and
generalized pseudo-monotone mapping. Suppose that the following coercive condition
is satisfied:

(2.12) lim
(w,u)∈Uad×K1, ‖(w,u)‖→+∞

〈A1(u)− F1(u) + B1(w), u〉 = +∞.

Then, for each w ∈ Uad, S1(w) �= ∅, i.e., the abstract variational inequality problem
(1.2) has a solution.

Proof. Since A1 is a demicontinuous mapping of class (S)+ and F1 is a compact
mapping, by (1) and (5) in Remark 2.1, we know A1 − F1 is a pseudo-monotone
mapping. From Corollary 2.2, it follows that for each w ∈ U , S1(w) �= ∅. The proof
is completed.

Remark 2.3. If A1, A1 −F1 are continuous, then Corollary 2.4 reduces to Lemma
2.1 in [10].

Theorem 2.2. Let W , X be two reflexive Banach spaces, U be a nonempty
closed convex set of W and K : U → 2X be a mapping with nonempty closed and
convex values such that for each w ∈ U , 0 ∈ K(w). Assume that A : K(U) → 2X∗

is a bounded pseudo-monotone mapping, J : U × K(U) → R is a weakly lower
semicontinuous function, B : U → X ∗ is strongly continuous from the weak topology
of W to the topology of X ∗ and the following conditions are satisfied:

(i) A is upper semicontinuous on finite dimensional subspaces of X;

(ii) for each x ∈ K(U), A(x) is a closed convex and bounded set;

(iii) for any w ∈ U , u ∈ K(w),

(2.13) lim
‖(w,u)‖→+∞

inf
u∗∈A(u)

〈u∗ + B(w), u〉 = +∞;

(iv) for all wn ⊂ U with wn ⇀ w, K(wn) Mosco-converges to K(w).

Then there exists an optimal control w 0 ∈ U for the problem (2.1).
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Proof. From Theorem 2.1, it follows that for each w ∈ U , S(w) �= ∅. Let
{(wn, un)}n=1,2,··· ⊂ U ×K(U) be a minimizing sequence for the problem (2.1) such
that

(2.14) lim
n→∞ J(wn, un) = min

w∈U, u∈S(w)
J(w, u).

We claim that {(wn, un)}n=1,2,··· is bounded. If not so, then there exists a subsequence
{(wnk

, unk
)} such that ‖(wnk

, unk
)‖ → +∞. It follows from the coercive condition

(2.13) that

(2.15) lim
k→+∞

inf
u∗

nk
∈A(unk

)
〈u∗nk

+ B(wnk
), unk

〉 = +∞.

By unk
∈ S(wnk

), we know unk
∈ K(wnk

) and there exists u∗nk
∈ A(unk

) such that

(2.16) 〈u∗nk
+ B(wnk

), v − unk
〉 ≥ 0, ∀ v ∈ K(wnk

).

By taking v = 0 in (2.16), we get

〈u∗nk
+B(wnk

), unk
〉 ≤ 0,

which contradicts (2.15). Hence, {(wn, un)} is bounded.
By the reflexivity of W and X , there exists a weakly convergent subsequence of

{(wn, un)}. Without lose of generality, we can assume that wn ⇀ w0 ∈ W and
un ∈ K(wn) ⇀ u0 ∈ X as n→ +∞.

Since U is closed and convex, U is a weakly closed set and w0 ∈ U . By the
assumptions, we know K(wn) Mosco-converges to K(w0) and so u0 ∈ K(w0). Ac-
cording to Definition 2.4, there exists ūn ∈ K(wn) such that ūn → u0.

By un ∈ S(wn), we know that un ∈ K(wn) and there exists u∗n ∈ A(un) such
that

(2.17) 〈u∗n + B(wn), v − un〉 ≥ 0, ∀ v ∈ K(wn),

and so

(2.18) 〈u∗n +B(wn), un − ūn〉 ≤ 0.

Since B is strongly continuous from the weak topology of W to the topology of X∗,
B(wn) → B(w0). Note that A is bounded. Without loss of generality, we can assume
that u∗n ⇀ û∗. (2.18) implies that

lim sup
n→∞

〈u∗n, un − u0〉
= lim sup

n→∞
〈u∗n, un − u0〉 + lim

n→∞〈u∗n, u0 − ūn〉 + lim
n→∞〈B(wn), un − ūn〉

= lim sup
n→∞

〈u∗n +B(wn), un − ūn〉 ≤ 0.
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Fixing any v′ ∈ K(w0), from the pseudo-monotonicity of A, it follows that there exists
u∗v′ ∈ A(u0) such that

(2.19) 〈u∗v′ , u0 − v′〉 ≤ lim inf
n→∞ 〈u∗n, un − v′〉.

According to wn ⇀ w0 and the condition (iv), there exists vn ∈ K(wn) such that
vn → v′. Since u∗n ∈ A(un) and u∗n ⇀ û∗, we have

lim inf
n→∞ 〈u∗n, un − v′〉

= lim inf
n→∞ 〈u∗n, un〉+ lim

n→∞〈u∗n,−v′〉 = lim inf
n→∞ 〈u∗n, un〉 + 〈û∗,−v′〉

= lim inf
n→∞ 〈u∗n, un〉+ lim

n→∞〈u∗n,−vn〉 = lim inf
n→∞ 〈u∗n, un − vn〉.

(2.20)

(2.17), (2.19) and (2.20) imply that

〈u∗v′ , u0 − v′〉 + 〈B(w0), u0 − v′〉
≤ lim inf

n→∞ 〈u∗n, un − v′〉 + lim
n→∞〈B(wn), un − vn〉

= lim inf
n→∞ 〈u∗n, un − vn〉 + lim

n→∞〈B(wn), un − vn〉

= lim inf
n→∞ 〈u∗n +B(wn), un − vn〉 ≤ 0.

This implies that

〈u∗v′ +B(w0), v′ − u0〉 ≥ 0 and so sup
ũ∗∈A(u0)

〈ũ∗ + B(w0), v′ − u0〉 ≥ 0

and so
inf

v′∈K(w0)
sup

ũ∗∈A(u0)
〈ũ∗ +B(w0), v′ − u0〉 ≥ 0.

Using Lemma 2.2 again, we can prove that there exists u∗0 ∈ A(u0) such that

〈u∗0 + B(w0), v′ − u0〉 ≥ 0, ∀ v′ ∈ K(w0).

Therefore, u0 ∈ S(w0).
Since J(w, u) is a weakly lower semicontinuous function, it follows from (2.14)

that
J(w0, u0) ≤ lim

n→∞ J(wn, un) = min
w∈U, u∈S(w)

J(w, u)

and so

J(w0, u0) = minw∈U,u∈S(w) J(w, u).
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Therefore, w0 ∈ U is an optimal control for the problem (2.1). This completes the
proof.

Corollary 2.4. Let W , X be two reflexive Banach spaces, U be a nonempty
closed convex set of W and K : U → 2X be a bounded mapping with nonempty
closed and convex values. Assume that A : K(U) → 2X∗ is a bounded pseudo-
monotone mapping, J : U ×K(U) → R is a weakly lower semicontinuous function,
B : U → X∗ is strongly continuous from the weak topology of W to the topology of
X∗ and the following conditions are satisfied:

(i) A is upper semicontinuous on finite dimensional subspaces of X;
(ii) for each x ∈ K(U), A(x) is a closed convex and bounded set;
(iii) limw∈U, ‖w‖→+∞ J(w, u) = +∞, ∀ u ∈ K(U);
(iv) for all wn ⊂ U with wn ⇀ w, K(wn) Mosco-converges to K(w).

Then there exists an optimal control w 0 ∈ U for the problem (2.1).

Proof. Since K is a bounded mapping, K is a mapping with bounded values. From
Corollary 2.1, it follows that for each w ∈ U , S(w) �= ∅. Let {(wn, un)}n=1,2,··· ⊂
U ×K(U) be a minimizing sequence for the problem (2.1) such that

(2.21) lim
n→∞ J(wn, un) = min

w∈U, u∈S(w)
J(w, u).

The condition (iii) implies that {wn}n=1,2,··· is bounded. SinceK is a bounded mapping
and un ∈ S(wn) ⊂ K({wn}), {un} is a bounded sequence.

By the reflexivity of W and X , there exists a weakly convergent subsequence of
{(wn, un)}. Without lose of generality, we can assume that wn ⇀ w0 ∈ W and
un ∈ K(wn) ⇀ u0 ∈ X as n → +∞. By using similar arguments to the proof of
Theorem 2.2, we can show that w0 ∈ U is an optimal control for the problem (2.1).
The proof is completed.

Corollary 2.5. Let W , X be two reflexive Banach spaces, U be a nonempty closed
convex set of W and K : U → 2X be a bounded mapping with nonempty closed and
convex values. Assume that A2 : K(U) → X∗ is a bounded demicontinuous pseudo-
monotone mapping and F2 : K(U) → X∗ is a strongly continuous mapping from the
weak topology of X to the topology of X ∗ or A2 −F2 is a demicontonuous, bounded
and generalized pseudo-monotone mapping. Suppose J : U ×K(U) → R is a weakly
lower semicontinuous function, B : U → X ∗ is strongly continuous from the weak
topology of W to the topology of X ∗ and the following conditions are satisfied:

(i) limw∈U, ‖w‖→+∞ J(w, u) = +∞, ∀ u ∈ K(U);
(ii) for all wn ⊂ U with wn ⇀ w, K(wn) Mosco-converges to K(w).
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Then there exists an optimal control w 0 ∈ U for the problem (2.3).

Proof. Since K is a bounded mapping, K is a mapping with bounded values.
Since A2 is a pseudo-monotone mapping and F2 is strongly continuous, by Remark
2.1, we know A2 −F2 is a pseudo-monotone mapping. Since A2 −F2 is bounded and
generalized pseudo-monotone, Lemma 2.3 implies that A2 −F2 is a pseudo-monotone
mapping. Taking A = A2 − F2, by Corollary 2.4, we know there exists an optimal
control w0 ∈ U for the problem (2.3). The proof is completed.

Corollary 2.6. Let V , Ū be two reflexive Banach spaces, V ∗ be the dual space
of V , Uad be a nonempty closed convex set of W , K1 be a nonempty closed and
convex subset of V and 0 ∈ K1. Assume that F1 : K1 → V ∗ is a strongly continuous
mapping from the weak topology of Ū to the topology of V ∗ and A1 : K1 → V ∗

is a demicontinuous pseudo-monotone mapping, or A 1 − F1 is a demicontinuous,
bounded and generalized pseudo-monotone mapping. Suppose that B 1 : Uad → X∗

is a strongly continuous mapping from the weak topology of Ū to the topology of V ∗

and the following coercive condition is satisfied:

(2.22) lim
(w,u)∈Uad×K1, ‖(w,u)‖→+∞

〈A1(u)− F1(u) + B1(w), u〉 = +∞.

Then there exists an optimal control w 0 ∈ Uad for the problem (1.1).

Proof. From Corollary 2.2, it follows that for each w ∈ Uad, S1(w) �= ∅. Let
{(wn, un)}n=1,2,··· ⊂ U × K1 be a minimizing sequence for the problem (1.1) such
that

(2.23) lim
n→∞ J1(wn, un) = min

w∈U, u∈S1(w)
J1(w, u).

We claim that {(wn, un)}n=1,2,··· is bounded. If not so, then there exists a subsequence
{(wnk

, unk
)} such that ‖(wnk

, unk
)‖ → +∞. It follows from the coercive condition

(2.22) that

(2.24) lim
(w,u)∈Uad×K1, ‖(w,u)‖→+∞

〈A1(u)− F1(u) + B1(w), u〉 = +∞.

By unk
∈ S1(wnk

), there exists unk
∈ K1 such that

(2.25) 〈A1(unk
) − F1(unk

) + B1(wnk
), v− unk

〉 ≥ 0, ∀ v ∈ K1.

By taking v = 0 in (2.25), we get

〈A1(unk
) − F1(unk

) +B1(wnk
), unk

〉 ≤ 0,

which contradicts (2.24). Hence, {(wn, un)} is bounded.
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By the reflexivity of W and X , there exists a weakly convergent subsequence of
{(wn, un)}. Without lose of generality, we can assume that wn ∈ Uad ⇀ w0 and
un ∈ K1 ⇀ u0 ∈ X as n→ +∞.

Since Uad and K1 are closed and convex, Uad and K1 are weakly closed sets and
so w0 ∈ Uad, u0 ∈ K1.

By un ∈ S1(wn), we know un ∈ K1 such that

(2.26) 〈A1(un) − F1(un) + B1(wn), v− un〉 ≥ 0, ∀ v ∈ K1.

Since B is strongly continuous, B(wn) → B(w0).
(i) If A1 is a demicontinuous pseudo-monotone mapping and F1 is strongly con-

tinuous, then F1(un) → F1(u0). (2.26) implies that

lim sup
n→∞

〈A1(un), un − u0〉

= lim sup
n→∞

〈A1(un), un − u0〉 + lim
n→∞〈B1(wn) − F1(un), un − u0〉

= lim sup
n→∞

〈A1(un) + B1(wn)− F1(un), un − u0〉 ≤ 0.

From the pseudo-monotonicity of A1, it follows that for any v ∈ K1,

〈A1(u0), u0 − v〉 ≤ lim inf
n→∞ 〈A1(un), un − v〉.

(2.26) implies that

〈A1(u0), u0 − v〉 + 〈B1(w0) − F1(u0), u0 − v〉
≤ lim inf

n→∞ 〈A1(un), un − v〉+ lim
n→∞〈B1(wn) − F1(un), un − v〉

= lim sup
n→∞

〈A1(un) +B1(wn) − F1(un), un − v〉 ≤ 0.

This implies that

(2.27) 〈A1(u0) + B1(w0) − F1(u0), u0 − v〉 ≤ 0.

Thus, there exists u0 ∈ K1 such that

〈A1(u0) + B(w0)− F1(u0), u0 − v〉 ≤ 0, ∀ v ∈ K1.

Therefore, u0 ∈ S1(w0).
(ii) If A1 − F1 is a demicontinuous, bounded and generalized pseudo-monotone

mapping, then Lemma 2.3 implies that A1 − F1 is a demicontinuous and pseudo-
monotone mapping. By using the same argument as the proof of (i), we know u0 ∈
S1(w0).
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Since J1(w, u) is a weakly lower semicontinuous function, it follows from (2.23)
that

J1(w0, u0) ≤ lim
n→∞ J1(wn, un) = min

w∈U, u∈S1(w)
J1(w, u)

and so

J1(w0, u0) = minw∈U,u∈S1(w) J1(w, u).

Therefore, w0 ∈ Uad is an optimal control for problem (1.1). This completes the
proof.

According to Lemma 2.3, Remark 2.1 and Corollary 2.6, it is easy to obtain the
following result.

Corollary 2.7. Let V , Ū be two reflexive Banach spaces, V ∗ be the dual the
space of V , Uad be a nonempty closed convex subset of W and K 1 be a nonempty
closed and convex cone of V . Assume that F1 : K1 → V ∗ is a compact mapping
and A1 : K1 → V ∗ is a demicontinuous mapping of class (S) +, or A1 − F1 is a
demicontonuous, bounded and generalized pseudo-monotone mapping. Suppose that
B1 : U → X∗ is strongly continuous from the weak topology of Ū to the topology of
V ∗ and the following coercive condition is satisfied:

(2.28) lim
(w,u)∈Uad×K1, ‖(w,u)‖→+∞

〈A1(u)− F1(u) + B1(w), u〉 = +∞.

Then there exists an optimal control w 0 ∈ Uad for the problem (1.1).

Remark 2.4. If A1, A1−F1 are continuous, then Corollary 2.6 reduces to Theorem
2.1 in [10].

According to Lemma 2.3, Remark 2.1 and Theorem 2.2, it is easy to obtain the
following result.

Corollary 2.8. Let W , X be two reflexive Banach spaces, U be a nonempty
closed convex set of W and K : U → 2X be a mapping with nonempty closed and
convex values such that for each w ∈ U , 0 ∈ K(w). Assume that A 2 : K(U) → X∗

is a bounded demicontinuous pseudo-monotone mapping and F 2 : K(U) → X∗ is
strongly continuous, or A2−F2 is a demicontinuous, bounded and generalized pseudo-
monotone mapping. Suppose that B : U → X ∗ is strongly continuous, J : U ×
K(U) → R is a weakly lower semicontinuous function and the following conditions
are satisfied:

(i) for any w ∈ U , u ∈ K(w),

(2.29) lim
‖(w,u)‖→+∞

〈A2(u)− F2(u) + B(w), u〉 = +∞;

(ii) for all wn ⊂ U with wn ⇀ w, K(wn) Mosco-converges to K(w).
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Then there exists an optimal control w 0 ∈ U for the problem (2.3).

3. THE EXISTENCE RESULT FOR A BILATERAL OBSTACLE OPTIMAL CONTROL PROBLEM

In recently years, optimal obstacle control problems for variational inequalities have
been considered in many different venues aspects. One of the main features is the use
of the obstacle as the control. For example, see [13, 14, 15, 19, 20, 21, 22, 23] and the
references cited therein. The optimal control problem (1.1) may (or can) be called as
indirect obstacle optimal control problem. In this section, we obtain existence results
for a bilateral obstacle optimal control problem by applying Corollary 2.5. It is worth
noting that the method used here is different from [13, 14, 15, 19, 20, 21, 22, 23].

Let Ω be a bounded domain of RN with Lipschitz boundary and 1 < p < N . Let
X = W 1,p

0 (Ω), W1 = W 1,p
0 (Ω) ∩W 2,p(Ω) and W = W1 ×W1. Set

U = {w = (ϕ, ψ) ∈W1 ×W1 = W : ϕ ≤ ψ a.e. Ω}.

Let 1 < q < p∗ = Np
N−p , f̄ : Ω×R → R be a function and τ̄ : U → Lq′(Ω) (q′ = q

q−1 )
be a mapping. For any w = (ϕ, ψ) ∈W , we define

(3.1) K(w) = {v ∈W
1,p
0 (Ω), ϕ ≤ v ≤ ψ a.e. Ω}.

For each w = (ϕ, ψ) ∈ U , we define u ∈ K(w) (the state of the system) as the
solution of the following quasilinear elliptic variational inequality:

(3.2)
∫

Ω
ã(∇u)∇(v − u)dx ≥

∫
Ω
(f̄(x, u)− τ̄(w))(v− u)dx, ∀ v ∈ K(w),

where ã(u) = (ã1(x, u), · · · , ãN(x, u)). We denote the solution set of the variational
inequality (3.2) by S2(w). Let z ∈ L2(Ω) be a given target profile. We seek a pair
of (ϕ, ψ) = w ∈ W so that the corresponding state u = u(ϕ, ψ) is close to a desired
target profile z and the norm of w is not too large in W . For this purpose, we take our
objective functional J as

J(w, u) = J((ϕ, ψ), u) =
∫

Ω
{1
2
(u− z)2 +

1
p
(|∆ϕ|p + |∆ψ|p)}dx,

which we try to minimize. More precisely, we pose the following optimal control
problem: find w0 = (ϕ0, ψ0) ∈ U (optimal control), u0 ∈ K(w0) and u0 ∈ S(w0)
such that

(3.3) J(w0, u0) = min
(w,u)∈U×K(U ), u∈S2(w)

J(w, u).

In the sequel, we introduce the following assumptions:
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(H̃1) For all η = (η1, · · · , ηN), η′ = (η′1, · · · , η′N) ∈ RN ,
N∑

i=1

(ãi(x, η)− ãi(x, η′))(ηi − η′i) ≥ 0.

(H̃2) There is a constant c1 > 0 such that
N∑

i=1

ãi(x, η)ηi ≥ c1

N∑
i=1

|ηi|p.

(H̃3) For all i, the function ãi : Ω ×R → R has the following properties:
(i) x→ ãi(x, t) is measurable on Ω for all t ∈ R;

(ii) t→ ãi(x, t) is continuous on R for almost all x ∈ Ω;

(iii) there exists a constant c2 > 0 such that |ãi(x, η)| ≤ c2(1 + |η|p−1).

Define A2 : K(U) → X∗, F2 : K(U) → X∗ and B : U → X∗ as follows: for all
u, v ∈ K(U) and w ∈ U ,

(3.4)
〈A2(u), v〉 =

∫
Ω

ã(∇u)∇vdx, 〈F2(u), v〉

=
∫

Ω
f̄(x, u)vdx, 〈B(w), v〉 =

∫
Ω
τ̄(w)vdx.

In addition, we define Â2 : X → X∗ and F̂2 : X → X∗ as follows: for all u, v ∈ X ,

(3.5) 〈Â2(u), v〉 =
∫

Ω
ã(∇u)∇vdx, 〈F̂2(u), v〉 =

∫
Ω
f̄(x, u)vdx.

Remark 3.1. (i) If p = 2 and τ ′ = 0, then the variational inequality (3.2) becomes
the quasilinear elliptic variational inequality (1.1) in [21]. (ii) If f̄ = τ̄ = 0, then
the problem (4.3) reduces to the optimal control problem (1.4) in [14]. (iii) If p = 2,
f̄ = τ̄ = 0, then the problem (4.3) reduces to the optimal control problem (1.3) in [23].

Lemma 3.1. If K is defined by (3.1), then for all wn = (ϕn, ψn) ∈ U with
wn ⇀ w = (ϕ, ψ), K(wn) Mosco-converges to K(w).’

Proof. Let vn ∈ K(wn) such that vn ⇀ v. Since

K(wn) = {ṽ ∈ X : ϕn ≤ ṽ ≤ ψn a.e. Ω}
= {ṽ ∈ X : ṽ ≤ ψn a.e. Ω} ∩ {ṽ ∈ X : ṽ ≥ ϕn a.e. Ω},

ϕn ⇀ ϕ, ψn ⇀ ψ and {ṽ ∈ X : ṽ ≤ 0, or ≥ 0 a.e. Ω} is weakly closed, v − ϕ ∈
{ṽ ∈ X : ṽ ≥ 0 a.e. Ω} and v − ψ ∈ {ṽ ∈ X : ṽ ≤ 0 a.e. Ω}. Thus v ∈ K(w).
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On the other hand, for any v′ ∈ K(w) = {ṽ ∈ X : ϕ ≤ ṽ ≤ ψ a.e. Ω},
there exist k1 ∈ {ṽ ∈ X : ṽ ≥ 0 a.e. Ω} and k2 ∈ {ṽ ∈ X : ṽ ≤ 0 a.e. Ω}
such that v ′ = k1 + ϕ = k2 + ψ. Since wn ∈ U , ϕn ⇀ ϕ and ψn ⇀ ψ in
W 1,p

0 ∩W 2,p, by using Sobolev embedding theorem, we get ϕn → ϕ and ψn → ψ

in W 1,p
0 = X . Put v′n = k1 + ϕn ∈ K(wn), for n large enough. It is clear that

v′n = k1+ϕn → k1 +ϕ = k2 +ψ = v′. Therefore, K(wn) Mosco-converges to K(w).
This proof is completed.

Lemma 3.2. If τ̄ : U ⊂W → Lq′(Ω) (q′ = q
q−1 ) is a strongly continuous mapping

from the weak topology of W to the topology of L q′ , then B : U → X∗ is a strongly
continuous mapping from the weak topology of W to the topology of X ∗.

Proof. Let wn = (ϕn, φn) ⇀ w0 = (ϕ0, φ0) in U . Since τ̄ : U → Lq′(Ω) is a
strongly continuous mapping, we have τ̄(wn) → τ(w0) in Lq′(Ω). Since 1 < q < N ,
1 < q

q−1 < q < p∗ and so W 1,p
0 (Ω) ↪→↪→ Lq(Ω). Hence

‖B(wn) −B(w0)‖ = sup
‖v‖≤1

|〈B(wn) −B(w0), v〉|

≤ sup
‖v‖≤1

(∣∣∣∣
∫

Ω

|τ̄(wn) − τ̄(w0)
∣∣∣∣q

′

dx)
1
q′
∫

Ω

|v|qdx
) 1

q

≤ c6

(∫
Ω
|τ̄(wn) − τ̄(w0)|q′dx

) 1
q′ → 0

for some constant c6 > 0. Therefore, limn→+∞ B(wn) = B(w0) in X∗ and so
B : U → X∗ is a strongly continuous mapping from the weak topology of W to the
topology of X∗. This proof is completed.

Lemma 3.3. Let Â2, F̂2 be defined by (3.5). Then the following conclusions hold.
(i) Under assumptions (H̃1) − (H̃3), Â2 : V → V ∗ is a continuous monotone

bounded and coercive.
(ii) If f̄ : Ω × R → R is a continuous function and satisfies

(3.6) lim
|t|→+∞

f̄(x, t)
b̃(x)t(s−1)

= λ̄0,

uniformly a.e. with respect to x ∈ Ω, where λ̄0 ≥ 0, 1 < s < p∗ , 0 ≤ b̃(x) ∈
Lr(Ω), r = p∗

p∗−s . Then, F̂2 : X → V ∗ is a strongly continuous mapping from
the weak topology of X to the topology of X ∗.

Proof. By using the similar arguments to the proof of Lemma 3.1 in [10], we
can proof F̂2 is a strongly continuous mapping. We only show (1) is true. In fact, set
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ãi(u) = ãi(x,∇u(x)) for all x ∈ Ω. From (H̃3) and Proposition 26.6 in [24], it follows
that the operator ãi : Lp(Ω) → Lp′(Ω) (p′ = p

p−1 ) is continuous and ‖ãi(u)‖p′ ≤
C3(1 + ‖u‖p−1

p ) for some constant C3 > 0. Sobolev embedding theorem implies
that the embedding W 1,p

0 (Ω) ↪→↪→ Lp(Ω) is compact. Thus ãi : X → Lp′(Ω) is
continuous and ‖ãi(u)‖p′ ≤ C′

3(1+‖u‖p−1) for some constant C′
3 > 0. |〈Â2(u), v〉| =∫

Ω |̃a(∇u)∇v|dx≤ C4(1+‖u‖p−1)‖v‖ for some constant C4 > 0. Hence ‖Â2(u)‖ ≤
C4(1 + ‖u‖p−1) and Â2 is bounded. Let un → u in X . Since ãi : X → Lp′(Ω) is
continuous, ãi(un) → ai(u) in Lp′ as n→ +∞. By the Hölder inequality

|〈Â2(un) − Â2(u), v〉| ≤
N∑

i=1

‖ãi(un)− ãi(u)‖p′‖v‖,

for all v ∈ X. This implies

‖Â2(un)− Â2(u)‖ ≤
N∑

i=1

‖ãi(un)− ãi(u)‖p′,

and so ‖Â2(un) − Â2(u)‖ → 0 as n → +∞. Thus, the operator Â2 : V → V ∗ is
continuous. By (H̃1), for all u, v ∈ X

〈Â2(u) − Â2(v), u− v〉 ≥ 0,

i.e., Â2 is monotone. By (H̃2), for all u ∈ X ,

〈Â2(u), u〉 =
∫

Ω

ã(∇u)∇udx ≥ c1‖u‖p.

Since p > 1, 〈Â2(u),u〉
‖u‖ ≥ c1‖u‖p−1 → +∞, as ‖u‖ → +∞. Thus Â2 is coercive. This

proof is completed.

Theorem 3.1. Let (H̃1)−(H̃3) be satisfied, 1 < p < N and 1 < q < p∗ . Suppose
that f̄ : Ω × R → R is a continuous function and satisfies

(3.7) lim
|t|→+∞

f̄ (x, t)
b̄(x)t(s−1)

= λ̄0,

uniformly a.e. with respect to x ∈ Ω, where λ̄0 ≥ 0, 1 < s < p∗ , 0 ≤ b̄(x) ∈ Lr(Ω),
r = p∗

p∗−s . If τ̄ : U → Lq′(Ω) (q′ = q
q−1 ) is a strongly continuous mapping. Then,

there exists an optimal control w 0 ∈ U for the problem (3.3).

Proof. Notice that for each w = (ϕ, ψ) ∈ U , K(w) = {v ∈ W
1,p
0 : ϕ(x) ≤

v(x) ≤ ψ(x) a.e. in Ω} is a bounded, closed and convex subset of X and K is a
bounded mapping. Since f̄ satisfies (3.7), it also satisfies (3.6) in Lemma 3.3. By
Lemma 3.3, we know Â2 is a continuous monotone bounded and coercive mapping
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and F̂2 is a strongly continuous mapping. Thus we know F̂2|K(U ) = F2 is a strongly
continuous mapping. From Remark 2.1, it follows that Â2 is a continuous pseudo-
monotone mapping and so Â2|K(U ) = A2 is a continuous pseudo-monotone mapping.
By Lemma 3.2 we know B is a strongly continuous mapping. From Lemma 3.1 it
follows that for all wn = (ϕn, ψn) ∈ U with wn ⇀ w = (ϕ, ψ), K(wn) Mosco-
converges to K(w). The weakly lower semi-continuity of the norm implies that J is
weakly lower semicontinuous. In addition, due to the form of J , we know the condition
(i) in Corollary 2.5 is satisfied. Therefore, the conclusion of Theorem 3.1 holds by
virtue of Corollary 2.5. This proof is completed.

Remark 3.2. Theorem 3.1 improves and extends Theorem 2.3 in [21] in the
following aspects: (i) if p = 2 and τ ′ = 0, then problem (3.3) becomes the problem
(1.6) in [21]; (ii) from the Lemma 2.2 in [21], it is easy to see that our assumptions
(H̃1)− (H̃3) are weaker than the assumptions (H1) and (H2) in [21]. (iii) Our proof
method is quite different from the one of Theorem 2.3 in [21]. Similarly, Theorem 3.1
also improves and extends Theorem 2 in [14] and Theorem 3.1 in [23]. In addition,
the proof method of Theorem 3.1 is different from the ones used in Theorem 2.3 of
[13], Theorem 1.1 of [15], Theorem 3.1 of [19], Theorem 3.1 of [20] and Theorem
3.1 of [22].
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