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RELAXED PROJECTION-VISCOSITY APPROXIMATION METHOD

L. C. Ceng and A. Petrugel and M. M. Wong*

Abstract. The purpose of this paper is to investigate the problem of finding a
common element of the solution set of a general system of variational inequalities,
the solution set of a variational inequality problem and the fixed point set of a
strict pseudocontraction in a real Hilbert space. Based on the well-known vis-
cosity approximation method, extragradient method and Mann’s iteration method,
we propose and analyze a relaxed projection-viscosity approximation method for
computing a common element. Under very mild assumptions, we obtain a strong
convergence theorem for three sequences generated by the proposed method. Our
proposed method is quite general and flexible and develops some iterative methods
considered in the earlier and recent literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. Let
C be a nonempty closed convex subset of H and R. be the set of all real numbers. For
a given nonlinear mapping A : C — H, consider the following classical variational
inequality problem of finding z* € C' such that

(1.1) (Az*,x —2*) >0, VYaxel.

The set of solutions of problem (1.1) is denoted by VI(A, C). It is now well known
that a variational inequality problem is equivalent to a fixed-point problem, the origin
of which can be traced back to Lions and Stampacchia (see, e.g., [8]). This alternative
formulation has been used to suggest and analyze Picard successive iterative method
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for solving variational inequalities under the conditions that the involved operator must
be strongly monotone and Lipschitz continuous.

Let S : C — C be a self-mapping on C. We denote by Fix(S) the set of fixed
points of .S and by P the metric projection of H onto C.

A mapping @ : C — C' is said to be a p-contraction if p € [0,1) and

[Qx — Qyll < pllz —yll, Vz,yeC.

A mapping S : C — C'is called k-strictly pseudo-contractive if 0 < k& < 1 and
(1.2) ISz = Sy||* < |l = ylI* + kl[(I = S)z — (I = S)yll>, Va,y € C.

In this case, we also say that S is a k-strict pseudocontraction. In particular, whenever
k =0, S becomes a nonexpansive self-mapping on C'
A mapping A : C — H is called a-inverse strongly monotone if o > 0 and

(1.3) (Az — Ay, z — ) > ol Az — Ay|?>, Va,y € C.

It is easy to see that every inverse strongly monotone mapping is a monotone and
Lipschitz continuous mapping; see, e.g., [8].

Recently, Nadezhkina and Takahashi [9] and Zeng and Yao [10], motivated by the
idea of Korpelevich [11] for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of a variational inequality, proposed the
so-called extragradient method. Further, these iterative methods were extended in [12]
to develop a general iterative method for finding an element of Fix(S) N VI(A4, C).

Let By, By : C — H be two mappings. We consider the following problem of
finding (z*, y*) € C x C such that

( ) <M1B1y* + = y*vx - fI,'*> > 07 Vr € Cv
1.4
(neBox™ +y* —z*,x—y*) 2 0

which is called a general system of variational inequalities, where 111 > 0 and ps > 0
are two constants. It was introduced and considered by Ceng, Wang and Yao [15].
Moreover, it was transformed into a fixed point problem in [15] in the following way.

Lemma 1.1. (see [15]). For given z,y € C, (z,y) is a solution of problem (1.4)
if and only if z is a fixed point of the mapping G : C — C defined by

(1.5) G(r) = Pc[Po(x — poBox) — p1 B1 Po(x — poBax)], Vo € C,
and Y= Pc((f‘ — /LQBQ(Z‘).

In particular, if the mapping B; : C — H is J;-inverse strongly monotone for
i € {1, 2}, then the mapping G is nonexpansive, provided u; € (0,20;) for i € {1, 2}.
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Utilizing Lemma 1.1, Ceng, Wang and Yao proposed and analyzed in [15] a relaxed
extragradient method for solving problem (1.4). Throughout this paper, the set of
fixed points of the mapping G is denoted by I". Based on the extragradient method
[11] and viscosity approximation method [14], Yao, Liou and Kang [1] introduced
and studied (see Theorem 3.2 in [1]) a relaxed extragradient iterative algorithm for
finding a common solution of problem (1.4) and the fixed point problem of a strict
pseudocontraction in a real Hilbert space H.

Subsequently, Ceng, Ansari and Yao [8] also introduced and considered a new
relaxed extragradient iterative algorithm (Theorem 3.1 in [8]) for finding a common
solution of problem (1.1), problem (1.4), and the fixed point problem of a strict pseu-
docontraction in a real Hilbert space H.

Assume that A : C — H is a-inverse strongly monotone and B; : C — H is
Bi-inverse strongly monotone for i € {1,2}. Let S : C — C be a k-strictly pseudo-
contractive mapping such that 2 := Fix(S)N I'N VI(A,C) # (. LetQ : C — C
be a p-contraction with p € [0, 2). Motivated and inspired by the research work going
on in this area, we propose and analyze the following relaxed projection-viscosity
approximation method for finding an element in {2:

Given zg € C arbitrarily, let the sequences {x,}, {u,}, {@,} be generated itera-
tively by

Un = nQrn+(1—an) P Po(wn—peBoxn) — 1 Bi Po(2n — p2 Bawy )]
Up = Po(un, — ApAuy,),

Yn = Po(un — AnAiy),

Tn+1 = Bnn + Ynln + 00 SYn + (1 — B — Y — On)un, Vn >0,

(1.6)

where i € (07 251) fori € {17 2}7 {)‘n} - (07 a] and {an}v {ﬁn}v {P)/n}v {571} - [07 1]
such that 3,, + v, + d, < 1 for all n > 0.

In this paper, it is proven that the sequences {x,, }, {u,}, {@,} converge strongly to
the same point z = P, Qz under very mild conditions. Furthermore, (z, ) is a solution
of the general system (1.4) of variational inequalities, where y = Po(z — p2 Bo ).

Our result supplements, extends and improves the corresponding theorems in the
earlier and recent literature, see, for instance, Yao, Liou and Kang [1, Theorem 3.2]
and Ceng, Ansari and Yao [8, Theorem 3.1].

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are (-,-) and || - ||,
respectively. Let C be a nonempty closed convex subset of H. We write — to indicate
that the sequence {x,} converges strongly to « and — to indicate that the sequence
{z,} converges weakly to . Moreover, we use wy,(z,) to denote the weak w-limit set
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of the sequence {z,}, i.e,
(2.1) wy(2n) == {x : ©,, = x for some subsequence {z,,} of {z,}}.

It is obvious that, inequality (1.2) is equivalent to the following inequality:

1-k
(2.2) (Sz =Sy, 2 —y) <|lz —y|* = —= (T = )z = (I = S)yll*, Va,yeC.

It is easy to see that if S is a k-strictly pseudo-contractive mapping, then the mapping
I-Sis %-inverse strongly monotone and hence ﬁ-Lipschitz continuous. For
further details, we refer to [6] and the references therein.
For every point z € H, there exists a unique nearest point in C, denoted by Pox
such that
o — Pox| < |lz —yll, VYzeC.

The mapping P¢ is called the metric projection of H onto C. We know that P is a
firmly nonexpansive mapping of H onto C, that is, there holds the following relation

(Pcx — Poy,x — y) > |Pox — Poyl?, Vr,y € H.

Consequently, Po is nonexpansive and monotone. It is also known that P is charac-
terized by the following properties: for each € H we have Pox € C and

(2.3) (x — Pox, Pox —y) >0,
(2.4) lz = ylI* > llz — Peal® + [ly — Pexll?,

forall z € H,y € C, see [4,5,7] for more details.
In order to prove our main result of this paper, we need the following lemmas. The
following lemma is an immediate consequence of the definition of an inner product.

Lemma 2.1. In a real Hilbert space H, there holds the inequality
(2:5) lz +yl* < l|l=l* +2(y, z +y), Va,y € H.
The following lemma was proved by Suzuki in [13].

Lemma 2.2. (see [13]). Let {z,} and {y,} be bounded sequences in a Ba-
nach space X and let {3, } be a sequence in [0,1] with 0 < liminf, . 5, <
limsup,, . On < 1. Suppose z,+1 = (1 — Bn)yn + Bnay for all integers n > 0 and
lim supy, oo ([Yn+1 = Ynll = [[Zn+1 — @ul]) < 0. Then, limy, o0 [|yn — 24l = 0.

Recall that S : C' — C is called a quasi-strict pseudocontraction if Fix(.S) is
nonempty and there exists a constant 0 < k& < 1 such that

(2.6) ISz —p|® < |z —p|* + kl|lz — Sz||* for all z € C and p € Fix(S).
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We also say that S is a k-quasi-strict pseudocontraction if condition (2.6) holds.

Lemma 2.3. (see [16, Proposition 2.1]). Assume C' is a nonempty closed convex
subset of a real Hilbert space H and let S : C' — C be a self-mapping on C.

(i) If S is a k-strict pseudo-contractive mapping, then S satisfies the Lipschitz
condition

(2.7) 1Sz — Syl <

1+k
e -yl Vayec

(ii) If S is a k-strict pseudo-contractive mapping, then the mapping I — S is
demiclosed at 0, that is, if {z,} is a sequence in C such that z,, — & and
(I —9S)x, —0,then (I —S)z=0,ie, z e Fix(S5).
(ii) If S is a k-quasi-strict pseudocontraction, then the fixed-point set Fix(.S) of S
is closed and convex so that the projection Pryy(g) is well defined.
Some other auxiliary results are the following.

Lemma 2.4. (see [3]). Let {a,} be a sequence of nonnegative real numbers
satisfying the condition
ant1 < (1 —=6n)ay + opon, VYn >0,

where {6, }, {0} are sequences of real numbers such that
(i) {0,} C [0,1] and >, 8, = oo, or equivalently,

ﬁ(l —3,) = lim ﬁ(l — ;) =0;
n=0 n—>ooj:0

(i) limsup,, ,o, on <0, OF
(i) " 302 0oy is convergent.
Then lim,,_,o a, = 0.

Lemma 2.5. (see [1, Lemma 3.1]). Let C be a nonempty closed convex subset of
a real Hilbert space H. Let S : C — C be a k-strictly pseudo-contractive mapping.
Let v and 0 be two nonnegative real numbers such that (v + §)k < ~. Then

(2.8) |v(z —y) +6(Sz - Sy)|| < (v +0)||lz —yll, Vz,yeC.

3. MaIN ReEsuLTS

We are now in a position to state and prove our main result.

Theorem 3.1 Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let A : C — H be a-inverse strongly monotone and B; : C — H be (;-
inverse strongly monotone for ¢ = 1,2. Let S : C — C be a k-strictly pseudo-
contractive mapping such that 2 := Fix(S)NI'N VI(A,C)# 0. LetQ : C — C
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be a p-contraction with p € [0, %). For given zo € C arbitrarily, let the sequences

{zn}, {un}, {u,} be generated iteratively by

Up = 0y Qry + (1 — o) Po[Po(xn — poBoxyn) — p B1Po (2, — peBaxy)],
Un = Po(un — AAuy,),
Yn = PC(un - )‘nAan)v
Tn+l = ﬁ”x” + MnYn + 5nsyn + (1 - ﬁn —In — 5n)un7 n > 07
where i, € (0,25, for i € {1,2}, {Au} € (0,a] and {an}, {Ga}. {1}, {6n} € [0,1]
such that
(i) Bn 4+ + 0 <1and (v, + dp)k <, for all n > 0;
(") limy, 00 ap = 0 and 2720:0 Qy = 00,
(iif) 0 < liminf, . By < limsup,,_, B < 1 and liminf,, . d,, > 0;
(IV) hmn—>oo( Gl S ) =0 and hmn_)oo( ontl O ) =0;

l_ﬂn+1 1_ﬂn 1_ﬂn+1 1_ﬂn
(V) 0 <liminf, o Ay <limsup,_,. A\n < @ and lim,, . [Ap+1 — An| = 0.

Then the sequences {x}, {un}, {t,} converge strongly to the same point z = P Qz
if and only if lim,, o ||unt1 — uy|| = 0. Furthermore, (z,y) is a solution of the
general system (1.4) of variational inequalities, where § = P (z — poBo ).

Proof. We divide the proof into several steps.

Step 1. {z,} is bounded.
Indeed, let 2* € 2 :=Fix(S)N I N VI(A, C). Then Sz* = z*, 2* = Po(z* —
AnAx*) and

x* = Po[Po(x® — paBox™) — p1 B1 Po(x™ — paBax™)].

Since A : C — H is a-inverse strongly monotone and 0 < A, < «, we have for all
n > 0,

@ —2** = || Po(un — AnAug) — Po(a* — Ay Az®)|?
< |N(up — ApAuy,) — (2% — A Ax*)||?
(3.2) = [(up — %) — A (Auy, — Ax*)||?
< g — 212 — M (2a — Ap)|| Ay, — Az*|)?
< Jlup — 2%
For simplicity, we write
y* = Po(z* — peBax™), T = Po(xy — paBaxy), Tn
= Po[Po(zn — poeBoxn) — p B1Po (2 — poBaay)]
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forAeach n > 0. Then u, = @, Qz, + (1 — an)@n foreachn > 0. Since B; : C — H
is B;-inverse strongly monotone and 0 < y; < 2; for i € {1,2}, we know that for all
n > 0,

|Zn—a*(|* = || Po[Pe(xn—paBaay) — 1 Bi Po (tn — pa Bay)| — |2
= ||Po[Po(en — peBaan) — p BiPo(xn — 2 Bawy)]

—Pc[Pe(x* — poeBax™) — pn BiPo(a* — g Baa™)]||?
< |NPe(zn — peBan) — 1 B1Po(wy — p2Bawy)]

—[Po(2* — peBax™) — i1 B1 Po(x* — s Box™)]||?
= ||[Po(@n — peBown) — Po(a™ — poBox™)]

—[BiPe(aq — paBay) — BiFo(a* — paBax*)]|?
< | Po(wn — poBawy) — Po(x* —pa Bo*) ||?

—111(2B1 — )| By Po(@n — paBawn) — BiPo(z* — pa Boa*)||?
< |l(zn — p2Ban) — (2" — pa Boa*)||*— 1 (281 — 1) || Baitn — Bry*|?
= |[(wn — 2*) — pa(Bawn — Boa*)||* — 1 (261 — )| B — Buy*||?
< ||ln — 2|2 = p2(282 — pa)|| Bawy — Baa*|?

—p1 (21 = )| Badtn — Bry*||?

< llan —=*|%.

(3.3)

Furthermore, it follows from (2.4) that
[
< Jun — Ap Aty — x*H2 = |lun — An Aty — ynH2
= [lun = @*[1* = llun — ynl® + 22 (Atin, 2* — yn)
= [Jup — 2|2 — [Jun — ynll® + 2\ (Ad, — Az*, 2% — Gy)
+20, (Ax*, 2% — Up) + 20, (Al Ty, — Yn)
< lun — 2|2 = Jun — ynl|? — 22na|| Adly, — Az*||? + 22X (At Uy — Yn)
= Jlun — 2*|1* = [lun — @nl* = 2{un — tn, G = Yn) — [l — ynll?
+2X || Atiy, — Ax*||? 4 20 (Al G, — Yn)
= llun — ¥ = lun = @all? = a0 — ynll? = 2Anal| Aty — Az*|?
+2(up, — Ay Aty — Uy, Y, — ),
where the second inequality follows from the assumption that A is a-inverse strongly
monotone and z* is a solution of problem (1.1). By using (2.3), we have
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<un - )\nAan - ’lln, Yn — an>

<un - )\nAun unv Yn — n> <)\ Aun )\nAanv Yn — an>
<)\nAun - )\nA’an, Yn — an>

)\

3

[un = tin|[|yn = tnl]-

R |

Then we obtain

lyn—a*1* < llun—a" |17 = llun—Tnl® = @ —yal* — 2An0l| Alt — Az*||?

A . _
25 un = l[lyn — @l

< =1 = [Jug = | = o =y || = 2Xn 2] Ati, — Az*|?
(3.4) ) 2 2
=5 llun = @ ||” + [[yn — a|
«

* )‘2 ~ ~ *
= [lun — 2*[* = (1 = Z5)[un — @)l — 2Ana]| Ad, — Az
Oé

< Jlun — 2*||*.
In addition, it follows from (3.3) that
[tn — 2| = llom(Qrn — 27%) + (1 — ) (Zn — 27)|
< o || Qn — 2| + (1 — o) |20 — 27|
< an(pllzn — 2% + [|Qz" — ™)) + (1 — o) lJan — 27|

Q" — a*|
I—p

(3.5)
= (1— (1= paw)zn — 2] + (1 = pawn
oy, 192l

Since (v, + 0n)k < v, for all n > 0, utlllzmg Lemma 2.5 we obtain from (3.4) and
(3.5)

< max{||z, —

[2n1 = 2% = [[Bn(2n — %) + yn(Yn — 27) + 50 (Syn — 27)
+(1 = Bn = v — 0n) (un — 27) |
< Bullzn = 2" + 1 (yn — %) + 60 (Syn — 27|
+(1 = Bn = v = 0n)lun — 27
< Ballen — 2" 4+ (v + 6n)llyn — 27|
+(1 = Bn = v = 0n)un — 27
< Balln — 2™ + (v + ) lJun — 27|
+(1 = Bn = v = 0n)un — 27

(3.6)



Relaxed Projection-viscosity Approximation Method 1113

= Bullzn — 2| + (1 = Bn)[Jun — 2™

N Qx —x
< Bullen )|+ (1= ) masx{ - 2°), 12 =21y
Qx —x
< max{ [z — 27|}, 19Z =]y
By induction, we conclude that for aII n 2 0
o = a7 < maxflleg — o7, L=y,

Hence, {z,} is bounded. Since Pc,Q,S, A, By and By are Lipschitz continuous,
it is easy to see that {w,},{@n},{yn},{Zn} and {z,} are bounded, where z, =
Po(zy, — poBoxy) and z,, = Po[Po(xy — paBawy,) — p1 B1 Po(x, — pa Baxy,)] for all
n > 0.

Step 2. limy,— o0 ||Tnt1 — Znl| = 0.
Indeed, define 11 = Bnan + (1 — B,)wy, for all n > 0. It follows that
Wn41 — Wn

~ Tn42 — Brnt+1Tn+1 _ Tnt41 — BnTn

1= Bnt1 1—Bn
_ On+41¥nd1 + 0n4+15Yn+1 + (1 — Bng1 — Vg1 — Ong1)Un1
1— Bny1
_TnYn + 0n,Syn + (1 — Bn — Yn — 5n)“n
olns s
. _l’_ .
(3'7) _ '7n+1(yn+1 yn)_ n+1( Yn+1 Yn) + ( jn+1 _ jn Yn
1 ﬁn—i—l 1 5n+1 1 5”
+ Ont1 _ On Sy + 1—fnt1=Yn41—=0nt1 i 1—fn—Yn—0n w
1- ﬁn—i—l 1_ﬁ 1_ﬁn+1 1_ﬁn
_ Vo1 Wnr = Yn) + 001 (Synsr = Syn) (it T
5 1 g ﬁn—i—l ﬁ 1- ﬁn(s—i-l 1- ﬁn
- — Tn+1 — On+1
+ n+1 S + n+1 W —u
(1 _ﬁn+1 1 _5n) 1 _ﬁn—i-l ( e n)
Tn+1 Tn Vit — Ont1 _ on )

TG 18T T B 1B

Since (v, + 0p)k <, for all n > 0, utilizing Lemma 2.5 we have

(3:8)  [vn+1(Wn+1 = Yn) + Ons1 (Synt1 — Syn) | < (1 + Ont1) [[Ynt1 — nll-

Next, we estimate ||y,,+1 — yx||. Observe that

[tnt1 = tnll = |Po(uns1 — Anp1Atngr) — Po(un — AnAuy)|

< [(ung1 = Anp1Aung) = (tn — AnAug)||

(3.9) = [ (uns1 = un) = Ang1(Atngr — Aup) + (An—Ang1) Aug |
< [(ung1—tn) = Angr (At = Aug) [+ Ang1 = An|[| Aun||
< Juntr = unll + [Ansr = Anll| Aun|,
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and hence
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[Zn41 — jnH2
= [|[Pe[Pe(znt1 — paBowni1) — p1 BiPo(Tpi1 — paBarni1)]
—Pc|Po(wn — paBaay) — 1 BiPo(xn — pi2 Bown |||
< |[Po(wnt1 — paBoxny1) — 1 B1 Po(ny1 — p2Batn )]
—[Pc(xn — p2Boxy) — p1 By Po(xn — poBowy)]||?
= [|[[Pc(@nt1 — p2Bazny1) — Po(zn — paBaxy)]
—p11[B1 Po(n i1 — pieBan 1) — B1 Po(n — pia Bay ) |2
< ||Po(@ng1 — poBony1) — Polwn — paBaxy) |
— 111201 — 1) || B1 P (241 — 2 Bon 1) — B P (o — 12 Bay ) ||
< || Pe(zn+1 — paBawnsr) — Po(tn — peBaxy)||?
< (@nt1 — paBawni1) — (w0 — poBawy)|?
= (@41 — xn) — p2(Boaps1 — Boay)|?
< lwns1 — 2l = p2(282 — o) || Bazn 1 — Bown?
<||Tn+1 — an2v

Hun—f—l_unH = Hjn—i—l +apt1 (an—i—l_i'n—l—l) _En_an(an_En)H

(3.11)

< Zns1 = Zoll + an1[|Qns1 — Tny1 || + @ l|Qrn — Zn|

<zt = zoll + an1|QTns1 — Tny1 || + @ l|Qrn — Zn-

Also, from (3.11) we get

(3.12)

[9n-+1 = Ynll

= || Po(unt1 — Ant1Atint1) — Po(un — ApAty)||

< (Un1 = A1 Ating1) = (up — An Aty )|

= [[(tnt1 — Anpr Auns1) — (Un — AnyrAuy)
FAnt1(Aupgr — Aug) — M1 Al + A\ Aty ||

< (unt1 = A1 Aungr) = (un = A1 Aug) || + Anga [[Aun1 — Aug ||
[ An1Alin g1 — A Aty ||

< funsr — un|| + %‘i”un+1 = Unl| + Ant1[[ Al 1 — Aty ||

'H)‘n—f—l - )‘n‘HA"lnH

An+1
[e%

< Jtng1 —un ||+ (Nns1 = un ||+ |Gnr1 —n ) + [ Ans1—Anl [ Aty
< wng1 — xn”+>\_Z‘—_1(Hun+l_unH+H"1n+1_ﬁn”)+‘)‘n+l_)‘n‘HA'E’%H

+Oén+1 Han—l—l - j'n—f—l H + an”an - j'nH
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Hence it follows from (3.7), (3.8) and (2.12) that

[wni1 — wy|

( +8p41(S Syn) |l
< henensu i Ga =Sl 4 e - 2l

1— — )
+h_%+;—1_ﬂ |+ At et tast g, — |

§
+‘ l,y%_;il n+1
40
<ME%MWL%MM%; |yl + )

2t = 125 1 (Syall + lual) + Hun+1 Un
< Myt = vl + 155557 = T (lyall + llunll)
2 = 22 (IS yall + lual) + s — wal
< Nz = @all + 252 (lunsr = wnll + lner = @al) + Pt = Al | At

= | ([Yn]l + [lunll)

1| Qa1 — T || + | Qun — Znl| + 7257

[ 5
Hts = w2 1Syl + lluall) + lunsr — unll.

In terms of (3.9) we deduce from condition (v) that lim,, .o ||%n+1 — @y|| = 0. Since
{zn}, {un}, {tn},{yn} and {z,,} are bounded, it follows from conditions (ii), (iv),
(v) that

11msup(Hwn+1 — wWal| = | Tnt1 — zal])

(Hun—i—l Unl| + |tint1 = Unl]) + [Ant1 = Anl|| Aty ||

= | ([4n]l + [lunll)

n—oo

e 1Qmn  Briall + Qe — ] + 255
on 5
+ 1—/;;11 T—Fn (ISynll + llwnll) + [tens1 — uwnll}
= 0.

So, by Lemma 2.2 we obtain lim,,_. ||wy, — z,| = 0. Thus,

(3.13) lim [|2p41 — 2]l = lim (1= B,)]Jwy — 2| = 0.
n—00 n—00

Step 3. limy, o || Bazy,—Box*|| = 0, limy, 0 || B1Zn,—B1y*|| = 0and lim,, . ||
Au,, — Az*|| = 0, where y* = Po(x* — pgBox™).

Indeed, utilizing Lemma 2.5 and the convexity of || - ||?, we get from (2.8), (3.3)
and (3.4)
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i1 — 2|12
= 1Bu(@n = 2%) + (g — &) + 62(Sy = )+ (1= B = 30— 0) (u — 2*)]
< Ballen — 2* 12+ (yn + 0n) [ (yn — %) + 0n(Syn — 2*)|1?
(1= B = — )l — 22
< Bullen = 2*[1” + (v + 0n) llyn — 212 + (1 = Ba — Yo — Gn) l|un — 27|
< Ballzn = 112 + (v + 80) [l — 272
(1= 3l un — |2 — 2200 A, — A2 2]+ (1= B = o = 60) i — 27
= Bulln = 12 + (1 = Ba) un — 2"
(9 + 6a)[(1 = 28) [ — |2 + 22n]| Ay, — Az*|?
= Bullwn — 272+ (1= Ba) | on(Qan — 27)
(1= @) (@ = @) = (3 + 80 [(1 = 38) 1t = i |2 + 2Ancr]| A, — A2
< Ballan = ¥ + (1 = Ba)on | Qo — 2|17 + (1 = ) |70 — 217
(9 + 6a)[(1 = 28) [ — |2 + 22n]| Ay, — Az*|?
< Ballan = 21 + (1 = Ba) |10 — 2" + an| Q. — 2|
~(n + 0n)[(1 = 28) [un = @2 + 20| Al — A1)
< Ballzn = 27112 + (1= Ba)lllan — 2712 = 2(2B — p2) | By — By
1 (21 = ) [ Brin — Buy*[|2) + onl|Quy — 272
(9 + 6)[(1 = 28) [ — 2 + 22n]| Ay, — Az*|?)
= o — 2|2 + anl| Qe — 2|2 = (1 = B)[u2(282 — p12) | Bown — Boa*|?
1 (201 — )| Bidn — Biy*||?] — (n + 6n)
[(1 = 28) lun — @nl|? + 20| Atly — Az*]).
Therefore,
(n + 82)[(1 = 28) [t — 2 + 2202 Ay, — Ax*|?
+(1 = Bo)[12(282 — pa) || Bawn — Bow™ |2 + 11 (251 — ) | B — Buy*||?]
< o — 22 = lons1 — 2|2 + anl| Quy — 272
< (lon = 2| + 701 = 2* )l = Tnss] + an | Qen — 7|2

Since o, — 0, ||z, — Tpt1]| — 0, liminf, oo (9n + 65) > 0, 0 < liminf,, o Ay, <
lim sup,,_,oo A\n, < o and 0 < liminf, .o G, < limsup,,_,., Gn < 1, it follows that
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limy, o0 [Jtun, — Uy = 0,

lim ||Ad,—Az"||=0, lim ||Byz,—B2z*||=0 and lim ||B1Z,—B1y"||=0.
n—oo n—oo n—oo

Note that A is Lipschitz continuous. Thus, we get that lim,,_. || Au, — Az*|| = 0.

Step 4. limy, o0 [|SYn — ynl| = 0.
Indeed, observe that

|yn — tnll = [|Po(un — AnAty) — Po(un — ApAuy) ||
< [(un = AnAtin) = (up — AnAug)||
= M| Aty — Auy|

Ay
< _nHun — Up |-
«

This together with ||@,, — w,|| — 0 implies lim,,_. ||y — @y || = 0 and hence we get
that lim,, .o ||yn — un|| = 0. By firm nonexpansiveness of I, we have

IA
=
3
|
>
3
I
g
3

) — (z* = N\yAx™), 4, — )
sllun — 2" = An(Aup — Az*) |2 + || — 27
—[[(un = %) = An(Aup — Az*) = (@ — 27)||?)

sllun = [ + llin — 2 = [[(un = @n) — An(Aun — Az*)||?]

IN

= 3lllun — &1 + |dn — ¥ — flun — @ ?
+2Xn (U, — U,y Ay, — Az*y — N2 || Au,, — Ax*||?]

< glllun = 2* |7 + @ — 2*(1* + 2Xn/lun — @nll[| Auy — Az*]],
that is,
(3.14) 1 — 2*||* < [ — 2”420 g, — ]| Auy, — Az*].
Similarly to the above argument, we obtain

|0 = y*|* = | Po(xn — paBawn) — Po(a* — paBax™)|”

< ((wn — p2Bazp) — (" — p2Bax™), Tn — y7)
1 * *\ (|2 ~ *112
-5 n - M2 24n — D2 n
= Slllzn — 2" = pa(Baan — Baa™) " + (|20 — 7]
—|[(@n = a*) = pa(Bawy — Bo™) = (#n — y*)|’]
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IN

1 * ~ *
Sllzn =2 + l2n — v
~ll(@n = @n) = p2(Bawn — Bax™) = (a" = y)|

1 * ~ * ~ * *
= Slllon = 2"|* + 170 — y*1* = llon — T — (@™ = )|
+2p0 (T — Tp — (2% — y*), Boxy, — Box*) — pi3|| Box,, — Box™*||?]
1 * ~ * ~ * *
= Slllon = 2"I* + 170 = y*1* = llon — 30 — (" = )|
+2pullzn — Tn — (27 — ") ||| Bazn — Box™|l],
that is,
1Zn =y 117 < llon = 21 = flon = &0 — (2" = )|
(3.15)

+2u2 |0 — Zn — (27 — y")||[| Bawn — Bax™||.
Further, similarly to the above argument, we derive

120 — 2*(|* = || Po(&n — pa Brdn) — Pely" — mBiy")|?

< (T, — m1B1Zy) — (" — 1 B1Y"), Tn, — ¥)
Lo * o *\ 12 = * (|2

= 5[”9% -y — i (Bi%p, — Biy")||* + ||z — |
(@0 — y*) = 1 (Briin — Bry*) — (2 — 2%)||]
1 ~ * — * ~ —

< 5llzn —y I + 120 — 2% = [|(En — Zn)

—p1(Bidn, — Biy*) + (2% — y*)||?]

1L * = * ~ = * *

= Sl =11 + 120 — "7 = 130 — T + (@7 = y")|?
+2uu1(Ep — T + (¢ = y), Bidn — Biy") — ii|| Bidn — Biy"||’]
L. * = * ~ = * *

< SEn =y I + 120 — 217 = 130 — T + (27 = )|

that is,

(3.16) |20 — 2*[* < 1|0 — ¥ |1 = 180 — 20 + (2" =y
+2pu[|En — Zn + (27 =y Bin — Biy™|-

Utilizing (3.14), (3.15) and (3.16), we have
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1y =2 = (| —2* + yp — |
< i =2 |1* + 2{yn —tn, yn—2*)
< Nl =212 + 2/lyn—tn | 1y —2*|
< llun—a*[* + 2AnlJtn — ]| At — Az* || + 2]y — [ 1y — 27|
< | Q=2 |* + (1—an) |2 —2*[|* + 22 |t — @ | || Aty — Az*||
+2[[yn —tn [ lyn —2||
< 20— + anl|Qun —a*[1? + 20|t — i ||| Aty — Az ||
+2[[yn —tn [ lyn —2||
< @n—y* > =120 =20 + (z* =)
+2p |20 —Zn + (2" —y")[[[| BiZn — Bry”|
o [|Qua—2* |12 + 22| un — in || Ay — Az

(3.17)

+2|yn —tin|[lyn — ||
< Jlwn =[P = llan —&n — (& —y*)|I?
+2p||wn —n— (2" —y")||[| Bywn — Baa™||
AEn =20 + (@ =y + 2 || En — 20 + (@ =y )| BrEn —Biy|

o |Qn —2*[|* + 22| un — i | | Aun — Az || + 2/ yin |1y — 2*]].
Thus from (2.8) and (3.17) it follows that

[
= [|Bn(Tn — %) + Y0 (yn — %) +0n(Syn—2*)
+(1 = B — Y0 — 0n) (un — )2
< Ballan — 21 + (v + ) [yn — 217 + (1 = B = v — 0n) [Jup — 2|12
= Bullzn — 2 [*+ (Yn+0n) [y — 2|12
+(1 = Bn=Yn—=0n) Iy —2* + un — yn ?
< Bullwn — 212+ (v + ) llyn — 2* 12+ (1 = B — v — ) [llyn — 2*|?
+2(Up, — Yn, Up, — )]
< Bulln — ¥ + (1
< Bullwn — 2>+ (1

Br)llyn = 2117 + 2||un — ynlllun — 2|
_ y*)
F2uzl|zn = En — (2% = y*) [ Ban — Boz™|| = (|20 — Zn + (2

= Bo)lllzn — 2% = o — & — (2 I
F—y))?
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+2u1[[En — Zn + (2% — y*) |1 Bidn — Biy*|| + anl|Qzr — 2|2
+2An ||t — T[] At — Az |+ 2|y — G || |2 — 2™ ] + 2l |t = Y [ [ um — 2|
< o = 212 = (1 = Ba)[lon — T — (2" = y)* + |80 — Tn + (2% = y) ]
+2pellzn — In — (7 — y*)||[| Bozn — Boa™|
+2p1 T — Tn + (7 — y*)||[[ Biin — B1y”||
+an || Quy — x*H2 + 2n|[un — G| || Aun — Az™|
+2[lyn = tnllllyn — 27| + 2[lun — ynllllun — 2],
which hence implies that
(1= Bo)lllen = &n — (@ = y)IIP + |20 — Zn + (a* — y*)|?]
< o = 2*|? = lznsr — 2*||° + 2p2llon — 2 — (2% = y*)|l| Bezn — Boa™|
2|0 — T + (2% = y) | BiZn — Bry*|| + anl|Qun — 2*||?
+2An[[un = Gn || Aun — Az* || + 2{lyn — Gn | lyn — 2| + 2{|un —ynll [ un—2]]
< (on — 2™ + lznsr — 2% llzn — 2l
+2pellrn — In — (27 — y*) ||| Byzn — Boa™|
+2u1[[En — Zn + (2% — Y| Brdn — Biy* || + anl|Qry — 2|2
+2An[[un = Un || Aun — Az || + 2{lyn — Gl lyn — 2|+ 2/t —yn || [ un —2*|-
Since limsup,,_,.o B < 1, 0 < A\, < @, o — 0, ||Au, — Az*|| — 0, ||Bazy, —

Box™|| = 0, |[Bizn=Bury*|| = 0, [[yn—tin|l = 0, [[yn—un| — Oand [[zn1—znll —
0, it follows from the boundedness of {x, }, {Z.}, {Zn}, {un}, {4,} and {y,} that

lim ||z, — 2 — (2" —y")]| =0 and lim ||z, — &, + (z" —y")|| = 0.
n—00 n—00
Consequently, it immediately follows that

(3.18) lim ||z, —Z,||=0 and lim |z, —u,| =0
n—00 n—00

(due to the fact that ||u,, — x| < an||Qn —znl| + (1 —an)||Zn —zy]]). This together
with ||y, — w,|| — 0 implies that

lim ||z, — yn| = 0.
n—oo
Since

160 (Syn — 20)|| < [|[Zng1 — Tull + Vallyn — 2ol + (1 = Br — Y0 — 0n)[[un — zal,
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it follows that

lim ||Syn —2,|| =0 and lim ||Sy, — yn| = 0.
n—00 n—00

Step 5. limsup,,_,.(QT — Z, z, — T) < 0, where z = PpQx.
Indeed, since {z,} is bounded, there exists a subsequence {x,,} of {z,} such that
(3.19) limsup(Qz — z, xp, — Z) = lim (QT — &, xy, — T).

n—00 1—00

Also, since H is reflexive and {y,} is bounded, without loss of generality we may
assume that y,, — p for some p € C. First, it is clear from Lemma 2.3 (ii) that
p € Fix(S). Now let us show that p € I". Note that

lan = G(@n)|| = l2n — PolPo(zn — peBaan) — pa BiPo(zn — poeBazy ]|
= ||z — Znl = 0 (n — 00),
where G : C' — C' is defined as in Lemma 1.1. According to Lemma 2.3 (ii) we
obtain p € 2. Further, let us show that p € VI(A, C'). As a matter of fact, since
|zn — unl| — 0, ||ty — uy|| — 0 and ||z, — yn| — O, we deduce that z,, — p and
Up;, — p. Let
Av+ Nov ifve(C,
Tv =
0 ifvéeC,
where N¢w is the normal cone to C' at v € C. In this case, the mapping 7" is maximal
monotone and (see [2] for further details)
0 € Tvifand only if v € VI(A, C).

Let Gph(T') be the graph of T and let (v, w) € Gph(T'). Then, we have w € Tv =
Av+ New and hence w — Av € New. So, we have (v —t,w— Av) >0 forall t € C.
On the other hand, from @,, = Pc(u, — A Auy,) and v € C' we have

(Up, — ApAuy — Uy, Uy —v) >0
and hence -
Uy — Uy
An
From (v —t,w — Av) > 0 for all t € C and @,, € C' we have

(v — iy, + Aup) > 0.

(U = lp,;, w) > (V= TUy,, Av)
Up,; — Unp,

> (v — Up,, Av) — (V. — Up,, 5 + Aup,)
- - R  Up, — Up,
= (V—1Up,, Av—Alyp,) + (V—TUp,, Alp, — Atp,) — (V—TUp,, ’)\ )
ﬂ’ni — Un, "

).

Z<'U_'L~’Jni7A'L~’Jni_Auni>_<v_ﬂ’”i’ A
.

7
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Hence, we obtain (v — p, w) > 0 as i — oo. Since T is maximal monotone, we have
p € T7'0 and hence p € VI(A, C). Therefore, p € Fix(S)N T N VI(A, C) =: 1.
Hence it follows from (2.3) and (3.19) that

limsup(QZ — z,x, — &) = Ilm (QZT — T, zp, — %) = (QT — Z,p — ) < 0.

n—00 1—00

Step 6. lim,,_. ||z, — Z|| = 0.
Indeed, utilizing Lemma 2.1 and Lemma 2.5, we obtain, from (3.3), (3.4) and the
convexity of || - ||, that

lons1 — 7]
= [18n(zn — 2) + Yn(yn — ) + 0n(Syn — 2) + (1 = B — Y0 — 0n) (un — 2)]|?
< Bullen = 2% + (v + 00) 5357 [n (g0 — 7) + 00 (S — 2]
+(1 = B = 0 — On)Jun — 2|
< Bullzn — 217 + (v + 0n) lyn — 2P + (1 = B — ¥ — 0n)l|un — 212
< Ballzn = 2l + (v + 0n)llun — 2l + (1 = B =y — 0 un — 2
= Bullzn — 2] + (1 = Bn)lun — 212
< Bullwn — 2] + (1 = Ba)[(1 = on)?||Zn — 2|* + 200 (QEn — 2, up — 7)]
< Bullzn = 2l + (1 = o) [(1 = o) llzn — Z)* + 200 (Qn — Z, un — 7)]
= (1= (1= Bu)an) |z — 2lI* + (1 = Bn)20m(Qrn — 7, upn — 7)
< (L= (1= Bn)an)llen = 2[* + (1 = Bn)20n[pllzn — Z|* +(Q7 — 7, 2, — )
+H1Qzn — Z[[[lun — 2all]
< [1—=(1=20)(1 = Bp)om][lzn — 7|
+(1 = 6n)200[(QT — T, 2n — T) + [|Qrn — Z[[un — nll]
=[1-(1=2p)(1 = Ba)an]llwn — 7]?

2 T—X,Tn—T Tn—Z|[||Un—Tn
(1 = 20)(1— ), 2002 H1Qra=sllun=sal]

Note that lim inf,, oo (1 —2p)(1—3,) > 0. It follows that >-°° (1 —2p)(1—Bn) v, =
oo. Itis clear that
lim sup 21Q% = 25 @n = @) + [Qzn = Zlllwn — 2l
n—00 1-2p

<0

because lim sup,, . (QT — Z, z, — Z) < 0 and lim,,_, ||un, — 2, || = 0. Therefore,
all conditions of Lemma 2.4 are satisfied. Consequently, we immediately deduce that
|z, — Z|| — 0 as n — oo. This completes the proof. |
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