Vol. 16, No. 3, pp. 1017-1026, June 2012

This paper is available online at http://journal.taiwanmathsoc.org.tw

# DIFFERENTIAL SUBORDINATION FOR FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI

Rosihan M. Ali, Nak Eun Cho\*, V. Ravichandran and S. Sivaprasad Kumar Dedicated to Professor H. M. Srivastava on the Occasion of his Seventieth Birth Anniversary

**Abstract.** Conditions on  $\beta$  are determined so that  $1 + \beta z p'(z)$  subordinated to  $\sqrt{1+z}$  implies p is subordinated to  $\sqrt{1+z}$ . Analogous results are also obtained involving the expressions  $1 + \beta z p'(z)/p(z)$  and  $1 + \beta z p'(z)/p^2(z)$ . These results are applied to obtain sufficient conditions for normalized analytic functions f to satisfy the condition  $|(zf'(z)/f(z))^2 - 1| < 1$ .

#### 1. Introduction

Let  $\mathcal A$  denote the class of analytic functions in the unit disk  $\mathbb D:=\{z\in\mathbb C:\ |z|<1\}$  normalized by the conditions f(0)=0 and f'(0)=1. Let  $\mathcal {SL}$  be the class of functions defined by

$$\mathcal{SL} := \left\{ f \in \mathcal{A} : \left| \left( \frac{zf'(z)}{f(z)} \right)^2 - 1 \right| < 1 \right\} \quad (z \in \mathbb{D}).$$

Thus a function  $f \in \mathcal{SL}$  if zf'(z)/f(z) lies in the region bounded by the right-half of the lemniscate of Bernoulli given by  $|w^2-1|<1$ . Since this region is contained in the right-half plane, functions in  $\mathcal{SL}$  are starlike functions, and in particular univalent. A starlike function is characterized by the condition Rezf'(z)/f(z)>0 in  $\mathbb{D}$ . For two functions f and g analytic in  $\mathbb{D}$ , the function f is said to be *subordinate* to g, written  $f(z) \prec g(z) \quad (z \in \mathbb{D})$ , if there exists a function g analytic in g with g(z)=0 and g(z)=0 and g(z)=0 and g(z)=0 is equivalent to g(z)=0 and g(z)=0 and g(z)=0 is equivalent to g(z)=0 and g(z)=0. In terms of subordination, the class g(z)=0 consists of normalized analytic functions g(z)=0 satisfying g(z)=0. This class g(z)=0 was introduced by Sokó g(z)=0 and g(z)=0 and g(z)=0 and g(z)=0. This class g(z)=0 was introduced by Sokó g(z)=0 and g(z)=0 and

Received May 10, 2011, accepted May 20, 2011.

Communicated by H. M. Srivastava.

2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C80.

Key words and phrases: Starlike functions, Lemniscate of Bernoulli, Differential subordination, Differential superordination, Best subordinant, Best dominant.

<sup>\*</sup>Corresponding author.

[23]. Paprocki and Sokó I[14] discussed a more general class  $\mathcal{S}^*(a,b)$  consisting of normalized analytic functions f satisfying  $|[zf'(z)/f(z)]^a - b| < b$ ,  $b \geq \frac{1}{2}$ ,  $a \geq 1$ . Sokó I and Stankiewicz [23] determined the radius of convexity for functions in the class  $\mathcal{SL}$ . They also obtained structural formula, as well as growth and distortion theorems for these functions. Estimates for the first few coefficients of functions in  $\mathcal{SL}$  were obtained in [24]. Recently, Sokó I [25] determined various radii for functions belonging to the class  $\mathcal{SL}$ ; these include the radii of convexity, starlikeness and strong starlikeness of order  $\alpha$ . Recently the  $\mathcal{SL}$ -radii for certain well-known classes of functions including the Janowski starlike functions were obtained in [1]. General radii problems were also recently considered in [2] wherein certain radii results for the class  $\mathcal{SL}$  were obtained as special cases.

The class of Janowski starlike functions [7], denoted by  $S^*[A, B]$ , consists of functions  $f \in \mathcal{A}$  satisfying the subordination

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, \quad (-1 \le B < A \le 1).$$

Silverman [20], Obradovic and Tuneski [11] and several others (see [9, 10, 12, 16, 18]) have studied properties of functions defined in terms of the quotient (1 + zf''(z)/f'(z))/(zf'(z)/f(z)). In fact, Silverman [20] derived the order of starlikeness for functions in the class  $G_b$  defined by

$$G_b := \left\{ f \in \mathcal{A} : \left| \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} - 1 \right| < b, \ 0 < b \le 1, \ z \in \mathbb{D} \right\}.$$

Obradovic and Tuneski [11] have improved the result of Silverman [20] by showing  $G_b \subset S^*[0,-b] \subset S^*(2/(1+\sqrt{1+8b}))$ . Later Tuneski [26] obtained conditions for the inclusion  $G_b \subset S^*[A,B]$  to hold. Letting zf'(z)/f(z)=:p(z), then  $G_b \subset S^*[A,B]$  becomes a special case of the differential chain

(1.1) 
$$1 + \beta \frac{zp'(z)}{p(z)^2} \prec \frac{1 + Dz}{1 + Ez} \Rightarrow p(z) \prec \frac{1 + Az}{1 + Bz}.$$

Similarly, for  $f \in \mathcal{A}$  and  $0 \le \alpha < 1$ , Frasin and Darus [5] showed that

$$\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \prec \frac{(1-\alpha)z}{2-\alpha} \Rightarrow \left| \frac{z^2f'(z)}{f^2(z)} - 1 \right| < 1 - \alpha.$$

Again by writing  $\frac{z^2f'(z)}{(f(z))^2}$  as p(z), the above implication is a particular case of

(1.2) 
$$1 + \beta \frac{zp'(z)}{p(z)} \prec \frac{1+Dz}{1+Ez} \Rightarrow p(z) \prec \frac{1+Az}{1+Bz}.$$

Li and Owa [13] showed that  $f(z) \in S^*$  if  $f(z) \in \mathcal{A}$  satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > -\frac{\alpha}{2}, \quad z \in \mathbb{D}$$

for some  $\alpha$  ( $\alpha \ge 0$ ). Related results may also be found in the works of [15, 17, 21, 22].

The implications (1.1) and (1.2) have been considered in [3]. All the results discussed above led us to consider differential implications with the superordinate function (1+Az)/(1+Bz) replaced by the superordinate function  $\sqrt{1+z}$  that maps  $\mathbb D$  onto the right-half of the lemniscate of Bernoulli. Additionally, applications of our results will yield sufficient conditions for functions  $f \in \mathcal A$  to belong to the class  $\mathcal {SL}$ .

The following results will be required.

**Lemma 1.1.** [8, Corollary 3.4h.1, p. 135]. Let q be univalent in  $\mathbb{D}$ , and let  $\varphi$  be analytic in a domain containing  $q(\mathbb{D})$ . Let  $zq'(z)\varphi(q(z))$  be starlike. If p is analytic in  $\mathbb{D}$ , p(0) = q(0) and satisfies

$$zp'(z)\varphi(p(z)) \prec zq'(z)\varphi(q(z)),$$

then  $p(z) \prec q(z)$ , and q is the best dominant.

A more general version of the above lemma is the following:

**Lemma 1.2.** [8, Theorem 3.4h, p. 132]. Let q be univalent in the unit disk  $\mathbb{D}$  and  $\vartheta$  and  $\varphi$  be analytic in a domain D containing  $q(\mathbb{D})$  with  $\varphi(w) \neq 0$  when  $w \in q(\mathbb{D})$ . Set  $Q(z) = zq'(z)\varphi(q(z))$ ,  $h(z) = \vartheta(q(z)) + Q(z)$ . Suppose that

- (1) either h is convex, or Q is starlike univalent in  $\mathbb{D}$ , and
- (2) Re  $\frac{zh'(z)}{Q(z)} > 0$  for  $z \in \mathbb{D}$ .

If p is analytic in  $\mathbb{D}$ , p(0) = q(0) and satisfies

$$\vartheta(p(z)) + zp'(z)\varphi(p(z)) \prec \vartheta(q(z)) + zq'(z)\varphi(q(z)),$$

then  $p(z) \prec q(z)$ , and q is the best dominant.

### 2. Main Results

We first determine a lower bound for  $\beta$  so that  $1 + \beta z p'(z) \prec \sqrt{1+z}$  implies  $p(z) \prec \sqrt{1+z}$ .

**Lemma 2.1.** Let p be an analytic function on  $\mathbb{D}$  and p(0) = 1. Let  $\beta_0 = 2\sqrt{2}$   $(\sqrt{2} - 1) \approx 1.17$ . If the function p satisfies the subordination

$$1 + \beta z p'(z) \prec \sqrt{1+z} \quad (\beta \ge \beta_0),$$

then p also satisfies the subordination

$$p(z) \prec \sqrt{1+z}$$
.

The lower bound  $\beta_0$  is best possible.

*Proof.* Define the function  $q:\mathbb{D}\to\mathbb{C}$  by  $q(z)=\sqrt{1+z}$  with q(0)=1. Since  $q(\mathbb{D})=\{w:|w^2-1|<1\}$  is the right-half of the lemniscate of Bernoulli,  $q(\mathbb{D})$  is a convex set and hence q is a convex function. This shows that the function zq'(z) is starlike with respect to 0. By Lemma 1.1, it follows that the subordination

$$1 + \beta z p'(z) \prec 1 + \beta z q'(z)$$

implies  $p(z) \prec q(z)$ . In light of this differential chain, the result is proved if it could be shown that

$$q(z) = \sqrt{1+z} \prec 1 + \beta z q'(z) = 1 + \frac{\beta z}{2\sqrt{1+z}} =: h(z).$$

Since  $q^{-1}(w) = w^2 - 1$ , it follows that

$$q^{-1}(h(z)) = \left(2 + \frac{\beta z}{2\sqrt{1+z}}\right) \frac{\beta z}{2\sqrt{1+z}}$$

For  $z = e^{it}$ ,  $t \in [-\pi, \pi]$ , clearly

$$|q^{-1}(h(z))| = |q^{-1}(h(e^{it}))| = \frac{\beta}{2\sqrt{2\cos\frac{t}{2}}} \left| 2 + \frac{\beta e^{i\frac{3t}{4}}}{2\sqrt{2\cos\frac{t}{2}}} \right|.$$

A calculation shows that the minimum of the above expression is attained at t=0. Hence

$$|q^{-1}(h(e^{it}))| \ge \frac{\beta}{2\sqrt{2}} \left(2 + \frac{\beta}{2\sqrt{2}}\right) = \left(1 + \frac{\beta}{2\sqrt{2}}\right)^2 - 1 \ge 1$$

provided  $\beta \geq 2\sqrt{2}(\sqrt{2}-1)$ . Hence  $q^{-1}(h(\mathbb{D})) \supset \mathbb{D}$  or  $h(\mathbb{D}) \supset q(\mathbb{D})$ . This shows that  $q(z) \prec h(z)$ , and completes the proof.

**Theorem 2.2.** Let  $\beta_0 = 2\sqrt{2}(\sqrt{2}-1) \approx 1.17$  and  $f \in A$ .

(1) If f satisfies the subordination

$$1 + \beta \frac{zf'(z)}{f(z)} \left( 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) \prec \sqrt{1+z} \quad (\beta \ge \beta_0),$$

then  $f \in \mathcal{SL}$ .

(2) If 
$$1 + \beta z f''(z) \prec \sqrt{1+z}$$
  $(\beta \geq \beta_0)$ , then  $f'(z) \prec \sqrt{1+z}$ .

*Proof.* Define the function  $p: \mathbb{D} \to \mathbb{C}$  by

$$p(z) = \frac{zf'(z)}{f(z)}.$$

Then p is analytic in  $\mathbb{D}$  and p(0) = 1. A calculation shows that

$$zp'(z) = \frac{zf'(z)}{f(z)} \left( 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right).$$

Applying Lemma 2.1 to this function p yields the first part of the theorem. The second part follows by taking p(z) = f'(z) in Lemma 2.1.

**Lemma 2.3.** Let  $\beta_0 = 4(\sqrt{2} - 1) \approx 1.65$ . If

$$1 + \frac{\beta z p'(z)}{p(z)} \prec \sqrt{1+z} \quad (\beta \ge \beta_0),$$

then

$$p(z) \prec \sqrt{1+z}$$
.

The lower bound  $\beta_0$  is best possible.

*Proof.* Let q be the convex function given by  $q(z) = \sqrt{1+z}$ , and consider the subordination

$$1 + \frac{\beta z p'(z)}{p(z)} \prec 1 + \frac{\beta z q'(z)}{q(z)}.$$

A calculation shows that

$$\frac{\beta z q'(z)}{q(z)} = \frac{\beta z}{2(1+z)}$$

is convex in  $\mathbb D$  (and hence starlike). Thus, in view of Lemma 1.1, it follows that  $p(z) \prec q(z)$ . To complete the proof, it is left to show that

$$q(z) = \sqrt{1+z} \prec 1 + \frac{\beta z q'(z)}{q(z)} = 1 + \frac{\beta z}{2(1+z)} =: h(z).$$

Since  $h(\mathbb{D})=\{w: Rew<1+\beta/4\}$ , and  $q(\mathbb{D})=\{w: |w^2-1|<1\}\subset \{w: Rew<\sqrt{2}\}$ , it follows that  $q(\mathbb{D})\subset h(\mathbb{D})$  if  $\sqrt{2}\leq 1+\beta/4$ . Thus  $q(z)\prec h(z)$  for  $\beta\geq 4(\sqrt{2}-1)$ , and this completes the proof.

**Theorem 2.4.** Let  $\beta_0 = 4(\sqrt{2} - 1) \approx 1.65$  and  $f \in A$ .

(1) If f satisfies

$$1 + \beta \left( 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) \prec \sqrt{1+z} \quad (\beta \ge \beta_0),$$

then  $f \in \mathcal{SL}$ .

(2) If f satisfies

$$1 + \beta \left( \frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) \prec \sqrt{1+z} \quad (\beta \ge \beta_0),$$
$$\frac{z^2 f'(z)}{f^2(z)} \prec \sqrt{1+z}.$$

then

*Proof.* The results follows from Lemma 2.3 by taking  $p(z)=\frac{zf'(z)}{f(z)}$  and  $p(z)=\frac{z^2f'(z)}{f^2(z)}$  respectively.

**Lemma 2.5.** Let 
$$\beta_0 = 4\sqrt{2}(\sqrt{2} - 1) \approx 2.34$$
. If  $1 + \frac{\beta z p'(z)}{p^2(z)} \prec \sqrt{1+z}$   $(\beta \geq \beta_0)$ ,

then

$$p(z) \prec \sqrt{1+z}$$
.

The lower bound  $\beta_0$  is best possible.

*Proof.* With q being the convex function  $q(z) = \sqrt{1+z}$ , consider the function Q defined by

$$Q(z) := \frac{zq'(z)}{q^2(z)} = \frac{z}{2(1+z)^{\frac{3}{2}}}.$$

Since

$$Re^{\frac{1+(1-2\alpha)z}{1-z}} > \alpha \quad (0 \le \alpha < 1),$$

it follows that

$$Re\frac{zQ'(z)}{Q(z)} = Re\frac{2-z}{2(1+z)} > \frac{1}{4} > 0.$$

Thus the function Q is starlike and Lemma 1.1 shows that the subordination

$$1 + \frac{\beta z p'(z)}{p^2(z)} \prec 1 + \frac{\beta z q'(z)}{q^2(z)}$$

implies  $p(z) \prec q(z)$ . We next show that

$$q(z) = \sqrt{1+z} \prec 1 + \frac{\beta z q'(z)}{q^2(z)} = 1 + \frac{\beta z}{2(1+z)^{\frac{3}{2}}} =: h(z).$$

Since  $q^{-1}(w) = w^2 - 1$ , then

$$q^{-1}(h(z)) = \left(2 + \frac{\beta z}{2(1+z)^{\frac{3}{2}}}\right) \frac{\beta z}{2(1+z)^{\frac{3}{2}}}.$$

Thus with  $z = e^{it}$ ,  $t \in [-\pi, \pi]$ , yields

$$|q^{-1}(h(z))| = |q^{-1}(h(e^{it}))| = \frac{\beta}{2(2\cos\frac{t}{2})^{\frac{3}{2}}} \left| 2 + \frac{\beta e^{i\frac{t}{4}}}{2(2\cos\frac{t}{2})^{\frac{3}{2}}} \right|.$$

A computation shows that the minimum of the above expression is attained at t=0. Hence

$$|q^{-1}(h(e^{it}))| \ge \frac{\beta}{4\sqrt{2}} \left(2 + \frac{\beta}{4\sqrt{2}}\right) = \left(1 + \frac{\beta}{4\sqrt{2}}\right)^2 - 1 \ge 1$$

for  $\beta \ge 4\sqrt{2}(\sqrt{2}-1)$ . Hence  $q(z) \prec h(z)$ .

By taking  $p(z) = \frac{zf'(z)}{f(z)}$  in Lemma 2.5, we obtain the following theorem.

**Theorem 2.6.** Let  $\beta_0 = 4\sqrt{2}(\sqrt{2}-1) \approx 2.34$  and  $f \in A$ . Then  $f \in SL$  if

$$1 - \beta + \beta \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \prec \sqrt{1+z} \quad (\beta \ge \beta_0).$$

**Lemma 2.7.** Let  $0 < \alpha \le 1$ . If  $p \in A$  satisfies

$$(1 - \alpha)p(z) + \alpha p^{2}(z) + \alpha z p'(z) \prec \sqrt{1 + z}.$$

then  $p(z) \prec \sqrt{1+z}$ .

*Proof.* Define the function q by  $q(z) = \sqrt{1+z}$ . We first show that  $p(z) \prec q(z)$  if p satisfies

$$(1 - \alpha)p(z) + \alpha p^2(z) + \alpha z p'(z) \prec (1 - \alpha)q(z) + \alpha q^2(z) + \alpha z q'(z).$$

For this purpose, let the functions  $\vartheta$  and  $\varphi$  be defined by  $\vartheta(w) := (1 - \alpha)w + \alpha w^2$  and  $\varphi(w) := \alpha$ . Clearly the functions  $\vartheta$  and  $\varphi$  are analytic in  $\mathbb C$  and  $\varphi(w) \neq 0$ . Also let Q and h be the functions defined by

$$Q(z) := zq'(z)\varphi(q(z)) = \alpha zq'(z)$$

and

$$h(z) := \vartheta(q(z)) + Q(z) = (1 - \alpha)q(z) + \alpha q^{2}(z) + \alpha z q'(z).$$

Since q is convex, the function zq'(z) is starlike, and therefore Q is starlike univalent in  $\mathbb{D}$ . In view of the fact that Req(z) > 0, it follows that

$$Re\frac{zh'(z)}{Q(z)} = \frac{1}{\alpha}Re\left[(1-\alpha) + 2\alpha q(z) + \alpha\left(1 + \frac{zq''(z)}{q'(z)}\right)\right] > 0 \quad (z \in \mathbb{D})$$

for  $0<\alpha\leq 1$ . By Lemma 1.2, it follows that  $p\prec q=\sqrt{1+z}$ . To complete the proof, we seek conditions on  $\alpha$  so that  $q(z)\prec h(z)$ , or equivalently  $|[h(e^{it})]^2-1|\geq 1$  for all  $t\in [-\pi,\pi]$ . Now

$$h(z) = \frac{\alpha z + 2(1 - \alpha)(1 + z) + 2\alpha(1 + z)^{3/2}}{2\sqrt{1 + z}},$$

and a calculation shows that  $|[h(e^{it})]^2-1|$  attains its minimum at t=0. Thus  $|[h(e^{it})]^2-1|\geq |(h(1))^2-1|>1$  if  $h(1)=\frac{8-3\sqrt{2}}{4}\alpha+\sqrt{2}>\sqrt{2}$  and this holds for  $\alpha>0$ . Hence we conclude that  $(1-\alpha)p(z)+\alpha p^2(z)+\alpha zp'(z)\prec\sqrt{1+z}$  implies  $p(z)\prec\sqrt{1+z}$ .

**Theorem 2.8.** *If*  $f \in A$  *satisfies* 

$$\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right) \prec \sqrt{1+z} \quad (0<\alpha\leq 1),$$

then  $\frac{zf'(z)}{f(z)} \prec \sqrt{1+z}$ , or equivalently  $f \in \mathcal{SL}$ .

*Proof.* With  $p(z) = \frac{zf'(z)}{f(z)}$ , a computation shows that

$$p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)}.$$

Evidently

$$\frac{zf'(z)}{f(z)}\left(1 + \alpha \frac{zf''(z)}{f'(z)}\right) = \frac{zf'(z)}{f(z)} + \alpha \frac{z^2f''(z)}{f(z)} = (1 - \alpha)p(z) + \alpha p^2(z) + \alpha zp'(z).$$

The result now follows from Lemma 2.7.

#### ACKNOWLEDGMENTS

The work presented here was supported in part by grants from Universiti Sains Malaysia, National Research Foundation of Korea (No. 2011-0007037) and University of Delhi.

## REFERENCES

- 1. R. M. Ali, N. K. Jain and V. Ravichandran, *Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane*, preprint.
- 2. R. M. Ali, N. E. Cho, N. K. Jain and V. Ravichandran, *Radii of starlikeness and convexity of functions defined by subordination with fixed second coefficient*, preprint.
- 3. R. M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, *Int. J. Math. Math. Sci.*, **2007**, Art. ID 62925, 7 pp.
- 4. R. M. Ali, V. Ravichandran and N. Seenivasagan, On Bernardi's integral operator and the Briot-Bouquet differential subordination, *J. Math. Anal. Appl.*, **324** (2006), 663-668.
- 5. B. A. Frasin and M. Darus, On certain analytic univalent functions, *Int. J. Math. Math. Sci.*, **25**(5) (2001), 305-310.
- 6. A. W. Goodman, *Univalent Functions*, Vols. 1 & 2, Polygonal Publ. House, Washington, New Jersey, 1983.
- 7. W. Janowski, Some extremal problems for certain families of analytic functions I, *Ann. Polon. Math.*, **28** (1973), 297-326.
- 8. S. S. Miller and P. T. Mocanu, *Differential Subordination, Theory and Application*, Marcel Dekker, Inc., New York, Basel, 2000.
- 9. M. Nunokawa, S. Owa, H. Saitoh, A. Ikeda and N. Koike, Some results for strongly starlike functions, *J. Math. Anal. Appl.*, **212(1)** (1997), 98-106.
- 10. M. Nunokawa, S. Owa, H. Saitoh and N. Takahashi, On a strongly starlikeness criteria, *Bull. Inst. Math. Acad. Sinica*, **31(3)** (2003), 195-199.
- 11. M. Obradovic and N. Tuneski, On the starlike criteria defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 24 (2000), 59-64.

- 12. M. Obradović and S. Owa, On some criterions for starlikeness of order  $\alpha$ , *Rend. Mat. Appl.* (7), **8(2)** (1988), 283-289.
- 13. J.-L. Li and S. Owa, Sufficient Conditions for Starlikeness, *Indian J. Pure Appl. Math.*, **33(3)** (2002), 313-318.
- 14. E. Paprocki and J. Sokól, The extremal problems in some subclass of strongly starlike functions, *Zeszyty Nauk. Politech. Rzeszowskiej Mat.*, **20** (1996), 89-94.
- 15. V. Ravichandran, C. Selvaraj and R. Rajalaksmi, Sufficient conditions for starlike functions of order α, *JIPAM. J. Inequal. Pure Appl. Math.*, **3**(**5**) (2002), Article 81, 6 pp. (electronic).
- 16. V. Ravichandran and M. Darus, On a criteria for starlikeness, *Int. Math. J.*, **4(2)** (2003), 119-125.
- 17. V. Ravichandran, Certain applications of first order differential subordination, *Far East J. Math. Sci.* (*FJMS*), **12(1)** (2004), 41-51.
- 18. V. Ravichandran, M. Darus and N. Seenivasagan, On a criteria for strong starlikeness, *Aust. J. Math. Anal. Appl.*, **2(1)** (2005), Art. 6, 12 pp.
- 19. T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in: *Computational methods and function theory (Penang)*, 319-324, World Sci. Publ., River Edge, NJ. 1994.
- H. Silverman, Convex and starlike criteria, *Int. J. Math. Math. Sci.*, **22(1)** (1999), 75-79
- 21. S. Singh and S. Gupta, First order differential subordinations and starlikeness of analytic maps in the unit disc, *Kyungpook Math. J.*, **45(3)** (2005), 395-404.
- 22. S. Singh and S. Gupta, A differential subordination and starlikeness of analytic functions, *Appl. Math. Lett.*, **19(7)** (2006), 618-627.
- 23. J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, *Zeszyty Nauk. Politech. Rzeszowskiej Mat.*, **19** (1996), 101-105.
- 24. J. Sokól, Coefficient estimates in a class of strongly starlike functions, *Kyungpook Math. J.*, **49(2)** (2009), 349-353.
- J. Sokól, Radius problems in the class SL, Appl. Math. Comput., 214(2) (2009), 569-573
- 26. N. Tuneski, On the quotient of the representations of convexity and starlikeness, *Math. Nachr.*, **248/249** (2003), 200-203.

Rosihan M. Ali School of Mathematical Sciences Universiti Sains Malaysia 11800 USM, Penang Malaysia E-mail: rosihan@cs.usm.my Nak Eun Cho Department of Applied Mathematics Pukyong National University Busan 608-737 South Korea E-mail: necho@pknu.ac.kr

V. Ravichandran
Department of Mathematics
University of Delhi
Delhi-110 007
India

E-mail: vravi68@gmail.com vravi@maths.du.ac.in

S. Sivaprasad Kumar Department of Applied Mathematics Delhi Technological University Bawana Road, Delhi-110042 India

E-mail: spkumar@dce.ac.in