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ZIGZAG AND CENTRAL CIRCUIT STRUCTURE OF ({1, 2, 3}, 6)-SPHERES

Michel Deza and Mathieu Dutour Sikirić

Abstract. We consider 6-regular plane graphs whose faces have size 1, 2 or 3. In
Section 2 a practical enumeration method is given that allowed us to enumerate

them up to 53 vertices. Subsequently, in Section 3 we enumerate all possible
symmetry groups of the spheres that showed up. In Section 4 we introduce a new

Goldberg-Coxeter construction that takes a 6-regular plane graph G0, two integers

k and l and returns two 6-regular plane graphs.
Then in the final section, we consider the notions of zigzags and central

circuits for the considered graphs. We introduced the notions of tightness and

weak tightness for them and prove an upper bound on the number of zigzags and

central circuits of such tight graphs. We also classify the tight and weakly tight

graphs with simple zigzags or central circuits.

1. INTRODUCTION

By a (S, k)-sphere we call a plane k-regular graph such that any face has size in

S.
If G is a 6-regular plane graph, then by Euler formula it satisfies the equality:

∑

k≥1

pk(3− k) = 6

with pk the number of k-gons, i.e. faces of size k. So, if, moreover, G has only 2-
and 3-gonal faces, then it has exactly six 2-gons.
Note that a ({2, 3}, 6)-sphere with p3 3-gons has n = 2 + p3

2 vertices. In [6]

(Theorem 2.0.1) we proved that for any n ≥ 2 there exist a ({2, 3}, 6)-sphere with n
vertices. If 1-gons are permitted, then 2p1 + p2 being 6, all possible pairs (p1, p2),
besides (0, 6), are (1, 4), (2, 2) and (3, 0).
The only possible ({s − 1, s}, k)-spheres have (s, k) = (6, 3) (well-known geo-

metrical fullerenes), (4, 4) (considered in [8, 7, 9, 12]) and (3, 6) (the object of this
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paper). ({2, 3}, 6)-spheres are spherical analog of the 6-regular partition {36} of the
Euclidean plane by regular triangles, with six 2-gons playing role of “defects”, discli-
nations needed to increase the curvature zero to the one of sphere. The problem of

existence of plane graphs with a fixed p-vector is an active subject of research, see for
example [19].

In Section 2 we expose a practical method for generating ({1, 2, 3}, 6)-spheres.
The main idea is to use a reduction to 3-regular graphs for which very efficient pro-
grams exist [2]. Then in Section 3 we determine the possible symmetry groups of

({1, 2, 3}, 6)-spheres with i 1-gons. The methods are reasonably simple except for the
({1, 3}, 6)-spheres for which the Goldberg-Coxeter construction is needed.
In Section 4 we introduce a new Goldberg-Coxeter construction. It takes a 6-

regular sphere G0, two integers k, l and returns two 6-regular spheres G1, G2 with

GCk,l(G0) = {G1, G2}. The construction satisfies a multiplicativity property based
on the ring of Eisenstein integers. In the case k = l = 1 we call the construction
oriented tripling and we have a more explicit description of it. The Goldberg-Coxeter

construction defined here generalizes the one introduced in [14, 3, 8] for 3- or 4-regular
plane graphs and allows to describe explicitly all ({1, 3}, 6)-spheres. It also allows to
describe all ({2, 3}, 6)-spheres of symmetry D6, D6h, T , Th, or Td.

In a plane graph G, a zigzag is a circuit of edges such that any two but no three
consecutive edges are contained in the same face. A zigzag has necessarily even length.

In an Eulerian (i.e. degree of any vertex is even) plane graph, a central circuit is a

circuit of edges such that any edge entering a vertex is followed by the edge opposite

to the entering one.

A zigzag is called simple if no two edges occur two times and a central circuit is

called simple if no two vertices occur two times. Let Z and Z ′ be (possibly, Z = Z ′)

zigzags of a plane graph G and let an orientation be selected on them. An edge e of
intersection Z ∩ Z ′ is called of type I or type II, if Z and Z ′ traverse e in opposite

or same direction, respectively Let C and C ′ be (possibly, C = C ′) central circuits
of a 6-regular plane graph and let an orientation be selected on them. A vertex v of

intersection C ∩C ′ is called of type I or type II if C and C ′ pass by v with orientation
shifted by 60◦, respectively, 120◦. We prove in Theorem 13 that the intersection type
is always of type II.

We then introduce the notions of tighness and weak tightness for zigzags and central

circuits and we prove upper bound on the maximal number of zigzags and central circuit.

The results are summarized in Table 2 and Figure 28. Then we determine completely

the weakly tight spheres with simple zigzags or central circuits.

2. GENERATION METHOD

In any ({2, 3}, 6)-sphere, one can collapse its 2-gons into simple edges. By doing
so one obtains a graph with vertices of degree at most 6 and with faces of size 3 only.
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So, the dual will be a 3-regular graph with faces of size at most 6.

Theorem 1. With the exception of the following ({2, 3}, 6)-spheres any ({2, 3},
6)-sphere is obtained from a ({3, 4, 5, 6}, 3)-sphere by adding vertices of degree 2 and
taking the dual.

Proof. Let G be a ({2, 3}, 6)-sphere and let G∗ be its dual. Then, by removing
from G∗ its vertices of degree 2, one gets a 3-regular graph G1. It can happen that

G1 has no vertices and is reduced to a simple circular edge e. In this case, if one
adds six vertices on e and take the dual, one will get the first exceptional graph with

2 vertices. If G1 has one face F which is a 1-gon, then we have to add 5 vertices of
degree 2 on the edge e of F . Necessarily, any face adjacent to F has to be a 1-gon,
but this is, clearly, impossible. If F is a 2-gon and F is adjacent to at least one 2-gon,
then G1 is reduced to a graph with two vertices and three edges. The corresponding

({2, 3}, 6)-sphere is the second exceptional graph. Assume that F is adjacent to F1,

F2 with Fi being a ai-gon and ai ≥ 3. If one of ai is 3, then the other is 6 and this
gives a 1-gon. Thus, the only possibility is a1 = a2 = 4. This implies that we have
a graph with 4 vertices, two 4-gonal and two 2-gonal faces. But consideration of all
possibilities rules out this option. So, G1 is a 3-regular plane graph with faces of size
within {3, 4, 5, 6}.

The method can be generalized (in Theorem 2) to deal with graphs with 1-gons.
Note that for most ({3, 4, 5, 6}, 3)-spheres one cannot add those vertices of degree 2,
in order to get the required spheres, because whenever we add such a 2-gon, we have
two faces of size lower than 6 that are adjacent. Graphs admitting such adjacency are
relatively rare among ({3, 4, 5, 6}, 3)-spheres. Some such graphs are the ({5, 6}, 3)-
spheres with the 5-gons organized in pairs, they are part of the class of face-regular
spheres [6].

The above theorem gives a method to enumerate ({2, 3}, 6)-spheres. First enumer-
ate the ({3, 4, 5, 6}, 3)-spheres using the program CPF, which is available from [1] and

whose algorithm has been described in [2]. After such enumeration is done, the trick

is to add the six vertices of degree 2 in all possibilities. This is relatively easy to do
and thus we have an efficient enumeration method. The numbers of graphs are shown

in Table 1 for 2 ≤ n ≤ 53. We should point out that this algorithm while reasonable
for our purpose is very far from being optimal. A better method would be to adapt the
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Table 1: Number Ni of ({1, 2, 3}, 6)-spheres with n vertices and (p1, p2)=(i, 6− 2i)

n N0 N1 N2 N3 n N0 N1 N2 N3 n N0 N1 N2 N3

1 0 0 1 1 19 69 36 13 1 37 436 133 24 1
2 1 0 1 0 20 100 34 28 0 38 581 118 37 0
3 1 1 3 1 21 86 46 19 1 39 495 159 32 1
4 3 1 5 1 22 133 33 23 0 40 677 112 59 0
5 2 3 5 0 23 112 62 16 0 41 582 187 26 0
6 7 2 8 0 24 165 44 37 0 42 758 133 53 0
7 5 6 6 1 25 144 57 20 1 43 679 180 27 1
8 12 5 12 0 26 205 54 27 0 44 869 172 53 0
9 10 8 8 1 27 176 75 22 1 45 749 199 43 0
10 19 6 12 0 28 251 61 36 1 46 1000 149 44 0
11 16 14 9 0 29 214 95 19 0 47 868 250 30 0
12 29 11 17 1 30 299 61 40 0 48 1101 182 72 1
13 24 17 10 1 31 265 96 20 1 49 989 235 35 2
14 42 16 16 0 32 360 89 43 0 50 1259 194 57 0
15 35 23 15 0 33 305 111 28 0 51 1076 270 40 0
16 59 18 22 1 34 429 80 33 0 52 1410 210 61 1
17 48 33 12 0 35 375 134 31 0 53 1228 313 33 0
18 79 22 22 0 36 488 105 50 1

algorithm from [2] although this is not easy to do.

Theorem 2. With the exception of the following graphs T1, T2 and the spheres of

the infinite series depicted in Figures 1, 2, 3 and 4, any ({1, 2, 3}, 6)-sphere with at
least one 1-gon is obtained from a ({3, 4, 5, 6}, 3)-sphere by taking the dual and then
splitting some edges according to following two schemes:

Proof. Let us take a ({1, 2, 3}, 6)-sphere G with at least one 1-gon F in its face-

set. Clearly, F cannot be adjacent to another 1-gon. If F is adjacent to a 2-gon, then
simple considerations yield that G belongs to the infinite series of Figure 3. So, we can

assume in the following that all 1-gons, say F1, . . . ,Fs are adjacent to 3-gons G1,. . . ,

Gs. If one of the Gi is adjacent to two 2-gons, then we get the sphere B2 (C2h, n = 2)
depicted in Figure 4. If one of the Gi is adjacent to exactly one 1-gon, then we get the
following partial diagram:
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Clearly, such diagram extends to one of the graphs of the infinite series depicted in

Figure 4.

So, we can now assume that theGi are adjacent to 3-gons only. If one of the 3-gons
adjacent to a Gi turns out to be another Gj , then we get the map C2 from Figure 4.

So, we assume further that those 3-gons are not of the type Gi.

The faces Gi contains two vertices vi, v
′
i with vi being contained in Fi. If vi = v′i,

then we get the exceptional sphere Trifolium. So, we assume further that vi 6= v′i.

If vi = v′j for i 6= j, then some easy considerations gives the sphere T2 as the only

possibility. So, let us assume now that the vertex vi is contained in a 2-gon. Then we
have the following local configuration:

From that point, after enumeration of all possibilitieswe get the infinite series of Figures

1 and 2. So, now we have that all vertices vi are contained in four 3-gons. This implies
that G is obtained from a ({3, 4, 5, 6}, 3)-sphere by taking the dual and then splitting
some edges according to mentioned above schemes.

Obviously, the above theorem gives us a method to enumerate the ({1, 2, 3}, 6)-
spheres. The enumeration results are shown in Table 1. Like for ({2, 3}, 6)-spheres, it
would be interesting to have a faster enumeration method.

Fig. 1. First terms of an infinite sequence of ({1, 2, 3}, 6)-spheresR2i+1 with (p1, p2) =
(1, 4).
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Fig. 2. First terms of an infinite sequence of ({1, 2, 3}, 6)-spheres S2i with (p1, p2) =
(2, 2).

Fig. 3. First terms of an infinite sequence of ({1, 2, 3}, 6)-spheres Ai with (p1, p2) =
(2, 2).

Fig. 4. First terms of two infinite sequences of ({1, 2, 3}, 6)-spheres Bi+1, Ci+1 with

(p1, p2) = (2, 2).

3. SYMMETRY GROUPS

We now give the possible groups of the considered spheres. Note that we are using

the terminology of points groups in chemistry as explained, for example, in [10].

Theorem 3. The possible symmetry group of a ({2, 3}, 6)-sphere are C1, C2,

C2h, C2v , C3, C3h, C3v , Ci, Cs, D2, D2d, D2h, D3, D3d, D3h, D6, D6h, S4, S6, T ,

Th and Td. The minimal possible representatives are given in Figure 5.
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Fig. 5. Minimal representatives for each possible symmetry group of a ({2, 3}, 6)-sphere.

Proof. The method is to consider the possible axes of symmetry; they are passing

through faces, edges or vertices. As a consequence, the possibilities for a k-fold axis

of symmetry are 2, 3 or 6. The only groups that could occur, besides 22 given in the
theorem, are D6d, C6, C6h or C6v .

If a 6-fold axis occurs, then it necessarily passes through two vertices, say, v1 and

v2. Around this vertex one can add successive rings of triangles as in the classical

structure of the triangular lattice. At some point one gets a 2-gon and thus, by the
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6-fold symmetry, six 2-gons. Then, one can continue the structure uniquely and the
structure is defined uniquely. This completion is the same as the one around v and it
implies the existence of a mapping that inverts v with the transformation inverting v1

and v2 and the group are D6, D6h or D6d. The group D6d is ruled out because 2-fold
axis passes through the 2-gons.

Theorem 4. The possible symmetry group of a ({1, 2, 3}, 6)-sphere with p1 > 0
are

(i) C1 or Cs if p1 = 1.

(ii) C1, C2, Ci, Cs, C2v or C2h if p1 = 2.

(iii) C3, C3v or C3h if p1 = 3.

The minimal possible representatives are given in Figures 6, 7 and 8.

Fig. 6. Minimal representatives for each possible symmetry group of a ({1, 2, 3}, 6)-
sphere with (p1, p2) = (1, 4).

Fig. 7. Minimal representatives for each possible symmetry group of a ({1, 2, 3}, 6)-
sphere with (p1, p2) = (2, 2).

Proof. For (i), the 1-gon has to be preserved by any symmetry which leaves C1

and Cs as the only possibilities. They are both realized. For (ii), we proceed in the
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same way. (iii) is proved in Theorem 10.

Fig. 8. Minimal representatives for each possible symmetry group of a ({1, 3}, 6)-sphere.

An interesting question is to consider whether a ({1, 2, 3}, 6)-sphere can be mapped
onto the projective plane P2. Clearly, this is equivalent to the map having a central

inversion. ({1, 3}, 6)-maps on the projective plane do not exist since no centrally-
symmetric ({1, 3}, 6)-sphere exist. All ({2, 3}, 6)-maps on the P2 are antipodal quo-

tients (i.e. with halved p-vector and number of vertices) of ({2, 3}, 6)-spheres whose
groups contain the inversion, i.e. those of symmetry Ci, C2h, D2h, D3d, D6h, S6 and

Th. In the next section we will describe explicitly the ({2, 3}, 6)-sphere of symmetry
D6h and Th.

4. THE GOLDBERG-COXETER CONSTRUCTION

In [11] a construction is given, generalizing Goldberg-Coxeter construction given

in [14, 3] for 3-regular graphs with 6-gonal and 5-, 4-, 3-gonal faces only. For the
particular case when G is a geometrical fullerene, there is a large body of literature,

see bibliography of [11]. It takes a 3- or 4-regular plane graph G and returns a 3- or
4-regular plane graph. There the first step was to take the dual and get a triangulation or
a quadrangulation of the sphere. The respective triangles and squares were subdivided,

then put together and the dual was taken. An instrument in this operation was that

the Eisenstein and Gaussian integers are best represented on the tiling of the plane by

equilateral triangles, respectively, squares. We are able to generalize this construction

to the 6-regular case but there are differences.
First, if G is a ({2, 3}, 6)-sphere, then the dual G∗ is a plane graph with faces of

size 6 and thus, bipartite. The tessellation of Euclidean plane by regular hexagons is
represented on Figure 9. We use there two vectors v1, v2 to represent the coordinate

of the points. In complex coordinates v1 = 1 and v2 = j with j = eiπ/3. The lattice

L = Zv1 + Zv2 is called the Eisenstein ring. The point A is the origin and the point

B(k, l) is the point k+lj. The points in the bipartite component ofA are LA = (1+j)L,
while the points in the component of B(1, 0) are LB = 1 + (1 + j)L. Both sets LA

and LB are stable under multiplication. We will first define the Goldberg-Coxeter

construction for k + lj ∈ LB. Then we will extend it to any (k, l) 6= 0.

Theorem 5. If z = k + lj ∈ LB and G0 is a 6-regular plane graph with |G0|
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vertices, then it is possible to define a plane graph G′ = GCz(G0) = GCk,l(G0) such
that the following holds:

(i) G′ is a 6-regular plane graph with |G0|(k2 + kl + l2) vertices.
(ii) Every face of G0 corresponds to a face of G′ with all new faces of G′ being

3-gons.
(iii) G′ has all rotational symmetries of G0 and all symmetries as well if l = 0 or

k = 0.
(iv) GC1,0(G0) = G0 and GCz(G0) = GCzj2(G0).
(v) GCz(GCz′(G0)) = GCzz′ (G0).
(vi) GCz(G0) = GCz(G0) where G0 is the graph that differs from G0 only by a

plane symmetry.

Fig. 9. The tiling by hexagons, the point A and some points in the other bipartite com-

ponent.

Fig. 10. Smallest ({2, 3}, 6)-spheres of symmetry D6, D6h in terms of the Goldberg-

Coxeter construction.
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Proof. Let G0 be a 6-regular graph. The dual G∗
0 is a plane graph with all faces

being 6-gons. If z = k+lj ∈ LB, then the point B(k, l) belongs to the same connected
component as B.

The point c = −j2z is the center of an hexagon and we build around it six points
Pq:

Pq = c − jqc for 0 ≤ q ≤ 5.

Those six points form a master hexagon that correspond to the original hexagon. Every

hexagon of G∗
0 can be thus modified and we can arrange them together at the boundary

between adjacent hexagons. We can thus obtain another plane graph with 6-regular
faces. By taking the dual one more time, we get GCk,l(G0). Checking the remaining
properties is relatively easy.

The above theorem is similar to Proposition 3.1 in [11]. But there are some dif-

ferences. In the 3-regular case, we have GCk,l(G0) with all symmetries if k = l,

while here the case k = l is impossible. See in Figure 13 the local structure of the
Goldberg-Coxeter construction GC3,2 and in Figure 18, GC4,0.

Theorem 6. The ({2, 3}, 6)-spheres of symmetryD6,D6h are obtained asGCk,l(6×
K2) with k + lj ∈ LB.

Proof. Let us take a ({2, 3}, 6)-sphere G of symmetry D6 or D6h and let

us take the dual G∗. The 6-fold axis passes through a 6-gon F and the 2-gons
of G correspond to 6-regular vertices. But the position of those 2-gons define a
master hexagon around F and thus we get exactly the structure of a graph GCk,l

(6×K2).

In Theorem 5 we have defined the Goldberg-Coxeter constructionGCk,l for k+lj ∈
LB. Now we want to define it for any k, l 6= 0. For that we first introduce the notion
of oriented tripling.

Definition 7. If G is a 6-regular plane graph, then its dual G∗ is bipartite. For

each such bipartite class C we define a graph OrC(G) with the following properties:
(i) OrC(G) is a 6-regular plane graph with 3 times as many vertices.
(ii) Each vertex of G corresponds to 3 vertices of OrC(G) and 4 triangular

faces.

(iii) Every symmetry of G preserving C also occur as symmetry of OrC(G).

The local configuration of the operation is shown in Figure 11. For every face F of G,

we orient the edges of F counter-clockwise. Thus for every bipartite class C of G∗ we
get an orientation of the edges of G. Around a vertex v and its six adjacent vertices,
there are three vertices w to which the edge {v, w} is oriented from v to w. They are

the vertices 1, 3, 5 in Figure 11.
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Fig. 11. Local configuration around a vertex of the oriented tripling operation.

Fig. 12. Two examples of ({2, 3}, 6)-spheres with unique oriented tripling.

So, if G has two inequivalent bipartite components C1 and C2, then OrC1(G) and
OrC2(G) are not necessarily isomorphic and the smallest such example is shown on
Figure 15. In Figure 12 we give two examples of the action of the oriented tripling

when the obtained graph is unique.

Fig. 13. Local structure of the Goldberg-Coxeter construction GC3,2.

For the Trifolium T1, we can define a sequence Ti of graphs with Ti+1 obtained

by applying the oriented tripling to Ti. The first 4 terms are shown in Figure 14.
We now introduce the Goldberg-Coxeter construction in the general case. For a

sphere G, denote by Tr(G) the truncation of G, i.e. the sphere obtained by replacing
every vertex of degree k of G by a k-gonal face.
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Fig. 14. First terms of the infinite sequence of ({1, 3}, 6)-spheres Ti.

Fig. 15. Smallest ({2, 3}, 6)-sphere having two non-isomorphic oriented triplings.

We will also use the following result: if G is a 3-regular sphere with faces of even
size, then it is possible to color the faces of G so that any two adjacent faces have

different colors. Such a coloring is unique up to permutation of the colors. If G0 is

a graph with vertices of even degree, then its dual is bipartite and the three colors in

Tr(G0) come from the vertices of G0 and the two classes of faces in G0.

Theorem 8. For a 6-regular plane graph G0 and two integers k, l with k, l 6= 0,
we can define two 6-regular spheres G1, G2 with GCk,l(G0) = {G1, G2}. This will
satisfy to the following properties:

(i) Tr(Gi) = GCk,l(Tr(G0)) for i = 1, 2 with GCk,l being the Goldberg-Coxeter

construction for 3-regular spheres.

(ii) G1 and G2 are 6-regular plane graphs with |G0|(k2 + kl + l2) vertices.

(iii) Every face of G0 corresponds to a face of G1 and G2 with all new faces of G1

and G2 being 3-gons.

(iv) GC1,1(G0) = {OrC(G0), OrC′(G0)}.

(v) If k + lj ∈ LB, then G1 = G2.

(vi) If GCk,l(G0) = {G1, G2}, then GCk′ ,l′(G1) = GCkp ,lp(G0) with kp + lpj =
(k + lj)(k′ + l′j).
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Proof. Let us take a 3-coloring in white, red, blue of the faces of Tr(G0) with
white corresponding to the faces coming from vertices of G0. The 3-regular sphere
GCk,l(Tr(G0)) has the faces of G0 and some 6-gonal faces, thus all its faces are of
even size and we can find a 3-coloring of them.
One can see directly that all the white faces of Tr(G0) have the same color in

GCk,l(Tr(G0)); we color them white. If k ≡ l ± 1 (mod 3) (this contains the case
k + lj ∈ LB), then the faces of Tr(G0) coming from faces of G0 will not be white in

GCk,l(Tr(G0)). Thus by shrinking the white faces, we get a graph, which is actually
the GCk,l(G0) defined in Theorem if k + lj ∈ LB.

If k ≡ l (mod 3) then all faces of Tr(G0) will correspond to white faces in
GCk,l(Tr(G0)). The remaining 6-gonal faces have color red and blue. This gives two
set of faces that can be shrunk and thus two possible graphs. All properties follow

easily.

Theorem 9. (i) Any k + lj 6= 0 can be written as k + lj = (1 + j)s(k′ + l′j)ju

with s ≥ 0, u ∈ {0, 1} and k′ + l′j ∈ LB.

(ii) The sphere GCk,l(G0) is obtained by applying the oriented tripling s times

and then the Goldberg-Coxeter construction from Theorem 5.

Proof. (i) The ring of Eisenstein integers is a unique factorization domain. That

is every k + lj 6= 0 can be factorized by into the relevant primes. The condition k ≡ l
(mod 3) is equivalent to k + lj being divisible by 1 + j. Thus by repeated application

of this we can write

k + lj = (1 + j)s(k2 + l2j) with k2 ≡ l2 ± 1 (mod 3).

If k2 ≡ l2 + 1 (mod 3), then we are done, otherwise we divide by j.

(ii) follows from the multiplicativity property (vi) of Theorem 8.

This idea of using the truncation and resulting 3-regular spheres was, perhaps, used
for the first time in [15]. This idea could in principle be applied to the enumeration of

the ({2, 3}, 6)-spheres, since the ({4, 6}, 3)-spheres can be obtained from the program
CPF. But the truncation multiplies the number of vertices by 6 and this makes this
method uncompetitive to the one of Section 2.

We cannot say much in general for the symmetry groups of GCk,l(G0). This is
essentially the same situation as for the oriented tripling. What happens is that for 3-
regular graphs, Goldberg-Coxeter construction GCk,l preserve all symmetries if k = 0
or k = l and only rotational symmetries otherwise. Thus we get the automorphism

group Γ of GCk,l(Tr(G0)). If Γ preserves the set of faces of color red and blue, then
Γ is a group of symmetries of GCk,l(G0), otherwise the stabilizer of the red faces is
a group of symmetries of GCk,l(G0). But some accidental symmetries can occur and
we have thus to work on a case-by-case basis.
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Theorem 10. Let G be a ({1, 3}, 6)-sphere. The following holds:

(i) G = GCk,l(Trifolium) with 0 ≤ l ≤ k and has k2 + kl + l2 vertices.

(ii) G has symmetry C3v if k = 0, C3h if k = l and C3 otherwise.

(iii) G is obtained as GCk,l(Ti) with k+ lj ∈ LB, where (Ti)i≥1 is the infinite series

of 6-regular graphs obtained by starting from Trifolium.

Proof. Let us take a ({1, 3}, 6)-sphere. Then Tr(G) is a ({2, 6}, 3)-sphere.
Either from [15] or [18], we know that such spheres are obtained as GCk,l(3 × K2)
with GCk,l denoting here the 3-regular Goldberg-Coxeter construction. Since the faces
of GCk,l(3× K2) are of even size, it is possible to define a 3-coloring of those faces.
The 2-gonal faces should not be in all 3 different colorings. This can occur only if
k ≡ l (mod 3). So, k + lj can be factorized as (1 + j)(k′ + l′j) and we get

Tr(G) = GCk,l(3× K2)
= GCk′ ,l′(GC1,1(3× K2)
= GCk′ ,l′(Tr(Trifolium)).

Thus we have proved (i).

The symmetry of GCk,l(3 × K2) is D3h if k = 0 or k = l and D3 otherwise. If

k ≡ l (mod 3), then all 2-gons of GCk,l(3 × K2) are in the same color, say white.
The 3-gonal faces that are not white are of two possible colors: red and blue. In order
for a symmetry of Tr(G) = GCk,l(3×K2) to induce a symmetry of G, it is necessary
and sufficient that it preserves all 3 colors of the coloring. This reduces by a factor of
2 the symmetry group and we get C3, C3h and C3v as possible groups.

Statement (iii) follows from Theorem 9 (ii).

Note that the possible number of vertices of ({2, 6}, 3)-spheres was already deter-
mined in [15].

Denote by K2 × Tetrahedron the Tetrahedron with edges doubled.

Theorem 11. (i) Any ({2, 3}, 6)-sphere of symmetry T , Th or Td is obtained as

GCk,l(K2 × Tetrahedron).
(ii) The ({2, 3}, 6)-spheres of symmetry Td, respectively Th, are of the form GCk,0

(K2 × Tetrahedron), respectively GCk,k(K2 × Tetrahedron).

Proof. Take a ({2, 3}, 6)-sphere G of symmetry T , Td or Th and consider their

truncation Tr(G). It is a ({4, 6}, 3)-sphere which contains a subgroup T of symmetry.

By Theorem 6.2 of [5], this implies that the symmetry group of Tr(G) is O or Oh. By

[11] Theorem 5.2, Tr(G) is described by the Goldberg-Coxeter construction applied
to the cube, i.e. Tr(G) = GCk,l(Cube). We need now to determinate which graphs
GCk,l(Cube) are of the form Tr(G). For that we need to consider the 3-coloring of
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the faces. Thus the 4-gonal faces are colored by at most 2 colors. This implies that
k ≡ l (mod 3). In turn, this give us that k + lj = (1 + j)(k′ + l′j), which then gives

Tr(G) = GCk,l(Cube)
= GCk′ ,l′(GC1,1(Cube))
= GCk′ ,l′(Tr(K2 × Tetrahedron)).

(i) follows from Theorem 8.

If a ({2, 3}, 6)-sphere is of symmetry Td or Th, then the symmetry group of

the truncation is Oh and such spheres are described as GCk,0(Cube) and GCk,k

(Cube).

Theorem 12. The number of ({1, 2, 3}, 6)-spheres with i 1-gons and less than n

vertices grows like O(n4−i).

Proof. Take G a ({1, 2, 3}, 6)-sphere with n vertices and i 1-gons. Then Tr(G) is
a ({2, 4, 6}, 3)-sphere with i 2-gons, 6− 2i 4-gons and 6n-vertices. Thus, the number
of faces of size 2 or 4 is 6−i. The 3-regular plane graphs whose faces have size at most
6 and the set of faces of size less than 6 is fixed are described by the parametrization
theory of Thurston [18]. By using it, [16] obtained some upper bound on the number

of geometric fullerenes. The proof applies just as well for the other classes of graphs

and give the required upper bound.

Note that in principle, Thurston’s theory allows to say more. First it gives that

the ({2, 4, 6}, 3)-spheres with i 2-gons. are described by 4 − i Eisenstein integers.

Not all such spheres correspond to ({1, 2, 3}, 6)-spheres with i 1-gons. For that some
congruence have to be satisfied.

5. ZIGZAGS AND CENTRAL CIRCUITS

For a plane graph G and a zigzag or central circuit, if we change the orientation,

then the type of intersection does not change. Thus, to a zigzag or central circuit of

length l with α1 and α2 intersections of type I and II, we attribute the symbol lα1,α2

and we define the z-vector, respectively, c-vector l1
m1
α1,1 ,α1,2

, . . . , lp
mp
αp,1,αp,2

to be the

vector enumerating such lengths with multiplicities mi.

Theorem 13. For a 6-regular plane graph, it is possible to find an orientation on
the zigzags and central circuits such that any edge, respectively, vertex of intersection

is of type II.

Proof. Let us take a 6-regular plane graph G. Since every vertex is of even degree

and G is planar, the dual graph G∗ is bipartite. Let us take one color c of the faces of
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G and orient the edges of the face of color c in such a way that they turn clockwise

around the face (see Figure 17). It is apparent that such orientation carries over to the

zigzags and central circuits of G and that with this orientation all the intersection are

of type II.

For zigzags, this result is not new, see for example [5, 17].

Fig. 16. Intersection types of zigzags and central circuits.

Fig. 17. The orientation of the edges of the face.

Theorem 14. Let us take a 6-regular plane graph G with z-vector . . . , li
ai
αi,βi

, . . .

and c-vector . . . , kj
bj

α′
j,β′

j
, . . . . Then the z-vector and c-vector of GC1+4u,0(G) are

. . . , {li(1 + 3u)}ai(1+u)
αi,βi

, . . . , . . . , {2kj(1 + 3u)}2ubj

α′
j,β′

j
, . . .

and

. . . ,

{
li

1 + 3u

2

}uai

αi,βi

, . . . , . . . , {kj(1 + 3u)}bj(1+2u)

α′
j,β′

j
, . . .

Proof. The proof uses the Goldberg-Coxeter construction previously built. One

goes into the dual and subdivides the hexagons. The picture in Figure 18 shows that

any central circuit of G corresponds to 1 + 2u central circuits (named B in the figure)

and that the zigzags in A on one side correspond to zigzags in G. The result follows

similarly for z-vector.
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Theorem 15. (i) If a ({1, 2, 3}, 6)-sphere has a 1-gon, then it has at least one
self-intersecting central circuit and one self-intersecting zigzag.

(ii) For a ({1, 3}, 6)-spheres, all central circuits and zigzags are self-intersecting.

Fig. 18. The local structure of the Goldberg-Coxeter construction GC4,0.

Fig. 19. Self-intersection induced by a 1-gon.

Proof. (i) The self-intersection is evident from Figure 19.

(ii) If a central circuit is simple in a ({1, 2, 3}, 6)-sphere G, then it splits G into

two domains D1 and D2. If one denotes ni,j the number of faces of size i into the

domain Dj, then one has obviously 2n1,j + n2,j = 3. So, if n2,j = 0, then there is no
solution. The proof for zigzags is the same.

A z-, respectively c-railroad is the circuit of 3-gons bounded by two parallel
zigzags, respectively central circuits. See Figure 20 for an illustration.

A ({1, 2, 3}, 6)-sphere is called z-tight if for any zigzag there is at least one 1-gon
or 2-gon on each of its side of the sphere. It is called z-weakly tight if for any zigzag
there is no zigzag parallel to it. We define the corresponding notions for central circuits.

See Figures 21 and 22 for some illustration of those notions.

The notion of tightness was introduced in [8] for 4-regular plane graphs (see also
[7]) and in [4, 5] for 3-regular plane graphs. For 4-regular plane graphs, central circuits
were used. A central circuit is then called reducible if on one of its side there are only
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4-gons. This sequence of 4-gons can be completely eliminated to get a reduced graph.
For a 3-regular plane graph, a zigzag is called reducible if on one side there is only
6-gons. We can reduce the graph by eliminating those 6-gons only if the zigzag is
simple. Moreover, there are several possibilities for this reduced graph while in the

4-regular case, the reduction is uniquely defined.

Fig. 20. A c-railroad and a z-rairoadss bounded by two central circuits, respectively,
zigzags.

Fig. 21. Illustration of the notions of c-tightness.

Fig. 22. Illustration of the notions of z-tightness.

For a ({1, 2, 3}, 6)-sphere G, let s(G) = p1(G) + 2p2(G), where pi(G) is the
number of i-gonal faces. If p 6= 3 a p-gon is called incident to a zigzag or central

circuit if it share an edge with it. It is called weakly incident if it is not incident to it
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but still prevent the existence of a railroad.

Theorem 16. For a ({1, 2, 3}, 6)-sphere G we have:

(i) If G is z-, respectively c-tight, then it has at most
s(G)

2 zigzags, respectively

central circuits.

(ii) If G is z-, respectively c-weakly tight then it has at most s(G) zigzags, respec-
tively central circuits.

Proof. Suppose that G is c-tight, then for any central circuit C there is at least

one face of of size different from 3 on each side. Since the number of sides is s(G)
and there are two sides per central circuit, this gives (i). The zigzag case is identical.

If G is c-weakly tight, then a p-gon for p 6= 3 is incident, respectively weakly
incident, to at most p central circuits. Since it is weakly tight on each side of cen-

tral circuits, there should be at least one incident or weakly incident central circuit.

Thus the maximal number of central circuits is s(G) and the proof for zigzags is
identical.

For ({1, 2, 3}, 6)-spheres with i 1-gons (i = 0, 1, 2, 3), this gives the upper bounds
of (6, 4, 3, 1) for tightness and (12, 9, 6, 3) for weak tightness.

Conjecture 17. (i) Any ({1, 2, 3}, 6)-sphere has the number of vertices v and the
number of zigzags of the same parity.

(ii) The z-vector of a ({1, 2, 3}, 6)-sphere is the doubling of its c-vector if and only

if v and the number of central circuits are of the same parity.

Theorem 18. For a ({1, 3}, 6)-sphere it holds:

(i) It cannot be c-, or z-tight.

(ii) Every central circuit correspond in a unique way to a zigzag of doubled length.
(iii) If it is c- or z-weakly tight, then the number of central circuits, zigzags is 1 or

3.

Proof. By Theorem 4, all ({1, 3}, 6)-spheres have symmetry C3, C3v or C3h.

Hence they have a 3-fold axis of rotation and hence the 1-gons belong to a single orbit
under the group. The faces of a 6-regular plane graph are partitioned in two classes, say
F1, F2, since their dual graph is bipartite. Clearly, the 1-gons are all in one partition
class, say, F1. A c-, z-circuit has two sides, and the faces in those sides all belong to
the same partition class. Thus on one side of any zc-circuit, there is only 3-gons and
so, (i) holds.

For a central circuit C, denote by t1, . . . , tN the triangles on the side of F2. Clearly,

the set of edges of triangles ti not contained in C, defines a zigzag and (ii) holds.
If C is a central circuit in a c-weakly tight ({1, 3}, 6)-sphereG, then on the side of

F1 there is a 1-gon and there is at most 3 central circuits. 2 is excluded by the group
action.
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Table 1. The maximal number of zigzags and central circuits for both notions of

tightness and 4 types of spheres. Bold numbers are definite answer, while
intervals give the possible range

z-tig. z-w. tig. c-tig. c-w. tig.

({2, 3}, 6)-spheres 6 9 6 [8, 9]
({1, 2, 3}, 6)-spheres, p1 = 1 [3, 4] [5, 7] [3, 4] [5, 7]
({1, 2, 3}, 6)-spheres, p1 = 2 3 5 3 [4, 5]

({1, 3}, 6)-spheres 0 3 0 3

Theorem 19. Table 2 for the maximal number of zigzags and central circuits and

both notions of weak tightness and tightness holds.

Proof. For ({1, 3}, 6)-spheres, Theorem 18 resolves the question. The existence
of specific graphs in Figure 28 shows the lower bounds that are indicated. Theorem

16 shows the required upper bounds for z-tightness and c-tightness.
For the notion of weak tightness, we have to provide something more. Let G be

a c-weakly tight ({1, 2, 3}, 6)-sphere with central circuits C1, . . . , Cl. The number of

1-gons and 2-gons is p1 = i, p2 = 6 − 2i. We obtain 2l sides since every central

circuits has two sides. A side S is called lonely if it is incident or weakly incident to
only one 2-gon.
If a side S is incident to exactly one 2-gon, then Figure 23(a) shows that there is a

side of parallel central circuit that is weakly incident two times to this 2-gon. Moreover,
if it is incident exactly two times then there is another lonely side, see Figure 23(b). A

similar structure show up if a side is weakly incident to a 2-gon.

Fig. 23. Local structure around a side S incident to a 2-gon.

Call n1a the number of lonely sides in the first case and n1b the number of lonely

sides in the second case. Call n1c the number of sides incident or weakly incident to

exactly one 1-gon. Also let n2 be the number of sides incident to exactly two i-gons
(identical or not). Let n3 be the number of sides incident to at least 3 i-gons (identical

or not). Obviously, l = 1
2(n1a + n1b + n1c + n2 + n3).
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In case (a), a lonely side S is incident to at least 3 i-gons so n1a ≤ n3. Clearly,

n1c ≤ 2i. Every 2-gon can be incident to 0, 1 or 2 lonely sides so n1a + n1b
2 ≤ 6− 2i.

By an enumeration of incidence we get

n1a + n1b + n1c + 2n2 + 3n3 ≤ s(G) = 2i + 4(6− 2i) = 24 − 6i.

Denote by Pi the 5-dimensional polytope defined by these inequalities and n1a, . . . , n3 ≥
0. We optimize the quantity l over Pi by using cdd [13], which uses exact arithmetic,

and found the optimal value to be 9 − 2i for i ≤ 0 ≤ 3. The proof for zigzags is
identical.

In the rest of this section, we give a local Euler formula for central circuits in order

to enumerate the ({2, 3}, 6)-spheres which are c-weakly tight and with simple central
circuits. The method for zigzags is very similar.

Let G be a ({2, 3}, 6)-sphere. Consider a patch A in G, which is bounded by t arcs

(i.e., sections of central circuits) belonging to central circuits (different or coinciding).

Fig. 24. Examples of patches and their angles.

We admit also 0-gonal patch A, i.e., just the interior of a simple central circuit.
Suppose that the patch A is regular, i.e., the continuation of any of its bounding arcs

(on the central circuit, to which it belongs) lies outside of the patch (see Figure 24).

Let p′2(A) be the number of 2-gonal faces in A.
There are two types of intersections of arcs on the boundary of a regular patch:

either intersection in an edge of the boundary, or intersection in a vertex of the boundary.

Let us call these types of intersections obtuse and acute, respectively (see Figure 24);

denote by tob and tac the respective number of obtuse and acute intersections. Clearly,

tob + tac = t, where t is the number of arcs forming the patch. The following formula

can easily be verified:

(1) 6 − tob − 2tac = 2p′2(A).

Theorem 20. The intersection of every two simple central circuits, respectively

zigzags, of a ({2, 3}, 6)-sphere, if non-empty, has one of the following forms (and so,
its size is 2, 4 or 6):
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Proof. Let us consider the central circuit case, the zigzag case being identical.

Define H to be the graph, whose vertices are edges of intersection between simple

central circuits C and C ′, with two vertices being adjacent if they are linked by a path

belonging to one of C, C ′. The graph H is a plane 4-regular graph and C, C ′ define
two central circuits in H . Since C and C ′ are simple, the faces of H are t-gons with

even t.

Applying formula (1) to a t-gonal face F of H , we obtain that the number p′2(F )
of 2-gons in F satisfies 6− tob −2tac = 2p′2(F ). So, the numbers tob and tac are even,

since t = tob + tac. Also, 6− tob − 2tac ≥ 0. So, t ≤ 6.
We obtain the following five possibilities for the faces of H : 2-gons with two acute

angles, 2-gons with two obtuse angles, 4-gons with four obtuse angles, 4-gons with
two acute and two obtuse angles, 6-gons with six obtuse angles.
Take an edge e of a 6-gon in H and consider the sequence (possibly, empty) of

adjacent 4-gons of H emanating from this edge. This sequence will stop at a 2-gon or
a 6-gon; the case-by-case analysis of angles yields that this sequence has to stop at a
2-gon (see Figure 25(a)).
Take an edge of a 2-gon in H and consider the same construction. If the angles

are both obtuse, then the construction is identical and the sequence will terminate at

a 2-gon or a 6-gon. If the angles are both acute, then cases b), c) of Figure 25 are
possible.

Fig. 25. Three cases for sequence of 4-gons.

In the first case, all 4-gons contain two obtuse angles and two acute angles; so, the
sequence of 4-gons finishes with an edge of two obtuse angles. In the second case,
there is a 4-gon, whose angles are all obtuse; this 4-gon is unique in the sequence and
its position is arbitrary. Every pair of opposite edges of a 4-gon belongs to a sequence
of 4-gons considered above. So, all angles of a 4-gon are the same, i.e., obtuse. This
fact restricts the possibilities of intersections to the three cases of the theorem.
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The proof of this theorem is similar to the one of Theorem 6.4 given in [5].

Theorem 21. The only weakly tight ({2, 3}, 6)-spheres, having only simple zigzags,
respectively simple central circuits, are the ones of Figure 26 and 27.

Proof. Let us consider first the central circuit case. By Theorem 20, every two

simple central circuits intersect in at most six vertices. If a ({2, 3}, 6)-sphere has t

central circuits, this gives an upper bound of 6 t(t−1)
2 on the number of vertices of

intersection. Since any vertex can be the intersection of only 3 central circuits we get
the upper bound of t(t − 1) on the number of vertices. If one uses the upper bound
of Table on t for weakly tight ({2, 3}, 6)-spheres, then one gets t ≤ 9 and the upper
bound 72 on the number of vertices, which is too large for the enumeration done in
Table 1. If one looks at the proof of Theorem 19, then one sees that a lonely side

implies a self-intersection of a parallel central circuit. So, there is no lonely sides in

({2, 3}, 6)-spheres with only simple central circuits. This gives the upper bound t ≤ 6
on the number of central circuits and then 30 on the number of vertices.
For zigzags we have the upper bound 3t(t − 1) on the number of edges and this

gives the same upper bound of t(t − 1) on the number of vertices. The enumeration
result shown in the Figures follow from the determination results of Section 2.

An interesting problem is to determine all ({2, 3}, 6)-spheres with simple zigzags
and/or central circuits. Theorem 14 implies that the number of such spheres is infinite.

A ({1, 2, 3}, 6)-sphere is called z- or c-knotted if it has only one zigzag of central
circuit. Conjecture 17 implies that a z-knotted sphere has odd v.

Conjecture 22. (i) The possible symmetries of a z- or c-knotted ({1, 2, 3}, 6)-
sphere, except tripled triangle (only z-knotted) D3h and Trifolium C3v , are: C3 if

p1 = 3; C1, C2 if p1 = 2; C1 if p1 = 1 and C1, C2, C3, D2, D3 if p1 = 0.
(ii) The ({2, 3}, 6)-spheres with only simple central circuits have symmetry Td, Th,

D6h, D3d, D2d, D2h, D3, C2h and C3v .

(iii) A ({1, 2, 3}, 6)-sphere of symmetry D6h, Th, Td have only simple central

circuits and zigzags.

(iv) The ({2, 3}, 6)-spheres of symmetry Td have v = 4x2 vertices, c-vector (3x)4x

and z-vector (6x)4x.

(v) The ({2, 3}, 6)-spheres of symmetry Th have 12x2 vertices, c-vector (6x)6x and

z-vector (12x)6x.

(vi) The symmetries occuring for odd v (i.e. not only for even v), are: for p1 = 0,
C1, C2, C2v, C3, C3h, C3v, Cs, D2h, D3 or D3h; for p1 = 1, C1 or Cs; for p1 = 2,
C1, C2, Cs, C2v or C2h; for p1 = 3, C3, C3v or C3h.

(vii) A c-knotted sphere is also z-knotted if and only if v is odd.
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Fig. 26. The c-weakly tight ({2, 3}, 6)-spheres with simple central circuits.

Fig. 27. The z-weakly tight ({2, 3}, 6)-spheres with simple zigzags.

Conjecture 23. Let fi(v) denote the maximal number of central circuits in a
({1, 2, 3}, 6)-sphere with i 1-gons and v vertices. We conjecture:

(i) f2(v) = v + 1. It is realized exactly by the series (one for each v ≥ 1) having
symmetry C2h and c = 1v, (2v)0,v.

(ii) f1(v) = v−1
2 + 1, v−1

2 + 2 for v ≡ 3, 1 (mod 4). It is realized exactly by the
series (one for each odd v ≥ 3, all of symmetry Cs) with c = 2(v−1)/2, (2v + 1)0,v+2



938 Michel Deza and Mathieu Dutour Sikirić

if v ≡ 3 (mod 4) and 2(v−1)/2, v0, v−1
4

, (v + 1)0, v+1
4
if v ≡ 1 (mod 4).

For even v, f1(v) = bv−1
3 c + 2. It is realized for v ≥ 4 by series of symmetry

Cs (two spheres for v ≡ 2 (mod 6) and unique for other even v) with c = 3b
v−1
3

c,

(v
2+2+3b v

18 c)0,2b v
18

c+1, (v+1+3z(v))0,4z(v)+1, where z(v) = 2b v
18c+1 if v ≡ 6, 8, 10

(mod 18) and z(v) = 2bv+6
18 c if v is other even number.

Fig. 28. The smallest weakly tight and tight ({1, 2, 3}, 6)-spheres with the maximal
known number of zigzags and central circuits.

(iii) f0(v) = v
2 +1, v

2 +2 for v ≡ 0, 2 (mod 4). It is realized exactly by the series
(one for each v ≥ 6) of symmetry D2d with c = 2

v
2 , 2v0,v if v ≡ 0 (mod 4) and of

symmetry D2h with c = 2
v
2 , (v0, v−2

4
)2 if v ≡ 2 (mod 4).

(iv) For odd v, f0 is bv
3 c+3 if v ≡ 2, 4, 6, (mod 9) and bv

3c+1, otherwise. Define
tv by

v−tv
3 = bv

3c. f0(v) is realized by the series of symmetry C3v if v ≡ 1 (mod 3)
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and D3h, otherwise. c-vector is 3b
v
3
c, (2bv

3c + tv)30,b v−2tv
9

c if v ≡ 2, 4, 6 (mod 9) and

3b
v
3
c, (2v + tv)0,v+2tv , otherwise.
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