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STORNG LEVITIN-POLYAK WELL-POSEDNESS FOR GENERALIZED
QUASI-VARIATIONAL INCLUSION PROBLEMS WITH APPLICATIONS

San-Hua Wang, Nan-Jing Huang and Mu-Ming Wong*

Abstract. In this paper, we study the strong Levitin-Polyak well-posedness
for a class of generalized quasi-variational inclusion problems. We establish
some metric characterizations of the strong Levitin-Polyak well-posedness for
the generalized quasi-variational inclusion problem. We also prove that under
suitable conditions, the strong Levitin-Polyak well-posedness of the gener-
alized quasi-variational inclusion problem is equivalent to the existence and
uniqueness of solutions, and that the strong Levitin-Polyak well-posedness
of generalized quasi-variational inclusion problem in the generalized sense
is equivalent to the existence of solutions. As applications, we obtain some
results concerned with Levitin-Polyak well-posedness for several kinds of equi-
librium problems.

1. INTRODUCTION

It is well known that well-posedness plays a crucial role in the stability theory
for optimization problems. Well-posedness of unconstrained and constrained scalar
optimization problems was first introduced and studied by Tykhonov [47] and Lev-
itin and Polyak [23], respectively. Since then, various concepts of well-posedness
have been introduced and extensively studied for minimization problems and vector
optimization problems. For details, we refer the reader to [2, 6, 7, 14, 15, 19, 38,
40, 44, 50, 51] and the references therein.
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In recent years, the concept of well-posedness has been generalized to several
related problems: variational inequality problems [4, 5, 6, 8, 17, 10, 11, 16, 26, 27,
34, 46], saddle point problems [3], Nash equilibrium problems [26, 35, 36, 37, 39],
inclusion problems [5, 10, 21, 22], and fixed point problems [5, 10, 21, 22, 43, 49].

Recently, Fang et al. [9] generalized the concept of well-posedness to equi-
librium problems and to optimization problems with equilibrium constraints and
established some metric characterizations of well-posedness for equilibrium prob-
lems and for optimization problems with equilibrium constraints. Kimura et al. [18]
further generalized it to vector equilibrium problems. On the other hand, Long et
al. [32] generalized the concept of Levitin-Polyak well-posedness to equilibrium
problems with functional constraints and obtained some metric characterizations
and sufficient conditions for Levitin-Polyak well-posedness of equilibrium problems
with functional constraints. Long and Huang [33] further introduced and studied
α-well-posedness for sysmetric quasi-equilibrium problems. In 2009, Li and Li
[24] introduced and studied Levitin-Polyak well-posedness for vector equilibrium
problems. Huang et al. [13] generalized it to vector quasi-equilibrium problems.
Li et al. [25] further generalized it to generalized vector quasi-equilibrium prob-
lems. Moreover, Li et al. [25] obtained some criteria and metric characterizations
of the Levitin-Polyak well-posedness and established the relations between Levitin-
Polyak well-posedness of optimization problems and Levitin-Polyak well-posedness
of generalized vector quasi-equilibrium problems. Peng et al. [41, 42] discussed
Levitin-Polyak well-posedness for some generalized vector equilibrium problems
and vector quasi-equilibrium problems with functional constraints.

Very recently, Lin and Chuang [31] further extended the notion of well-posedness
to variational inclusion and disclusion problems and for optimization problems with
variational inclusion and disclusion problems as constraints. Moreover, Lin and
Chuang [31] obtained some necessary and sufficient conditions for well-posedness
of the variational inclusion and disclusion problems and for well-posedness of the
optimization problems with variational inclusion and disclusion problems as con-
straints.

On the other hand, the quasi-variational inclusion problem is an important gen-
eralization of the variational inclusion problem, which contains lots of important
problems as special cases and has many applications, like variational disclusion
problems, minimax inequalities, equilibrium problems, saddle point problems, op-
timization theory, bilevel problems, mathematical program with equilibrium con-
straint, variational inequalities, fixed point problems, coincidence point problems,
Ekeland’s variational principle, etc. For details, we refer to [12, 28, 29, 30, 45, 48]
and the references therein.

Motivated and inspired by the works mentioned above, in this paper, we shall
investigate the strong Levitin-Polyak (for short, LP) well-posedness for generalized
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quasi-variational inclusion problems (for short, (GQVIP)). We establish some metric
characterizations of the strong LP well-posedness for (GQVIP). We also prove that
under suitable conditions, the strong LP well-posedness of (GQVIP) is equivalent
to the existence and uniqueness of solutions, and that the strong LP well-posedness
of (GQVIP) in the generalized sense is equivalent to the existence of solutions.
As applications, we obtain some results of LP well-posedness for several kinds of
equilibrium problems. The results presented in this paper improve and generalize
some known results of Huang et al. [13], Li and Li [24], and Long et al. [32].

2. PRELIMINARIES

In this section, we shall recall some definitions and lemmas used in the sequel.

Definition 2.1. ([1]) Let X and Y be two topological spaces. A multivalued
mapping T : X → 2Y is said to be

(i) upper semi-continuous (for short, u.s.c.) at x ∈ X if, for each open set V in
Y with T (x) ⊆ V , there exists an open neighborhood U(x) of x such that
T (x′) ⊆ V for all x′ ∈ U(x);

(ii) lower semi-continuous (for short, l.s.c.) at x ∈ X if, for each open set V in
Y with T (x) ∩ V �= ∅, there exists an open neighborhood U(x) of x such
that T (x′) ∩ V �= ∅ for all x′ ∈ U(x);

(iii) u.s.c. (resp. l.s.c.) on X if it is u.s.c. (resp. l.s.c.) at every point x ∈ X ;
(iv) continuous on X if it is both u.s.c. and l.s.c. on X ;
(v) closed if the graph of T is closed, i.e., the set Gr(T ) = {(x, y) ∈ X × Y :

y ∈ T (x)} is closed in X × Y ;
(vi) open if the graph of T is open in X × Y .

Lemma 2.1. ([1]). Let X and Y be two topological spaces, F : X → 2Y a
multivalued mapping.

(i) If F is u.s.c. and closed-valued, then F is closed;
(ii) If F is compact-valued, then F is u.s.c. at x ∈ X if and only if for any net

{xα} ⊆ X with xα → x and for any net {yα} ⊆ Y with yα ∈ F (xα), there
exist y ∈ F (x) and a subnet {yβ} of {yα} such that yβ → y;

(iii) F is l.s.c. at x ∈ X if and only if for any y ∈ F (x) and for any net {x α}
with xα → x, there exists a net {yα} with yα ∈ F (xα) such that yα → y.

Lemma 2.2. ([29]). Let X and Y be topological spaces, G, H : X � Y

be multivalued mappings. Let G + H : X � Y be defined by (G + H)(x) :=
G(x) + H(x) for each x ∈ X .

(i) If G is u.s.c. with nonempty compact values and H is closed, then G + H
is closed;
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(ii) If G is l.s.c. and H is open, then G + H is open.

Definition 2.2. ([20]) Let (E, d) be a complete metric sapce. The Kuratowski
measure of noncompactness of a subset A of E is defined by

µ(A) = inf{ε > 0 : A ⊆ ∪n
i=1Ai, diam(Ai) < ε, i = 1, 2, · · · , n},

where diam(Ai) denotes the diameter of Ai defined by diam(Ai) = sup{d(x1, x2) :
x1, x2 ∈ Ai}.

Definition 2.3. Let A and B be nonempty subsets of a metric space (E, d).
The Hausdorff distance H(·, ·) between A and B is defined by

H(A, B) := max{e(A, B), e(B, A)},
where e(A, B) := supa∈A d(a, B) with d(a, B) = inf b∈B d(a, b). Let {An} be a
sequence of nonempty subsets of E . We say that An converges to A in the sense
of Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and
only if d(an, A) → 0 for all selection an ∈ An. For more details on this topic, we
refer the reader to [20].

3. STRONG LP WELL-POSEDNESS FOR (GQVIP)

Let (E, d) be a metric space, X ⊆ E and X0 ⊆ X be nonempty closed subsets.
Let F and Z be Hausdorff topological vector spaces and Y ⊆ F be a nonempty
closed subset. Let K : X � X , T : X � Y and G : X × Y × X � Z be
multivalued mappings. Let e : X → Z be a continuous mapping. Throughout this
paper, unless otherwise specified, we use these notations and assumptions.

We consider the following generalized quasi-variational inclusion problem.
(GQVIP): Find x ∈ X0 such that x ∈ K(x) and there exists y ∈ T (x) satisfying

0 ∈ G(x, y, u), ∀u ∈ K(x).

Denote by S the solution set of (GQVIP).
It is easy to see that (GQVIP) includes many kinds of known variational inclusion

problems and generalized equilibrium problems as special cases. The well-posedness
concerned with some special cases of (GQVIP) have been studied by several authors
(see, for example, [25, 13, 4, 32, 27] and the references therein).

Let D be a metric space. For each a ∈ D and each r > 0, we denote by B(a, r)
the closed ball centered at a with radius r. When D = R, we denote by B+(0, r)
the closed interval [0, r].

Definition 3.1. A sequence {xn} ⊆ X is said to be a weak LP approximat-
ing solution sequence for (GQVIP) if there exist a sequence {εn} of real positive
numbers with εn → 0 and a sequence {yn} with yn ∈ T (xn) such that, for each
n ∈ N , d(xn, X0) ≤ εn and d(xn, K(xn)) ≤ εn with

0 ∈ G(xn, yn, u) + B+(0, εn)e(xn), ∀u ∈ K(xn).
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Definition 3.2. (GQVIP) is said to be strongly LP well-posed if (GQVIP) has a
unique solution x, and every weak LP approximating solution sequence for (GQVIP)
converges to x, and (GQVIP) is said to be strongly LP well-posed in the generalized
sense if (GQVIP) has a nonempty solution set S, and every weak LP approximating
solution sequence for (GQVIP) has a subsequence which converges to a point of S.

Define the approximating solution set for (GQVIP) by

Ω(ε) ={x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and ∃ y ∈ T (x) such that
0 ∈ G(x, y, u)+ B+(0, ε)e(x), ∀u ∈ K(x)}, ∀ for each ε > 0 is ginen.

Clearly, we have
(i) for every ε > 0, S ⊆ Ω(ε);

(ii) if 0 < ε1 ≤ ε2, then Ω(ε1) ⊆ Ω(ε2).
Next, we further consider the properties for Ω(ε).

Property 3.1. Assume that K is closed-valued and T is compact-valued. For
each (x, u) ∈ X × X , if y � G(x, y, u) is closed, then S = ∩ε>0Ω(ε).

Proof. (i) Clearly, S ⊆ ∩ε>0Ω(ε). Hence, we only need to show that
∩ε>0Ω(ε) ⊆ S. Indeed, if x ∈ ∩ε>0Ω(ε), then, for each ε > 0, x ∈ Ω(ε).
Hence, for each n ∈ N , x ∈ Ω(1

n), and so there exists yn ∈ T (x) such that

d(x, X0) ≤ 1
n ,(3.1)

d(x, K(x)) ≤ 1
n ,(3.2)

0 ∈ G(x, yn, u) + B+(0, 1
n )e(x), ∀u ∈ K(x).(3.3)

Note that X0 and K(x) are closed sets. Then, by (3.1) and (3.2), we have x ∈ X0

and x ∈ K(x). Since {yn} ⊆ T (x) and T (x) is a compact set, there exist a
subsequence {ynk

} of {yn} and y ∈ T (x) such that ynk
→ y as k → ∞, and so,

for each k ∈ N ,

(3.4) 0 ∈ G(x, ynk
, u) + B+(0,

1
nk

)e(x), ∀u ∈ K(x).

For each u ∈ K(x), by (3.4), for every k ∈ N , there exists γk ∈ B+(0, 1
nk

) such
that

0 ∈ G(x, ynk
, u) + γke(x).

Clearly, γk → 0 as k → ∞. Since y � G(x, y, u) is closed, we get 0 ∈ G(x, y, u)
and so x ∈ S. It follows that ∩ε>0Ω(ε) ⊆ S. This completes the proof.
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Example 3.1. Let E = F = Z = R, X = Y = [0, +∞) and X0 = [0, 1]. For
any (x, y, u) ∈ X × Y × X , let

e(x) = 1, K(x) = [x, +∞), T (x) = [
x

2
, 2x], G(x, y, u) = (−∞, x − y + u].

Then, it is easily to see that all the conditions of Property 3.1 are satisfied. By
Property 3.1, S = ∩ε>0Ω(ε). Indeed, by simple computation, we have S = [0, 1]
and Ω(ε) = [0, 1 + ε] for all ε > 0, and so ∩ε>0Ω(ε) = [0, 1] = S.

Property 3.2. Assume that K is continuous and closed-valued, T is u.s.c. and
compact-valued and G is closed. Then S is a closed subset of X 0; Furthermore, if
K is also compact-valued, then for every ε > 0, Ω(ε) is a closed subset of X .

Proof. (i) Let x ∈ clS. Then, there exists a sequence {xn} in S such that
xn → x as n → ∞. It follows that, for each n ∈ N , xn ∈ X0, xn ∈ K(xn) and
there exists some yn ∈ T (xn) such that

0 ∈ G(xn, yn, u), ∀u ∈ K(xn).

Since X0 is closed, we have x ∈ X0. Moreover, since K is u.s.c. and closed-
valued, K is closed and so x ∈ K(x). Since T is u.s.c. and compact-valued, there
exist a subsequence {ynk

} of {yn} and y ∈ T (x) such that ynk
→ y as k → ∞. It

follows that, for each k ∈ N ,

0 ∈ G(xnk
, ynk

, u), ∀u ∈ K(xnk
).

For each u ∈ K(x), since K is l.s.c., there exists a sequence {uk} with uk ∈
K(xnk

) such that uk → u as k → ∞, and so

0 ∈ G(xnk
, ynk

, uk), ∀ k ∈ N.

By the closedness of G, we get

0 ∈ G(x, y, u).

Hence x ∈ S, and this implies that S is a closed subset of X 0.
(ii) Suppose that K is also compact-valued, we shall show that, for every ε > 0,

Ω(ε) is a closed subset of X . Indeed, for any ε > 0, if x ∈ cl(Ω(ε)) ⊆ X , then
there exists a sequence {xn} in Ω(ε) such that xn → x as n → ∞. It follows that,
for each n ∈ N , there exists yn ∈ T (xn) such that

d(xn, X0) ≤ ε,(3.5)

d(xn, K(xn)) ≤ ε,(3.6)

0 ∈ G(xn, yn, u) + B+(0, ε)e(xn), ∀u ∈ K(xn).(3.7)
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By (3.5), we have d(x, X0) ≤ ε. By (3.6), for each n ∈ N , there exists un ∈ K(xn)
such that

(3.8) d(xn, un) ≤ ε +
1
n

.

Since K is u.s.c. and compact-valued, there exists a subsequence {unk
} of {un}

and u ∈ K(x) such that unk
→ u as k → ∞. It follows that

d(x, u) = lim
k→∞

d(xnk
, unk

) ≤ ε.

Noting that u ∈ K(x), we get

(3.9) d(x, K(x)) ≤ ε.

Since T is u.s.c. and compact-valued, there exist a subsequence {ynk
} of {yn} and

y ∈ T (x) such that ynk
→ y as k → ∞. Then, by (3.7), we have, for each k ∈ N ,

0 ∈ G(xnk
, ynk

, u) + B+(0, ε)e(xnk
), ∀u ∈ K(xnk

).

For each u ∈ K(x), since K is l.s.c., there exists a sequence {uk} with uk ∈
K(xnk

) such that uk → u as k → ∞, and so

0 ∈ G(xnk
, ynk

, uk) + B+(0, ε)e(xnk
), ∀ k ∈ N.

Thus, there exists a sequence {γk} ⊆ B+(0, ε) such that

0 ∈ G(xnk
, ynk

, uk) + γke(xnk
), ∀ k ∈ N.

Observe that B+(0, ε) = [0, ε] ⊆ R is compact. We may assume that γk → γ ∈
B+(0, ε) as k → ∞. Then, by the closedness of G, we get

0 ∈ G(x, y, u)+ γe(x) ⊆ G(x, y, u)+ B+(0, ε)e(x).

Hence x ∈ Ω(ε), and this implies that Ω(ε) is a closed subset of X .

Remark 3.1. In Property 3.2, if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed
but not necessarily compact, and the condition “G is closed” can be weakened by
“(x, y) � G(x, y, u) is closed”.

If E is finite-dimensional, then the assumption that “K is also compact-valued
” in Property 3.2 can be removed.

Property 3.3. Let E be finite-dimensional. Assume that K is continuous and
closed-valued, T is u.s.c. and compact-valued and G is closed. Then S and Ω(ε)
are closed subsets for every ε > 0.
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Proof. We can proceed the proof exactly as that of Property 3.2 except for using
the assumption that E is finite-dimensional to get (3.9). In fact, since xn → x,
{xn} is bounded. Then, by (3.8), we know that {un} is also bounded. Since
{un} ⊆ X ⊆ E and E is finite-dimensional, there exists a subsequence {unk

} of
{un} such that {unk

} converges to some u ∈ X as k → ∞. Since K is u.s.c. and
closed-valued, K is closed and so u ∈ K(x). It follows that

d(x, u) = lim
k→∞

d(xnk
, unk

) ≤ ε.

Thus d(x, K(x)) ≤ ε, i.e., (3.9) holds.

The following theorem shows that the strong LP well-posedness of (GQVIP) can
be characterized by considering the behavior of the diameter of the approximating
solution set.

Theorem 3.1. Let E be complete. Assume that K is continuous and compact-
valued, T is u.s.c. and compact-valued and G is closed. Then (GQVIP) is strongly
LP well-posed if and only if

(3.10) Ω(ε) �= ∅, ∀ ε > 0, and diam(Ω(ε)) → 0 as ε → 0.

Suppose that (GQVIP) is strongly LP well-posed. Then (GQVIP) has a unique
solution x, and so Ω(ε) �= ∅ since x ∈ Ω(ε) for all ε > 0.

Now we shall show that

(3.11) diam(Ω(ε)) → 0 as ε → 0.

If not, then there exist r > 0, sequence {εn} of real positive numbers with εn → 0
as n → ∞ and sequences {x1

n} and {x2
n} with x1

n, x2
n ∈ Ω(εn) for each n ∈ N

such that

(3.12) d(x1
n, x2

n) > r, ∀n ∈ N.

For each n ∈ N , since x1
n, x2

n ∈ Ω(εn), there exist y1
n ∈ T (x1

n) and y2
n ∈ T (x2

n)
such that

d(x1
n, X0) ≤ εn, d(x1

n, K(x1
n)) ≤ εn

and 0 ∈ G(x1
n, y1

n, u) + B+(0, εn)e(x1
n), ∀u ∈ K(x1

n)

and
d(x2

n, X0) ≤ εn, d(x2
n, K(x2

n)) ≤ εn

and 0 ∈ G(x2
n, y2

n, u) + B+(0, εn)e(x2
n), ∀u ∈ K(x2

n).
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Hence {x1
n} and {x2

n} are weak LP approximating solution sequence for (GQVIP).
Then, by the strong LP well-posedness of (GQVIP), they have to converge to the
unique solution x of (GQVIP), a contradiction to (3.12). Thus (3.11) holds.

Conversely, suppose that condition (3.10) holds. If {x n} ⊆ X is a weak LP
approximating solution sequence for (GQVIP), then there exist a sequence {ε n} of
real positive numbers with εn → 0 and a sequence {yn} with yn ∈ T (xn) such
that, for each n ∈ N ,

d(xn, X0) ≤ εn, d(xn, K(xn)) ≤ εn

and 0 ∈ G(xn, yn, u) + B+(0, εn)e(xn), ∀u ∈ K(xn).

Hence xn ∈ Ω(εn) for every n ∈ N . By (3.10), {xn} is a Cauchy sequence and so
it converges to a point x ∈ X . Then, by similar arguments as in the second part
of the proof of Property 3.2, we can show that x ∈ X 0, x ∈ K(x) and there exists
some y ∈ T (x) such that

0 ∈ G(x, y, u), ∀u ∈ K(x).

Thus x is a solution of (GQVIP).
To complete the proof, it is sufficient to prove that (GQVIP) has a unique

solution. If (GQVIP) has two distinct solutions x 1 and x2, it is easy to see that
x1, x2 ∈ Ω(ε) for all ε > 0. It follows that

0 < d(x1, x2) ≤ diam(Ω(ε)), ∀ ε > 0,

a contradiction to (3.10). Therefore, (GQVIP) has a unique solution.
Remark 3.2. In Theorem 3.1, (i) if E is finite-dimensional, then the condition

“K is continuous and compact-valued” can be weaken by “K is continuous and
closed-valued”; (ii) if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃ is a subset of
X) for all x ∈ X , then X̃ is only need to be assumed to be closed but not necessarily
compact, and the condition “G is closed” can be weakened by “(x, y) � G(x, y, u)
is closed”.

Example 3.2. Let E = F = Z = R and X = Y = [0, +∞) and X0 = [0, 1].
For every (x, y, u) ∈ X × Y × X , let e(x) = 1, K(x) = [0, x], T (x) = [0, x2] and
G(x, y, u) = (−∞, y − 2x2 + u]. Then K is continuous and compact-valued, T is
u.s.c. and compact-valued and G is closed. In addition, we have

S = {x ∈ X : x ∈ X0, x ∈ K(x) and ∃ y ∈ T (x)
such that 0 ∈ G(x, y, u), ∀u ∈ K(x)}

= {x ∈ [0, 1] : ∃ y ∈ [0, x2] such that 0 ∈ (−∞, y − 2x2 + u], ∀u ∈ [0, x]}
= {x ∈ [0, 1] : ∃ y ∈ [0, x2] such that y − 2x2 + u ≥ 0, ∀u ∈ [0, x]}
= {x ∈ [0, 1] : ∃ y ∈ [0, x2] such that y ≥ 2x2 − u, ∀u ∈ [0, x]}
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= {x ∈ [0, 1] : x2 ≥ 2x2 − 0}
= {x ∈ [0, 1] : x2 ≤ 0}
= {0}

and for every ε > 0,

Ω(ε) = {x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and ∃ y ∈ T (x)
such that 0 ∈ G(x, y, u) + B+(0, ε)e(x), ∀u ∈ K(x)}

= {x ∈ [0, 1 + ε] : ∃ y ∈ [0, x2]
such taht 0 ∈ (−∞, y − 2x2 + u] + [0, ε], ∀u ∈ [0, x]}

= {x ∈ [0, 1 + ε] : ∃ y ∈ [0, x2]
such that 0 ∈ (−∞, y − 2x2 + u + ε], ∀u ∈ [0, x]}

= {x ∈ [0, 1 + ε] : ∃ y ∈ [0, x2]
such that y − 2x2 + u + ε ≥ 0, ∀u ∈ [0, x]}

= {x ∈ [0, 1 + ε] : ∃ y ∈ [0, x2]
such that y ≥ 2x2 − u − ε, ∀u ∈ [0, x]}

= {x ∈ [0, 1 + ε] : x2 ≥ 2x2 − 0− ε}
= {x ∈ [0, 1 + ε] : x2 ≤ ε}
= [0,

√
ε].

It follows that diam(Ω(ε)) → 0 as ε → 0. By Theorem 3.1, (GQVIP) is strongly
LP well-posed.

For the strong LP well-posedness in the generalized sense, we give the fol-
lowing characterization by considering the Kuratowski measure of noncompact of
approximating solution set.

Theorem 3.2. Let E be complete. Assume that K is continuous and compact-
valued, T is u.s.c. and compact-valued and G is closed. Then (GQVIP) is strongly
LP well-posed in the generalized sense if and only if

(3.13) Ω(ε) �= ∅, ∀ ε > 0, and µ(Ω(ε)) → 0 as ε → 0.

Proof. Suppose that (GQVIP) is strongly LP well-posed in the generalized
sense. Then S is nonempty. Now we show that S is compact. Indeed, let {xn} be
any sequence in S. Then {xn} is a weak LP approximating solution sequence for
(GQVIP). By the strong LP well-posedness in the generalized sense of (GQVIP),
{xn} has a subsequence which converges to some point of S. Thus S is compact.
Clearly, for each ε > 0, S ⊆ Ω(ε), and so Ω(ε) �= ∅.
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Now we shall show that

(3.14) µ(Ω(ε)) → 0 as ε → 0.

Observe that for every ε > 0,

H(Ω(ε), S) = max{e(Ω(ε), S), e(S,Ω(ε))}= e(Ω(ε), S).

Taking into account the compactness of S, we get

µ(Ω(ε)) ≤ 2H(Ω(ε), S) + µ(S) = 2e(Ω(ε), S).

To prove (3.14), it is sufficient to show that

(3.15) e(Ω(ε), S) → 0 as ε → 0.

If (3.15) does not hold, then there exist r > 0, sequence {εn} of real positive
numbers with εn → 0 as n → ∞ and sequence {xn} with xn ∈ Ω(εn) for every
n ∈ N such that

(3.16) xn �∈ S + B(0, r), ∀n ∈ N.

For each n ∈ N , since xn ∈ Ω(εn), there exists yn ∈ T (xn) such that d(xn, X0) ≤
εn and d(xn, K(xn)) ≤ εn with

0 ∈ G(xn, yn, u) + B+(0, εn)e(xn), ∀u ∈ K(xn).

Hence {xn} is a weak LP approximating solution sequence for (GQVIP). Then,
by the strong LP well-posedness in the generalized sense of (GQVIP), {xn} has a
subsequence {xnk

} which converges to some point of S. This contradicts (3.16),
and so (3.15) holds.

Conversely, suppose that condition (3.13) holds. Then, by Properties 3.1 and
3.2, Ω(ε) is closed for every ε > 0 and S = ∩ε>0Ω(ε). Since µ(Ω(ε)) → 0 as
ε → 0, by the Kuratowsk theorem ([20], p.412), S is nonempty and compact and

(3.17) e(Ω(ε), S) → 0 as ε → 0.

If {xn} is a weak LP approximating solution sequence for (GQVIP), then there exist
a sequence {εn} of real positive numbers with εn → 0 and a sequence {yn} with
yn ∈ T (xn) such that, for each n ∈ N , d(xn, X0) ≤ εn and d(xn, K(xn)) ≤ εn

with
0 ∈ G(xn, yn, u) + B+(0, εn)e(xn), ∀u ∈ K(xn).

Hence xn ∈ Ω(εn) for every n ∈ N . Then, by (3.17), d(xn, S) ≤ e(Ω(εn), S) → 0
as n → ∞. Since S is compact, for each n ∈ N , there exists x̄n ∈ S such that
d(xn, x̄n) = d(xn, S) → 0 as n → ∞. Again from the compactness of S, {x̄n} has
a subsequence {x̄nk

} which converges to a point x̄ ∈ S. Hence, the corresponding
subsequence {xnk

} of {xn} converges to x̄. Therefore, (GQVIP) is strongly LP
well-posed in the generalized sense.
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Remark 3.3. In Theorem 3.2, (i) if E is finite-dimensional, then the condition
“K is continuous and compact-valued” can be weaken by “K is continuous and
closed-valued”; (ii) if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃ is a subset of
X) for all x ∈ X , then X̃ is only need to be assumed to be closed but not necessarily
compact, and the condition “G is closed” can be weakened by “(x, y) � G(x, y, u)
is closed”.

For the strong LP well-posedness in the generalized sense, we also give the fol-
lowing characterization by considering the Hausdorff distance between the solution
set and the approximating solution set.

Theorem 3.3. (GQVIP) is strongly LP well-posed in the generalized sense if
and only if S is nonempty and compact and e(Ω(ε), S) → 0 as ε → 0.

Proof. The proof is similar to that of Theorem 3.2 and so we omit it here.

Example 3.3. Let E = F = Z = R, X = Y = [0, +∞) and X0 = [0, 1]. For
every (x, y, u) ∈ X×Y ×X , let e(x) = 1, K(x) = [x2 , +∞), T (x) = [x2, (x+1)2]
and G(x, y, u) = [−(y + x), u− y]. Then,

S = {x ∈ X : x ∈ X0, x ∈ K(x) and ∃ y ∈ T (x)
such that 0 ∈ G(x, y, u), ∀u ∈ K(x)}

= {x ∈ [0, 1] : ∃ y ∈ [x2, (x + 1)2]

such that 0 ∈ [−(y + x), u− y], ∀u ∈ [
x

2
, +∞)}

= {x ∈ [0, 1] : ∃ y ∈ [x2, (x + 1)2]

such that y ≤ u, ∀u ∈ [
x

2
, +∞)}

= {x ∈ [0, 1] : x2 ≤ x

2
}

= [0,
1
2
]

and for any ε > 0,

Ω(ε) = {x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and ∃ y ∈ T (x)
such that 0 ∈ G(x, y, u) + B+(0, ε)e(x), ∀u ∈ K(x)}

= {x ∈ [0, 1 + ε] : ∃ y ∈ [x2, (x + 1)2]

such taht 0 ∈ [−(y + x), u− y] + [0, ε], ∀u ∈ [
x

2
, +∞)}

= {x ∈ [0, 1 + ε] : ∃ y ∈ [x2, (x + 1)2]

such that 0 ∈ [−(y + x), u− y + ε], ∀u ∈ [
x

2
, +∞)}
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= {x ∈ [0, 1 + ε] : ∃ y ∈ [x2, (x + 1)2]

such that y ≤ u + ε, ∀u ∈ [
x

2
, +∞)}

= {x ∈ [0, 1 + ε] : x2 ≤ x

2
+ ε}

= {x ∈ [0, 1 + ε] : (x− 1
4
)2 ≤ 1

16
+ ε}

= [0,
1
4

+

√
1
16

+ ε].

Thus, e(Ω(ε), S) → 0 as ε → 0. By Theorem 3.3, (GQVIP) is strongly LP well-
posed in the generalized sense. This completes the proof.

The following example illustrates that the compactness condition in Theorem
3.3 is essential.

Example 3.4. Let E = F = Z = R, X0 = X = Y = [0, +∞). For
every (x, y, u) ∈ X × Y × X , let e(x) = 1, K(x) = [x2 , x], T (x) = [0, x2] and
G(x, y, u) = [−(y +x), u−y]. Then, by similar arguments as that of Example 3.3,
we have, for each ε > 0, S = Ω(ε) = [0, +∞). Thus, e(Ω(ε), S) → 0 as ε → 0.
Let xn = n for n = 1, 2, · · · . Then, {xn} is a weak LP approximating solution
sequence for (GQVIP), which has no convergent subsequence. This implies that
(GQVIP) is not strongly LP well-posed in the generalized sense.

The following theorem shows that under suitable conditions, the strong LP well-
posedness of (GQVIP) is equivalent to the existence and uniqueness of the solution.

Theorem 3.4. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T is u.s.c. and compact-valued;
(iii) G is closed;
(iv) there exists ε > 0 such that Ω(ε) is nonempty and bounded.

Then (GQVIP) is strongly LP well-posed if and only if (GQVIP) has a unique
solution.

Proof. The necessity is obvious. For the sufficiency, suppose that (GQVIP)
has a unique solution x. If {xn} is a weak LP approximating solution sequence for
(GQVIP), then there exist a sequence {εn} of real positive numbers with εn → 0
and a sequence {yn} with yn ∈ T (xn) such that, for each n ∈ N , d(xn, X0) ≤ εn

and d(xn, K(xn)) ≤ εn with

0 ∈ G(xn, yn, u) + B+(0, εn)e(xn), ∀u ∈ K(xn).
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It follows that xn ∈ Ω(εn) for each n ∈ N . Let ε > 0 be such that Ω(ε) is nonempty
and bounded. Then there exists some n0 ∈ N such that xn ∈ Ω(εn) ⊆ Ω(ε) for all
n ≥ n0 and so {xn} is bounded.

Let {xnk
} be any subsequence of {xn} such that xnk

→ x′ as k → ∞. Then,
by similar arguments as in the second part of the proof of Property 3.2, we can show
that x′ ∈ X0, x′ ∈ K(x′) and there exists some y′ ∈ T (x′) such that 0 ∈ G(x′, y′, u)
for all u ∈ K(x′). Thus x′ is a solution of (GQVIP). By the uniqueness of the
solution of (GQVIP), we have x′ = x. Thus, the whole sequence {xn} converges
to x and so (GQVIP) is strongly LP well-posed. This completes the proof.

The following theorem shows that under suitable conditions, the strong LP well-
posedness in the generalized sense of (GQVIP) is equivalent to the existence of the
solution.

Theorem 3.5. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T is u.s.c. and compact-valued;
(iii) G is closed;
(iv) there exists ε > 0 such that Ω(ε) is nonempty and bounded.

Then (GQVIP) is strongly LP well-posed in the generalized sense if and only if
(GQVIP) has a nonempty solution set S.

Proof. The necessity is obvious . For the sufficiency, suppose that (GQVIP) has
a nonempty solution set S. If {xn} is a weak LP approximating solution sequence
for (GQVIP), then there exist a sequence {εn} of real positive numbers with εn → 0
and a sequence {yn} with yn ∈ T (xn) such that, for each n ∈ N ,

d(xn, X0) ≤ εn, d(xn, K(xn)) ≤ εn

and 0 ∈ G(xn, yn, u) + B+(0, εn)e(xn), ∀u ∈ K(xn).

It follows that xn ∈ Ω(εn) for each n ∈ N . Let ε > 0 be such that Ω(ε) is nonempty
and bounded. Then there exists some n0 ∈ N such that xn ∈ Ω(εn) ⊆ Ω(ε) for all
n ≥ n0. Thus {xn} is bounded, and so there exists a subsequence {xnk

} of {xn}
such that xnk

→ x as k → ∞. Then, by similar arguments as in the second part
of the proof of Property 3.2, we can show that x ∈ X0, x ∈ K(x) and there exists
some y ∈ T (x) such that 0 ∈ G(x, y, u) for all u ∈ K(x). Thus, x is a solution
of (GQVIP). It follows that (GQVIP) is strongly LP well-posed in the generalized
sense. This completes the proof.

4. APPLICATIONS

In this section, we shall apply the theorems obtained in Section 3 to present
some results of LP well-posedness for variational equilibrium problems.
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4.1. LP well-posedness for scalar equilibrium problems

Let g : X ×Y ×X → R be a function. We consider the following scalar
equilibrium problems.

(EP): Find x ∈ X0 such that x ∈ K(x) and there exists y ∈ T (x) satisfying

g(x, y, u)≥ 0, ∀u ∈ K(x).

Denote by S(EP ) the solution set of (EP).

Definition 4.1. A sequence {xn} ⊆ X is said to be an LP approximating
solution sequence for (EP) if there exist a sequence {εn} of real positive numbers
with εn → 0 and a sequence {yn} with yn ∈ T (xn) such that, for each n ∈ N ,
d(xn, X0) ≤ εn and d(xn, K(xn)) ≤ εn with

g(xn, yn, u) + εn ≥ 0, ∀u ∈ K(xn).

Definition 4.2. (EP) is said to be LP well-posed if (EP) has a unique solution
x, and every LP approximating solution sequence for (EP) converges to x, and
(EP) is said to be LP well-posed in the generalized sense if (EP) has a nonempty
solution set S(EP ), and every LP approximating solution sequence for (EP) has some
subsequence which converges to some point of S(EP ).

Remark 4.1. If E is a normed space, K(x) = X0 = {x ∈ X : h(x) ∈ D} (D
is a nonempty closed subset of a metric space D and h : X → D is a continuous
mapping) and g(x, y, u) = g(x, u) for all (x, y, u) ∈ X × Y × X , then LP well-
posedness in the generalized sense of (EP) reduces to type I LP well-posedness
of explicit constrained equilibrium problem of Long et al. [32]. Furthermore, if
g(x, u) = 〈A(x), u− x〉 (A : X → E∗ is a vector-valued mapping with E∗ is the
dual of E), then LP well-posedness in the generalized sense of (EP) reduces to type
I LP well-posedness of constrained variational inequality problem of Huang et al.
[17].

Define the approximating solution set for (EP) by

Ω(EP )(ε) ={x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and ∃ y ∈ T (x) such that
g(x, y, u)+ ε ≥ 0, ∀u ∈ K(x)}, ∀ ε > 0.

Let Z = R, e(x) = 1 and G(x, y, u) = g(x, y, u)−R+ for all (x, y, u) ∈ X ×
Y × X . Then, (GQVIP) reduces to (EP), and so S = S(EP ), Ω(ε) = Ω(EP )(ε) for
all ε > 0, and Definitions 3.1 and 3.2 reduce to Definitions 4.1 and 4.2, respectively.
Indeed, S = S(EP ) is obvious. For each ε > 0, we have

G(x, y, u)+ B+(0, ε)e(x) = g(x, y, u)− R+ + [0, ε] = g(x, y, u)+ ε − R+,
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and so
0 ∈ G(x, y, u) + B+(0, ε)e(x) ⇐⇒ g(x, y, u)+ ε ≥ 0.

From this, it is easily to see that Ω(ε) = Ω(EP )(ε) for all ε > 0, and Definitions
3.1 and 3.2 coincide with Definitions 4.1 and 4.2, respectively. Furthermore, if g
is u.s.c., then it is easy to prove that G is closed, and so, by Theorems 3.1-3.5, we
can obtain the following results of LP well-posedness for (EP).

Theorem 4.1. Let E be complete. Assume that K is continuous and compact-
valued, T is u.s.c. and compact-valued and g is u.s.c.. Then (EP) is LP well-posed
if and only if

Ω(EP )(ε) �= ∅, ∀ ε > 0, and diam(Ω(EP )(ε)) → 0 as ε → 0.

Theorem 4.2. Let E be complete. Assume that K is continuous and compact-
valued, T is u.s.c. and compact-valued and g is u.s.c.. Then (EP) is LP well-posed
in the generalized sense if and only if

Ω(EP )(ε) �= ∅, ∀ ε > 0, and µ(Ω(EP )(ε)) → 0 as ε → 0.

Theorem 4.3. (EP) is well-posed in the generalized sense if and only if S (EP )

is nonempty and compact and e(Ω (EP )(ε), S(EP )) → 0 as ε → 0.

Theorem 4.4. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T is u.s.c. and compact-valued;
(iii) g is u.s.c.;
(iv) there exists ε > 0 such that Ω(EP )(ε) is nonempty and bounded.

Then (EP) is LP well-posed if and only if (EP) has a unique solution.

Theorem 4.5. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T is u.s.c. and compact-valued;
(iii) g is u.s.c.;
(iv) there exists ε > 0 such that Ω(EP )(ε) is nonempty and bounded.

Then (EP) is LP well-posed in the generalized sense if and only if (EP) has a
nonempty solution set S (EP ).

Remark 4.2. In Theorems 4.1 and 4.2, (i) if E is finite-dimensional, then
the condition “K is continuous and compact-valued” can be weaken by “K is
continuous and closed-valued”; (ii) if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed
but not necessarily compact, and the condition “g is u.s.c.” can be weakened by
“(x, y) � g(x, y, u) is u.s.c.”.
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Remark 4.3. By Remark 4.2 (ii), we know that Theorems 4.2 and 4.3 generalize
Theorems 3.4 and 3.1 of Long et al. [32], respectively.

4.2. LP well-posedness for weak vector equilibrium problems

Let C : X � Z be a multivalued mapping such that for any x ∈ X , C(x)
is a proper, closed and convex cone in Z with nonempty interior intC(x). Let
e : X → Z be a continuous mapping such that for any x ∈ X , e(x) ∈ intC(x).
Let H : X × Y × X � Z be a multivalued mapping.

We consider the following weak vector equilibrium problems.
(WVEP): Find x ∈ X0 such that x ∈ K(x) and there exists y ∈ T (x) satisfying

H(x, y, u) �⊆ −intC(x), ∀u ∈ K(x).

Denote by S(WV EP ) the solution set of (WVEP).

Definition 4.3. A sequence {xn} ⊆ X is said to be an LP approximating
solution sequence for (WVEP) if there exist a sequence {εn} of real positive numbers
with εn → 0 and a sequence {yn} with yn ∈ T (xn) such that, for each n ∈ N ,
d(xn, X0) ≤ εn and d(xn, K(xn)) ≤ εn with

H(xn, yn, u) + εne(xn) �⊆ −intC(xn), ∀u ∈ K(xn).

Definition 4.4. (WVEP) is said to be LP well-posed if (WVEP) has a unique
solution x, and every LP approximating solution sequence for (WVEP) converges to
x, and (WVEP) is said to be LP well-posed in the generalized sense if (WVEP) has
a nonempty solution set S(WV EP ), and every LP approximating solution sequence
for (WVEP) has some subsequence which converges to some point of S(WV EP ).

Remark 4.4. (i) if X0 = X and for every (x, y, u) ∈ X×Y ×X , H(x, y, u) =
H(x, u), then (WVEP) reduces to (GVQEP 1) of Li et al. [25]. Therefore, LP
approximating solution sequence for (WVEP) reduces to LP approximating solution
sequence for (GVQEP 1) of Li et al. [25] and LP well-posedness in the generalized
sense of (WVEP) reduces to LP well-posedness of (GVQEP 1) of Li et al. [25];

(ii) If X = E and for every (x, y, u) ∈ X × Y × X , K(x) = X0 and
H(x, y, u) = g(x, u) (g : E × E → Z is a vector-valued mapping), then (WVEP)
reduces to (VEP) of Li and Li [24]. Hence, LP approximating solution sequence
for (WVEP) reduces to type I LP approximating solution sequence for (VEP) of Li
and Li [24] and LP well-posedness in the generalized sense of (WVEP) reduces to
type I LP well-posedness of (VEP) of Li and Li [24];

(iii) If E and Z are real Banach space, X0 = X and for every (x, y, u) ∈
X × Y × X , C(x) = C (C is a pointed, closed and convex cone with intC �= ∅),
e(x) = e (e ∈ intC is a fixed point) and H(x, y, u) = g(x, u) (g : X × X → Z



682 San-Hua Wang, Nan-Jing Huang and Mu-Ming Wong

is a vector-valued mapping), then (WVEP) reduces to (VQE) of Huang et al. [13].
Thus, LP approximating solution sequence for (WVEP) reduces to approximating
sequence for (VQE) of Huang et al. [13] and LP well-posedness in the generalized
sense of (WVEP) reduces to well-posedness of (VQE) of Huang et al. [13].

Now we define the approximating solution set for (WVEP) by

Ω(WV EP )(ε) ={x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and ∃ y ∈ T (x) such that
H(x, y, u) + εe(x) �⊆ −intC(x), ∀u ∈ K(x)}, ∀ ε > 0.

Let
G(x, y, u) = H(x, y, u)− [−intC(x)]c

= H(x, y, u)+ [intC(x)]c, ∀(x, y, u) ∈ X × Y × X.

Then, (GQVIP) reduces to (WVEP), and so S = S(WV EP ), Ω(ε) = Ω(WV EP )(ε)
for all ε > 0, and Definitions 3.1 and 3.2 reduce to Definitions 4.3 and 4.4, respec-
tively. Indeed, S = S(WV EP ) is trival. Next, we show that, for each ε > 0,

H(x, y, u)+ [intC(x)]c + B+(0, ε)e(x) = H(x, y, u)+ εe(x) + [intC(x)]c.

Take any ε > 0 and let ε be fixed. Clearly,

H(x, y, u)+ εe(x) + [intC(x)]c ⊆ H(x, y, u) + [intC(x)]c + B+(0, ε)e(x).

Thus, we only need to show that

H(x, y, u)+ [intC(x)]c + B+(0, ε)e(x) ⊆ H(x, y, u)+ εe(x) + [intC(x)]c.

In fact, if z ∈ H(x, y, u) + [intC(x)]c + B+(0, ε)e(x), then there exists some
γ ∈ B+(0, ε) such that

z ∈ H(x, y, u)+ [intC(x)]c + γe(x).

Noting that γ ≤ ε and e(x) ∈ intC(x), we have (γ−ε)e(x)+intC(x) ⊇ intC(x),
and so

H(x, y, u)+ [intC(x)]c + γe(x)
= H(x, y, u)+ [intC(x)]c + εe(x) + (γ − ε)e(x)
= H(x, y, u)+ [(γ − ε)e(x) + intC(x)]c + εe(x)
⊆ H(x, y, u)+ [intC(x)]c + εe(x).

It follows that z ∈ H(x, y, u) + [intC(x)]c + εe(x) and so

H(x, y, u)+ [intC(x)]c + B+(0, ε)e(x) ⊆ H(x, y, u)+ εe(x) + [intC(x)]c.
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This implies that

H(x, y, u)+ [intC(x)]c + B+(0, ε)e(x) = H(x, y, u) + εe(x) + [intC(x)]c

and hence,

0 ∈ G(x, y, u) + B+(0, ε)e(x) ⇐⇒ H(x, y, u)+ εe(x) �⊆ −intC(x).

Now it follows that Ω(ε) = Ω(WV EP )(ε) for all ε > 0, and Definitions 3.1 and 3.2
coincide with Definitions 4.3 and 4.4, respectively.

Let W (x) = [−intC(x)]c = Z\(−intC(x)) for all x ∈ X . If H is u.s.c.
and compact-valued and W is closed, then, by Lemma 2.2, G is closed. From
Theorems 3.1-3.5, we have the following results concerned with LP well-posedness
for (WVEP).

Theorem 4.6. Let E be complete. Assume that K is continuous and compact-
valued, T and H are u.s.c. and compact-valued and W is closed. Then (WVEP)
is LP well-posed if and only if

Ω(WV EP )(ε) �= ∅, ∀ ε > 0, and diam(Ω(WV EP )(ε)) → 0 as ε → 0.

Theorem 4.7. Let E be complete. Assume that K is continuous and compact-
valued, T and H are u.s.c. and compact-valued and W is closed. Then (WVEP)
is LP well-posed in the generalized sense if and only if

Ω(WV EP )(ε) �= ∅, ∀ ε > 0, and µ(Ω(WV EP )(ε)) → 0 as ε → 0.

Theorem 4.8. (WVEP) is well-posed in the generalized sense if and only if
S(WV EP ) is nonempty and compact and e(Ω (WV EP )(ε), S(WV EP )) → 0 as ε → 0.

Theorem 4.9. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T and H are u.s.c. and compact-valued;
(iii) W is closed;
(iv) there exists ε > 0 such that Ω(WV EP )(ε) is nonempty and bounded.

Then (WVEP) is LP well-posed if and only if (WVEP) has a unique solution.

Theorem 4.10. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T and H are u.s.c. and compact-valued;
(iii) W is closed;
(iv) there exists ε > 0 such that Ω(WV EP )(ε) is nonempty and bounded.
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Then (WVEP) is LP well-posed in the generalized sense if and only if (WVEP) has
a nonempty solution set S (WV EP ).

Remark 4.5. In Theorems 4.6 and 4.7, (i) if E is finite-dimensional, then the
condition “K is continuous and compact-valued” can be weaken by “K is continuous
and closed-valued”; (ii) if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃ is a subset
of X) for all x ∈ X , then X̃ is only need to be assumed to be closed but not
necessarily compact, and the condition “H is u.s.c. and compact-valued” can be
weakened by “(x, y) � H(x, y, u) is u.s.c. and compact-valued”.

Remark 4.6. (a) By Remark 4.5 (ii), we know that Theorems 4.7 and 4.10
generalize Theorems 3.1 and 3.3 of Li and Li [24], respectively; (b) Theorem 4.8
ia a generalization of Theorem 3.3 in Huang et al. [13].

4.3. LP well-posedness for strong vector equilibrium problems

Let C : X � Z be a multivalued mapping such that for any x ∈ X , C(x) is
a proper, closed and convex cone in Z. Let e : X → Z be a continuous mapping
such that for any x ∈ X , e(x) ∈ C(x). Let H : X ×Y ×X � Z be a multivalued
mapping.

We consider the following strong vector equilibrium problems.
(SVEP): Find x ∈ X0 such that x ∈ K(x) and there exists y ∈ T (x) satisfying

H(x, y, u)⊆ C(x), ∀u ∈ K(x).

Denote by S(SV EP ) the solution set of (SVEP).

Definition 4.5. A sequence {xn} ⊆ X is said to be an LP approximating
solution sequence for (SVEP) if there exist a sequence {εn} of real positive numbers
with εn → 0 and a sequence {yn} with yn ∈ T (xn) such that, for each n ∈ N ,
d(xn, X0) ≤ εn and d(xn, K(xn)) ≤ εn with

H(xn, yn, u) + εne(xn) ⊆ C(xn), ∀u ∈ K(xn).

Definition 4.6. (SVEP) is said to be LP well-posed if (SVEP) has a unique
solution x, and every LP approximating solution sequence for (SVEP) converges to
x, and (SVEP) is said to be LP well-posed in the generalized sense if (SVEP) has
a nonempty solution set S(SV EP ), and every LP approximating solution sequence
for (SVEP) has some subsequence which converges to some point of S(SV EP ).

Remark 4.7. If X0 = X and for every (x, y, u) ∈ X × Y × X , intC(x) �= ∅,
e(x) ∈ intC(x) and H(x, y, u) = −H(x, u), then (SVEP) reduces to (GVQEP 2)
of Li et al. [25]. Thus, LP approximating solution sequence for (SVEP) reduces
to LP approximating solution sequence for (GVQEP 2) of Li et al. [25] and LP
well-posedness in the generalized sense of (SVEP) reduces to LP well-posedness of
(GVQEP 2) of Li et al. [25].
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Define the approximating solution set for (SVEP) by

Ω(SV EP )(ε) ={x ∈ X : d(x, X0) ≤ ε, d(x, K(x)) ≤ ε and ∃ y ∈ T (x) such that

H(x, y, u) + εe(x) ⊆ C(x), ∀u ∈ K(x)}, ∀ ε > 0.

Let G(x, y, u) = [H(x, y, u)− (C(x))c]c for all (x, y, u) ∈ X ×Y ×X . Then,
(GQVIP) reduces to (SVEP), and so S = S(SV EP ), Ω(ε) = Ω(SV EP )(ε) for all
ε > 0, and Definitions 3.1 and 3.2 reduce to Definitions 4.5 and 4.6, respectively.
Indeed, S = S(SV EP ) is trival. Next, we show that, for each ε > 0,

[H(x, y, u)− (C(x))c]c + B+(0, ε)e(x) = [H(x, y, u)− (C(x))c]c + εe(x).

Take any ε > 0 and let ε be fixed. Clearly,

[H(x, y, u)− (C(x))c]c + B+(0, ε)e(x) ⊇ [H(x, y, u)− (C(x))c]c + εe(x).

Thus, we only need to show that

[H(x, y, u)− (C(x))c]c + B+(0, ε)e(x) ⊆ [H(x, y, u)− (C(x))c]c + εe(x).

Indeed, if z ∈ [H(x, y, u) − (C(x))c]c + B+(0, ε)e(x), then there exists some
γ ∈ B+(0, ε) such that

z ∈ [H(x, y, u)− (C(x))c]c + γe(x).

Noting that γ ≤ ε and e(x) ∈ C(x), we have (γ − ε)e(x) − [C(x)]c ⊇ −[C(x)]c,
and so

[H(x, y, u)− (C(x))c]c + γe(x)

= [H(x, y, u)− (C(x))]c + εe(x) + (γ − ε)e(x)

= [H(x, y, u)− (C(x))c + (γ − ε)e(x)]c + εe(x)

⊆ [H(x, y, u)− (C(x))c]c + εe(x).

It follows that
z ∈ [H(x, y, u)− (C(x))c]c + εe(x).

This implies that

[H(x, y, u)− (C(x))c]c + B+(0, ε)e(x) ⊆ [H(x, y, u)− (C(x))c]c + εe(x).

Thus,

[H(x, y, u)− (C(x))c]c + B+(0, ε)e(x) = [H(x, y, u)− (C(x))c]c + εe(x).
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Therefore,

0 ∈ G(x, y, u)+ B+(0, ε)e(x) ⇐⇒ H(x, y, u) + εe(x) ⊆ C(x).

From this, it is easy to know that Ω(ε) = Ω(SV EP )(ε) for all ε > 0, and Definitions
3.1 and 3.2 coincide with Definitions 4.5 and 4.6, respectively.

If H is l.s.c. and C is closed, then, by Lemma 2.2, it is easy to know that G
is closed. Thus, by Theorems 3.1-3.5, we can obtain the following results of LP
well-posedness for (SVEP).

Theorem 4.11. Let E be complete. Assume that K is continuous and compact-
valued, T is u.s.c. and compact-valued, H is l.s.c. and C is closed. Then (SVEP)
is LP well-posed if and only if

Ω(SV EP )(ε) �= ∅, ∀ ε > 0, and diam(Ω(SV EP )(ε)) → 0 as ε → 0.

Theorem 4.12. Let E be complete. Assume that K is continuous and compact-
valued, T is u.s.c. and compact-valued, H is l.s.c. and C is closed. Then (SVEP)
is LP well-posed in the generalized sense if and only if

Ω(SV EP )(ε) �= ∅, ∀ ε > 0, and µ(Ω(SV EP )(ε)) → 0 as ε → 0.

Theorem 4.13. (SVEP) is well-posed in the generalized sense if and only if
S(SV EP ) is nonempty and compact and e(Ω (SV EP )(ε), S(SV EP )) → 0 as ε → 0.

Theorem 4.14. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T is u.s.c. and compact-valued;
(iii) H is l.s.c.;
(iv) C is closed;
(v) there exists ε > 0 such that Ω(SV EP )(ε) is nonempty and bounded.

Then (SVEP) is LP well-posed if and only if (SVEP) has a unique solution.

Theorem 4.15. Let E be finite-dimensional. Assume that
(i) K is continuous and closed-valued;

(ii) T is u.s.c. and compact-valued;
(iii) H is l.s.c.;
(iv) C is closed;
(v) there exists ε > 0 such that Ω(SV EP )(ε) is nonempty and bounded.
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Then (SVEP) is LP well-posed in the generalized sense if and only if (SVEP) has
a nonempty solution set S (SV EP ).

Remark 4.8. In Theorems 4.11 and 4.12, (i) if E is finite-dimensional, then
the condition “K is continuous and compact-valued” can be weaken by “K is
continuous and closed-valued”; (ii) if K is a constant mapping, i.e., K(x) ≡ X̃ (X̃
is a subset of X) for all x ∈ X , then X̃ is only need to be assumed to be closed
but not necessarily compact, and the condition “H is l.s.c.” can be weakened by
“(x, y) � H(x, y, u) is l.s.c.”.

Remark 4.9. If X0 = X and for every (x, y, u) ∈ X × Y × X , H(x, y, u) =
−H(x, u), then (SVEP) reduces to (GVQEP 2) of Li et al. [25], and so, by
Theorems 4.11-4.15, we can get some results of LP well-posedness for (GVQEP 2)
and LP well-posedness in the generalized sense for (GVQEP 2). However, Li et al.
[25] only studied the LP well-posedness in the generalized sense for (GVQEP 2).
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